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Abstract
Unsafe driving behaviors, driver limitations, and conditions that lead to a crash are usually referred to as driver errors. Even
though driver errors are widely cited as a critical reason for crash occurrence in crash reports and safety literature, the dis-
cussion on their consequences is limited. This study aims to quantify the effect of driver errors on crash injury severity. To
assist this investigation, driver errors were categorized as sequential events in a driving task. Possible combinations of driver
error categories were created and ranked based on statistical dependences between error combinations and injury severity
levels. Binary logit models were then developed to show that typical variables used to model injury severity such as driver
characteristics, roadway characteristics, environmental factors, and crash characteristics are inadequate to explain driver
errors, especially the complicated ones. Next, ordinal probit models were applied to quantify the effect of driver errors on
injury severity for rural crashes. Superior model performance is observed when driver error combinations were modeled
along with typical crash variables to predict the injury outcome. Modeling results also illustrate that more severe crashes tend
to occur when the driver makes multiple mistakes. Therefore, incorporating driver errors in crash injury severity prediction
not only improves prediction accuracy but also enhances our understanding of what error(s) may lead to more severe inju-
ries so that safety interventions can be recommended accordingly.

According to NHTSA, 37,461 people were killed on U.S.
roads in 2016, resulting in more than 100 deaths per day
(1). The roadway fatality counts in the U.S. increased by
5.6% from 2015. Moreover, non-fatal injury crashes on
U.S. roads increased by 4.1% from 2014 to 2015 (2). In
2010, the total cost of roadway crashes in the U.S.A. was
tagged as $871 billion in economic loss and societal harm
(3). Because of this economic and societal impact of traf-
fic crashes, researchers have devoted decades of effort to
improve traffic safety by implementing safety counter-
measures to reduce the occurrence as well as the degree
of injury sustained by those involved in crashes.

A significant amount of safety research has examined
crash injury outcomes to gain a comprehensive under-
standing of the factors contributing to crash injury sever-
ity. Research has shown that driver injury severities
resulting from a crash event are influenced by roadway,
traffic, driver demography, and vehicle and environmen-
tal characteristics (4–12). Discrete response models, both
unordered (e.g., multinomial logit, multinomial probit,
etc.) and ordered (e.g., ordered logit, ordered probit, etc.)
have been used extensively by researchers to explore the
relationship between covariates and driver injury

severity. The role of driver behaviors has also been
widely recognized in a safety-critical system such as the
roadway transportation system (11, 13–17). The research
on the effect of driver errors on crash injury outcome,
however, is limited.

Driver errors specifically refer to unsafe driving beha-
viors, driver limitations, and conditions that lead to a
crash. They belong to a specific category within a broader
subject of human factors in roadway safety, and mainly
refer to human ability, needs, limitations, and other
human characteristics that can influence driving tasks. A
significant amount of research has been conducted on
human factors, resulting in prolific guidance to highway
designers and traffic engineers on handling safety issues
in highway design and traffic operations (18, 19). As a
result, broader acceptance has been observed towards a
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safety system that means higher safety standards in rela-
tion to being more proactive in crash prevention and
being more forgiving for driver errors.

Driver errors in a crash can be obtained by reviewing
a crash report, including police officers’ judgments and
witness accounts. Then, a structured approach is usually
taken to explore the underlying mechanism of error-
prone situations. Representative theories have been pro-
posed along with established taxonomies from the phy-
siological, cognitive, and information processing
perspectives regarding human errors in fields such as
aviation and railways (20, 21). A comprehensive review
of human error categorization including driver error can
be found in the study conducted by Stanton and Salmon
(22). Four human error classification schemes are popu-
lar among existing literature: Norman’s error categoriza-
tion based on schema activation (23), Rasmussen’s skill,
rule, and knowledge error classification (24), Reason’s
slips, lapses, mistakes, and violations classification (25),
and Treat et al.’s recognition, decision, performance, and
non-performance errors based on the stages of informa-
tion processing during a driving task (26). Several safety
studies have used these different taxonomies to categor-
ize driver errors and explore their effect on crash occur-
rence (27, 28).

This study attempted to explore the effect of driver
errors on crash injury severity levels for segment-related
crashes, categorizing driver error information from crash
records, following the error taxonomy based on sequen-
tial events in a driving task. Possible combinations of
driver error categories were generated to explore the
effect of different combinations of driver errors on the
crash outcome. An exploratory analysis was then con-
ducted to check the dependency between driver error
categories and injury severity levels. Injury severity mod-
els were subsequently developed to understand the effect
of driver error combinations on crash injury severity.
Considering the effect of driver errors, injury severity
modeling results may provide specific insights into expla-
natory variables and help researchers and safety profes-
sionals to develop cost-effective countermeasures.

Literature Review

The taxonomy of human errors has been widely used in
most safety-critical systems to analyze the effects of
human errors (22). Such taxonomy is required to classify
and categorize a wide range of improper driving beha-
viors that compromise safety situation. Norman categor-
ized human errors based on a psychological theory of
schema activation (23). He noted that human action
sequences are triggered by knowledge structures that are
organized as memory units called schemas. As the action
is directed by schemas, faulty schemas or faulty

activations of schemas will lead to erroneous perfor-
mance. Rasmussen proposed skill, rule, and knowledge-
based human error classification in his classic paper (24)
and stressed that ‘‘errors cannot be studied as a separate
category of behavior fragments’’ but must be viewed
within ‘‘cognitive control of behavior.’’ Human errors
can be affected by skill, experience, and familiarity with
the situation encountered. Experienced drivers do not
tend to commit the same kinds of errors as novice driv-
ers. For the categorization of driver errors, the study
conducted by Reason et al. has been popular (29–32).
The authors categorized human errors of vehicular driv-
ers into slips, lapses, mistakes, and violations (25). They
defined attentional and memory failures as slips and
lapses, respectively. Both slips and lapses represent
human errors in which the action is unintended, whereas
mistakes are associated with the intended action.
Violations are more complex, categorized as behaviors
that deviate from accepted procedures, standards, and
rules, either deliberate or unintentional.

Based on driver behaviors collected from crash and
incidents, Treat et al. categorized driver errors into rec-
ognition, decision, performance, and non-performance
errors which are broadly based on the stages of informa-
tion processing during the driving task (26). The error
categorization developed by Treat et al. was used by sev-
eral other researchers (13, 28, 33). Najm et al. classified
driver errors in recognition, decision and erratic error
(33). The National Motor Vehicle Crash Causation
Survey study used error categorization taxonomy devel-
oped by Treat et al. and found that 94% of total crashes
are caused by driver error (13).

Many driver errors such as speeding, reckless driving,
overtaking, improper gap acceptance, adherence to traf-
fic controls, and so forth, have been identified as a contri-
butor of crash occurrence and injury outcome in safety
literature (13, 27, 28). Multiple safety countermeasures
ranging from roadway reengineering, improved vehicle
safety features, and strategies to influence driver behavior
have been developed to reduce crash occurrences and
injury severities. It is also noted that crash countermea-
sures achieve the best results when they influence driver
behavior (34). Adanu and Jones noted that driving beha-
viors such as speeding, DUI, and distracted driving sig-
nificantly contribute to the occurrence of crashes with
higher injury severities (35). They suggested designing
targeted outreach and education campaigns to address
these specific behaviors.

Based on statistical evidence provided in previous
research, it is worth exploring the effect of driver errors
on the injury outcome. Categorizing driver errors based
on driver factors observed from crash reports seems a
reasonable choice because of the availability of data and
error categorization taxonomy.
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Methodology

The ordered-probit (OP) model is used to account for
the ordinal nature of the crash injury severity levels. The
structure of an OP model is derived by defining an unob-
served latent propensity U, which can be described as a
linear function:

U =b0X+ e ð1Þ

where X is a vector of independent variables defining the
discrete ordering for each observation, b is a vector of
estimable model coefficients, and e is an error term
accounting for the unobservable effects. Using this struc-
ture, the observed ordinal dependent variable, or the
crash injury severity for each observation can be defined
as (36):

y= 1 if U ł m1

y= 2 if m1 ł U ł m2

�� ��
y= I if U ø mI�1

9>>=
>>;

ð2Þ

where the m values are estimable thresholds that define y
corresponding to integer ordering of injury severity lev-
els, and I is the highest integer level of injury severity. If
the random error term e is assumed to follow a standard
normal distribution, the model is derived to be an OP
model. The probability of each category can be calcu-
lated as follows:

prob y= ið Þ=F mi � b0Xð Þ �F mi�1 � b0Xð Þ ð3Þ

where i corresponds to the injury severity level to be ana-
lyzed, and F (�) is the cumulative standard normal
distribution.

Data Description and Exploratory Analysis

Segment-related crashes that occurred on the Wisconsin
state trunk network system between 2011 and 2015 were
collected from WisTransportal data hub maintained by
TOPSLAB (37). Deer-related and hit-and-run crashes
were removed from the crash dataset as driver-related
information for these crashes are not available. After
cleaning crashes for missing attributes, 56,564 rural
crashes were extracted from the crash database. The
severity for each crash is listed in the ‘‘KABCO’’ scale in
Wisconsin Motor Vehicle Accident Reporting Form
(MV4000) crash database. The ‘‘KABCO’’ scale of crash
injury severity is defined as fatality (K), incapacitating
injury (A), non-incapacitating injury (B), possible injury
(C), and no injury (O). It is a common practice to conso-
lidate KABCO into three levels—major injury (K+A),
minor injury (B+C), and no injury (O) to ensure that a
sufficient number of observations is available in each

injury severity level (10, 14, 38). Specific driver errors
were extracted from the MV4000 database, in which the
investigating police officers documented detailed acci-
dent information (37). There is a list of 14 driver-related
factors from which the reporting police officer identifies
the driver-related factor(s) associated with a crash.

Based on similarities in driver-related factors and
error categorization taxonomy developed by Treat et al.,
driver-related factors were then grouped into recogni-
tion, decision, performance, and non-performance errors
(26). Note that driver impairment is not considered as a
driver error in the error categorization taxonomy devel-
oped by Treat et al. (26). However, driver impairment
influences drivers’ decision-making ability which may
affect all error categories. Table 1 shows the taxonomy
used to categorize driver errors in the study.

The broad categorization of driver errors follows a
sequence of information processing during driving.
When driving, a driver needs to detect and identify a
hazard, decide what to do, and react accordingly. A driv-
er’s recognition efficiency can be affected by an internal
or external distraction or by any form of inattention.
Recognition error refers to all the driver factors that
may lead to a lack of awareness or failure in the recogni-
tion of hazardous situations. A driver’s decision on what
to do directly leads to what happens next, whether it is a
decision after detecting a hazard or a decision while driv-
ing. A bad maneuver decision after recognizing a hazar-
dous situation may cause a crash. A reckless decision
such as ‘‘exceeding the speed limit’’ may go wrong even
without an imminent hazard. In the same sequence, if a
maneuver is not properly performed, a crash may hap-
pen. Poorly performed driving tasks are categorized as
performance error, which is dependent on the driver’s
experience and skills. Although non-performance error is
not related to driver behavior, it represents a driver’s
health conditions, fatigue, level of impairment, or other
non-performance issues.

One crash event may involve one or multiple driver
error categories, as drivers may make several sequential
errors that resulted in a crash. Based on the driver error
categorization used in this study, there can be 16 possible
combinations of driver errors (4C0+

4C1+
4C2

+4C3+
4C4=16, where C represents combination) out

of four different driver error categories. These combina-
tions include no driver error, any one of the driver error
categories, any two driver error categories, any three
driver error categories, and all driver error categories.
Each error combination (ECi) was designated using
an initial letter coding system where the sequence of
letters follows the error categorization sequence (recogni-
tion [R] ! decision [D] ! performance [P] ! non-
performance [N]). The no driver error category was rep-
resented using the letter ‘‘O.’’ For example, a driver
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failed to yield to another driver while driving over the
speed limit. This case represents a combination of deci-
sion and performance errors, denoted as ‘‘DP.’’ Another
example can be a driver was talking on the phone while
driving and failed to keep the vehicle under control on a
horizontal curve. This case represents a combination of
recognition and performance error, coded as ‘‘RP.’’

The odds of major injury with and without a specific
driver error combination was estimated to explore the
effect of driver error combinations on injury severity lev-
els. Table 2 presents the association between all 16 com-
binations of driver errors and injury severities. In Table
2, the odds of major injury with ECi indicate the prob-
ability of major injury crashes compared with non-major
injury crashes when ECi driver error occurs. Similarly,
the odds of major injury with ECj (for all j 6¼ i) indicate
the probability of major injury crashes compared with
non-major injury crashes for all driver error combina-
tions except for the occurrence of ECi error. The odds of
injury crashes with driver errors are estimated using the
following equations:

Odds of Major Injury with ECi =

Number of major injury crashes with ECi

Number of minor injury crashes with ECi
3 100%

ð4Þ

Odds of Major Injury with ECj for all j 6¼ ið Þ=
Total number of major injury crashes�Number of Major injury crashes with ECi

Total number of minor injury crashes�Number of minor injury crashes with ECi
3 100%

ð5Þ

Odds ratio of ECi =
Odds of Major injury with ECi

Odds of Major Injury with ECj for all j 6¼ ið Þ
ð6Þ

Table 2 also presents the odds of major injury with
ECi, the odds of major injury without ECi, the resultant
odds ratio and the ranking. Twelve out of 16 error com-
binations exceed 6.16%, the average odds of major injury
crashes. Performance error only (P) has the maximum
frequency of both major and non-major injury severity in
rural crashes. Despite its dominance in the major injury
severity, P’s odds ratio is ranked 10th. DPN, a combina-
tion of decision, performance, and non-performance
errors, stays atop with an odds ratio of 4.09, meaning its
odds of major injury crashes is 4.09 times higher than
any other error combinations. RDPN includes all error
types but has the second highest odds ratio. This indi-
cates the participating driver errors in each driver error
category may have different effects. The rank of the esti-
mated odds ratio is the lowest for ‘‘O’’ representing no
driver error, which is expected.

A chi-square test was conducted to test whether the
driver error combinations and injury severity levels are
independent or not. The critical chi-square value with 15
degrees of freedom at a 5% level of significance is 24.99.
The estimated chi-square value for rural crash severities

Table 1. Categorization and Distribution of Driver Error

Error category Error examples Wisconsin criteria

Recognition error � Inadequate surveillance
� Internal distraction
� External distraction
� Inattention

� Inattentive driving

Decision error � Too fast for conditions
� Too fast for curve
� False assumption of other’s action
� Illegal maneuver
� Misjudgment of gap or other’s action
� Following too closely
� Aggressive driving behaviors

� Too fast for condition
� Exceed speed limit
� Disregard traffic control
� Following too close

Performance error � Overcompensation
� Poor directional control
� Panic/freezing
� Other performance error

� Improper overtake
� Improper turn
� Failure to keep vehicle under control
� Left of center
� Unsafe backing
� Failure to yield

Non-performance error � Sleep
� Heart attack
� Other non-performance errors

� Disability
� Driver condition
� Others
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among 16 driver error combination is 1226.09, indicating
that the driver error combinations and crash injury
severities are not statistically independent. These explora-
tory analyses show the evident influence of driver error
on crash injury severity. Therefore, the influence of
driver error needs to be controlled in crash severity
modeling.

Model Development

To quantify the effect of different driver error combina-
tions on crash injury severity, explanatory variables from
four broad categories along with driver error combina-
tions were considered for model development: driver
characteristics (including driver gender, age, vehicle type,
safety restraint use, and impairment), roadway charac-
teristics (including existence of horizontal and vertical
curve, roadway type, and posted speed limit), environ-
mental factors (including lighting condition, roadway
pavement condition, and weather condition), and crash
characteristics (including manner of collision, rollover,
roadside element, and existence of pedestrian or
bike). Attributes for the above-mentioned variables
for each crash were collected from the crash report.
Table 3 provides the summary statistics of explanatory
variables.

Driver error has been modeled in previous roadway
safety literature to help understand when, where, and
why drivers make mistakes and how we can prevent them
(16, 27, 39). Modeling results show that driver errors are

highly correlated with factors that also influence crash
occurrence and injury severity. But these studies did not
consider the concurrence of multiple errors (16, 27, 39).
Modeling all error categories and their combinations will
provide a detailed view of variables possibly contributing
to the errors. Rather than developing complicated mod-
els, binary logit models have been run for each of the 15
error combinations with all 21 variables (in Table 3) as
the explanatory variables. For brevity, Table 4 shows the
count of statistically significant variables for predicting
error combination.

According to Table 4, the average number of statisti-
cally significant variables is 15.5 for one error, 10.67 for
two error combinations, 7.75 for three error combina-
tions, and 4 for four error combinations. Although varia-
tions exist among driver, roadway, and environmental
factors, the general trend of decreasing number of statis-
tically significant variables with the increasing error com-
plexity remains the same. It is understood that these
variables can only partially explain the reasons for mak-
ing a mistake. But the explanation power appears to
dwindle when errors become more complicated. Thus,
these variables may not be adequate to explain driver
errors, especially the complicated ones which are strongly
associated with more severe injuries. Another possible
reason for the decreasing trend in the number of statisti-
cally significant variables could be the smaller sample
size for driver error combinations with multiple driver
errors. Although the sample size for driver error combi-
nations (except for EC1101) exceeds the rule-of-thumb

Table 2. Cross-Classification Table for Driver Error Combinations and Injury Severity

Error
combination

Recognition
error

Decision
error

Performance
error

Non-performance
error

No
error

Major
injuries
(K+A)

Non-major
injuries Total

Odds of major
injury with ECi

Odds of major
injury with ECj

(for all j 6¼ i)
Odds ratio

(rank)

O � 309 10,610 10,919 2.91% 6.97% 0.42 (16)
R � 350 6,538 6,888 5.35% 6.27% 0.85 (13)
D � 380 11,640 12,020 3.26% 6.97% 0.47 (15)
P � 732 8,102 8,834 9.03% 5.64% 1.60 (10)
N � 222 2,380 2,602 9.33% 6.01% 1.55 (11)
RD � � 77 1,508 1,585 5.11% 6.19% 0.82 (14)
RP � � 186 1,540 1,726 12.08% 5.98% 2.02 (8)
RN � � 51 398 449 12.81% 6.11% 2.10 (7)
DP � � 414 7,268 7,682 5.70% 6.23% 0.91 (12)
DN � � 56 435 491 12.87% 6.10% 2.11 (6)
PN � � 149 719 868 20.72% 5.96% 3.48 (3)
RDP � � � 89 872 961 10.21% 6.09% 1.68 (9)
RDN � � � 17 111 128 15.32% 6.14% 2.49 (5)
RPN � � � 67 388 455 17.27% 6.08% 2.84 (4)
DPN � � � 135 553 688 24.41% 5.97% 4.09 (1)
RDPN � � � � 48 220 268 21.82% 6.09% 3.58 (2)
Total 3282 53282 56564 6.16%

Note: D = decision error; DN = decision+non-performance error; DP = decision+performance error; DPN = decision + performance+non-performance

error; EC = error combination; N = non-performance error; O = no error; P = performance error; PN = performance+non-performance error; R =

recognition error; RD = recognition+decision error; RDN = recognition+decision/non-performance error; RDP = recognition+decision+performance

error; RDPN = recognition+decision+performance/non-performance error; RN = recognition/non-performance error; RP = recognition+performance

error; RPN = recognition+performance+non-performance error.
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Table 3. Summary Statistics of Explanatory Variables

Variable Description Type Frequency Percentage

Driver characteristics
Gender Male Categorical with 2 levels 34,926 61.75

Female 21,638 38.25
Age \25 years Categorical with 3 levels 16,840 29.77

25–65 years 35,225 62.27
.65 years 4,499 7.95

Vehicle type Motorcycle Categorical with 4 levels 1,097 1.94
Passenger car 41,348 73.10
Light truck 10,172 17.98
Heavy truck 3,947 6.98

Seatbelt No Categorical with 2 levels 4,431 7.83
Yes 52,133 92.17

Impaired No Categorical with 2 levels 53,064 93.81
Yes 3,500 6.19

Roadway characteristics
Horizontal curve No Categorical with 2 levels 45,528 80.49

Yes 11,036 19.51
Vertical curve No Categorical with 2 levels 44,815 79.23

Yes 11,749 20.77
Roadway type DWB Categorical with 4 levels 9,549 16.88

UD 29,069 51.39
DWOB 16,839 29.77
1-Way 1,107 1.96

Speed Mile per hour Continuous 55.2* 11.03*

Environmental factors
Lighting condition Day Categorical with 3 levels 35,865 63.41

Night-unlit 18,749 33.15
Night-lit 1,950 3.45

Roadway condition Dry Categorical with 3 levels 31,056 54.90
Wet 6,161 10.89
Snow 19,347 34.20

Weather condition Clear Categorical with 4 levels 22,679 40.09
Cloudy 15,971 28.24

Rain 3,628 6.41
Snow 14,286 25.26

Crash characteristics
Manner of collision SVC Categorical with 5 levels 34,617 61.20

Angle 2,801 4.95
Head on 1,025 1.81
Rear end 11,475 20.29

Side swipe 6,646 11.75
Rollover No Categorical with 2 levels 50,399 89.10

Yes 6,165 10.90
Roadside element None Categorical with 4 levels 31,455 55.61

Fixeda 15,657 27.68
Movingb 2,711 4.79
Ditch 6,741 11.92

Pedestrian/bike No Categorical with 2 levels 56,285 99.51
Yes 279 0.49

Note: DWB = divided with barrier; DWOB = divided without barrier; SCV = single vehicle crash; UD = undivided.
*The speed variable is continuous, and the descriptive statistics are presented as mean and standard deviation.
aFixed roadside objects represent roadside hardware such as utility pole, traffic sign/signal, guardrail, and so forth, which are meant to guide traveler,

prevent fatal injuries, or both.
bMoving roadside objects include parked vehicle, small animals, and other moving objects as listed in the crash report.
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for minimum required sample size (event per variable cri-
terion. 10), caution needs to be exercised while explor-
ing the correlation between driver error combinations
and other explanatory variables.

Incorporating driver error as a predictor variable in
injury severity modeling may create opportunities to
improve model performance as well as our understand-
ing of what the driver error means for the injury severity
of a crash. Thus, three models are proposed as follows:

Model 1: Using driver, roadway, environmental, and
crash characteristics variables as explanatory
variables.
Model 2: Using only driver error combinations as
explanatory variables.
Model 3: Using driver error combinations in associa-
tion with driver, roadway, environmental, and crash
characteristics variables as explanatory variables.

In Model 1, all traditional variables including driver
characteristics, roadway characteristics, environmental
factors, and crash characteristics variables were used as
explanatory variables to predict crash injury severity.
Model 2 was developed to explore how much deviance in
injury severity data can be explained solely by the driver
error combination variable. In Model 3, driver error
combinations were used along with all explanatory vari-
ables used in Model 1. To check estimation bias resulting
from multicollinearity, one simple method is to check the

variation in the estimated model parameters between
Model 1 and 3. The existence of multicollinearity makes
the model very sensitive to minor changes, which leads
to significant variation in model parameter estimates.

The OP model was estimated to quantify the influence
of explanatory variables described above. The ‘‘polr’’
package in R was used to estimate the coefficients of OP
models. The coefficient estimates represent the ordered
log-odds estimate where a positive coefficient means a
possible increase in the latent injury risk propensity and
a negative value means a possible decrease in injury risk
propensity. The parameter estimates from OP models
are presented in Table 5.

Model Performance

All estimated parameters provided in Table 5 are statisti-
cally significant at a 5% significance level in predicting
crash injury severities. The threshold estimates (both m1

& m2) presented in Table 5 are found highest in Model 2.
This indicates that the estimated injury risk propensity
needs to exceed a higher value to be qualified as a minor
or a major injury crash in Model 2 compared with Model
1 and 3. A comparison between threshold estimates
between Model 1 and 3 indicates that the estimated
thresholds are a little higher with Model 3 because of the
incorporation of driver error combinations. Considering
the higher threshold estimates, it can be noted that the
contribution of covariates was overestimated for some

Table 4. Explanatory Variables for Predicting Driver Error*

EC
Driver

characteristics (8)
Roadway

characteristics (6)
Environmental

factors (7) Total (21) Average

One error R 8 5 6 19 15.5
D 4 4 5 13
P 8 3 4 15
N 8 4 3 15

Any two errors RD 5 4 2 11 10.67
RP 6 5 3 14
RN 5 0 5 10
DP 7 4 5 16
DN 2 0 2 4
PN 4 3 2 9

Any three errors RDP 6 3 3 12 7.75
RDN 3 0 1 4
RPN 4 2 3 9
DPN 3 1 2 6

All errors RDPN 2 1 1 4 4

Note: D = decision error; DN = decision+non-performance error; DP = decision+performance error; DPN = decision+performance+non-performance

error; EC = error combination; N = non-performance error; O = no error; P = performance error; PN = performance+non-performance error; R =

recognition error; RD = recognition+decision error; RDN = recognition+decision+non-performance error; RDP = recognition+decision+performance

error; RDPN = recognition+decision+performance+non-performance error; RN = recognition+non-performance error; RP = recognition+performance

error; RPN = recognition+performance+non-performance error.
*Value presented in parenthesis indicates the total number of coefficients to estimate within each variable group.
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Table 5. Ordered Probit Model Estimation Results

Model 1 Model 2 Model 3

Variable Value Estimate Standard error Estimate Standard error Estimate Standard error

Driver characteristics
Gender Male Base level

Female 0.125 0.012 na na 0.131 0.012
Age Young (\25) Base level

Middle-age (25–65) 0.057 0.012 na na 0.072 0.013
Old (.65) 0.18 0.022 0.193 0.022

Vehicle type Motorcycle Base level
Passenger car –1.081 0.037 na na –1.14 0.037
Light truck –1.065 0.038 na na –1.115 0.039
Heavy truck –1.21 0.042 na na –1.238 0.042

Seat belt No Base level
Yes –0.671 0.019 na na –0.643 0.02

Impaired No Base level
Yes 0.496 0.022 na na 0.546 0.043

Roadway characteristics
Horizontal curve No Base level

Yes 0.125 0.014 na na 0.111 0.014
Road type DWB Base level

UD 0.299 0.018 na na 0.292 0.018
DWOB 0.054 0.017 na na 0.047 0.018
1-Way –0.21 0.045 na na –0.226 0.045

Speed 0.016 0.001 na na 0.016 0.001
Environmental factors

Lighting condition Day Base level
Night-unlit –0.052 0.013 na na –0.051 0.013
Night-lit –0.089 0.033 na na –0.086 0.033

Pavement condition Dry Base level
Wet –0.104 0.018 na na –0.086 0.018
Snow –0.369 0.013 na na –0.316 0.015

Crash characteristics
Rollover No Base level

Yes 0.759 0.025 na na 0.647 0.026
Roadside element None Base level

Fixed 0.24 0.022 na na 0.129 0.023
Moving –0.312 0.036 na na –0.21 0.037
Ditch 0.377 0.026 na na 0.265 0.026

Manner of collision SVC Base level
Angle 0.771 0.03 na na 0.644 0.031

Head on 1.655 0.041 na na 1.523 0.042
Rear end 0.594 0.023 na na 0.491 0.025

Side swipe 0.246 0.026 na na 0.116 0.027
Ped-bike No Base level

Yes 2.068 0.073 na na 1.988 0.073
Driver error combinations

Driver errors O Base level
R na na 0.494 0.02 0.346 0.022
D na na 0.229 0.018 0.221 0.02
P na na 0.482 0.019 0.314 0.021
N na na 0.604 0.027 0.382 0.029

RD na na 0.512 0.033 0.324 0.036
RP na na 0.759 0.031 0.523 0.033
RN na na 0.815 0.056 0.514 0.059
DP na na 0.400 0.02 0.371 0.022
DN na na 0.782 0.054 0.45 0.057
PN na na 1.042 0.041 0.62 0.044

RDP na na 0.743 0.04 0.568 0.042
RDN na na 0.996 0.101 0.573 0.104
RPN na na 1.003 0.055 0.6 0.058

(continued)
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variables (i.e., existence of pedestrian or bike, roadside
object, rollover, crash type, horizontal curve) in Model 1
because of unavailability of driver errors.

A comparison between model performance indicated
that Model 3 has significantly better performance than
all other models. The residual deviance and log-
likelihood estimates indicate that the driver error combi-
nation variable solely can account for a significant por-
tion of the variation in the injury severity data in Model
2 although only one variable was used in this model. A
likelihood ratio test between Model 1 and 3 resulted in a
value of L-R statistics of 798 with a difference in degrees
of freedom equal to 15. This result is highly significant,
indicating that a significant improvement in model per-
formance can be achieved by incorporating driver error
combinations into the model.

Analysis and Discussion

Driver Error Combinations

The modeling results showed that each of the 16 driver
error combinations is statistically significant at a 5% sig-
nificance level in predicting crash injury severity in both
Model 2 and 3. Estimated coefficient from the OP mod-
els indicates that the occurrence of both single and multi-
ple driver errors increases the probability of a more
severe crash compared with no driver error (O). Another
notable pattern in the estimated coefficients is that the
estimated risk propensities for error combinations with
multiple driver errors tend to be higher compared with
driver error combinations with only one error. This indi-
cates that the concurrence of multiple driver errors may
elevate the injury severity level. However, two exceptions
have been noticed: DP and P in Model 2, and RD and R

in Model 3. In both cases, parameter estimates with two
driver errors were found smaller than one driver error.
More research is needed to determine whether the dis-
parity in model parameter estimates is the result of statis-
tical artifacts or because of unobserved underlying
relationships.

Between Model 2 and 3 for driver error combinations,
all estimated coefficients have the same positive sign
indicating a higher increase in the injury crash risk.
Estimated coefficients of Model 2 have a slightly higher
value than Model 3 because driver error combinations
are the only explanatory variables in Model 2. The esti-
mated standard deviation of model coefficients also has
a similar value in both Model 2 and 3. This indicates that
the estimated model was not sensitive to changes in
model formulation.

The estimated marginal effects of driver error combi-
nation in Model 3 are presented in Table 6. All driver
error combinations increase the risk of both minor injury
and major injury crashes compared with no driver error
crashes. Recalling the estimated ranks in Table 2, DPN
has the highest increase in the crash risk of both minor
and major injury crashes among driver error combina-
tions. The estimated marginal effect of DPN means that
the probability of minor and major injury crashes will
increase by 18.3% and 10.5%, respectively, if decision,
performance, and non-performance errors happen in a
crash.

Driver Characteristics

Driver demographics such as age and gender have been
identified as major contributors to crash injury severity
in previous safety research (9, 39). In this study, the OP
estimates indicate the driver demographic variables are

Table 5. (continued)

Model 1 Model 2 Model 3

Variable Value Estimate Standard error Estimate Standard error Estimate Standard error

DPN na na 1.162 0.045 0.745 0.049
RDPN na na 1.003 0.071 0.608 0.074

Threshold m1 0.294 0.060 0.855 0.013 0.454 0.061
m2 1.597 0.060 2.001 0.015 1.770 0.061

Performance measure Log-likelihood –39209.690 –42829.800 –38795.800
Residual deviance 78419.38 85659.61 77591.61

AIC 78475.380 85693.610 77677.610

Note: AIC = Akaike Information Criterion; D = decision error; DN = decision+non-performance error; DP = decision+performance error; DPN =

decision+ performance+non-performance error; DWB = divided with barrier; DWOB = divided without barrier; N = non-performance error; na = not

applicable; O = no error; P = performance error; PN = performance+non-performance error; R = recognition error; RD = recognition+decision error;

RDN = recognition+decision+non-performance error; RDP = recognition+decision+performance error; RDPN = recognition+decision+performance+

non-performance error; RN = recognition+non-performance error; RP = recognition+performance error; RPN = recognition+performance+non-

performance error; SVC = single vehicle crash; UD = undivided.
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statistically significant in predicting injury severity. The
parameter estimate indicates that a female driver is more
likely to endure higher injury severity in a crash than a
male driver. For the age variable, parameter estimates
suggest that there is a reduction in the likelihood of
injury crashes for young drivers (age \25) compared
with middle-aged (age 25–65) and old drivers (age .65).
The odds of suffering a minor or major injury crash was
highest with old drivers compared with young and
middle-aged drivers.

For vehicle type, Ordered Probit model results indi-
cate that the latent propensity is higher for motorcycle
riders compared with passenger car, light, and heavy
trucks. Several previous safety studies noted that motor-
cycle crashes have considerable potential to produce
injury crashes because of natural vulnerability and risk-
taking behaviors of their users (40–43). The negative sign
of the use of seatbelt demarcates a decrease in the likeli-
hood of the injury risk propensity for both models, which
is also consistent with results noted in previous safety lit-
erature (9, 44). This indicates the unambiguous benefit of
employing seatbelt in reducing injury severity in a crash
event. As expected, impaired drivers under the influence
of alcohol and drugs are likely to have a higher injury
risk propensity compared with the sober drivers. The

Ordered Probit model parameter estimates for driver
characteristics variables are also found almost similar in
both Model 1 and 3.

Roadway Characteristics

Regarding roadway characteristics variables, the vertical
curve is not statistically significant in predicting latent
risk propensity of crash injury severity. With respect to
roadway alignment, the existence of horizontal curves
increases the risk propensity of injury crashes. The posi-
tive value of the model coefficient for the speed variable
in both Model 1 and 3 indicates a higher speed limit may
result in more injury crashes.

With respect to roadway type, divided roadway with
barrier was considered as base level in Ordered Probit
modeling. Compared with the base level, the Ordered
Probit model estimates indicate that the likelihood of
injury risk propensity is highest for undivided roadway.
On the other hand, one-way roadways tend to have a
negative influence on injury risk propensity. The Ordered
Probit model estimates were found stable with the same
sign and almost similar value in both Model 1 and 3.

Environmental Characteristics

The weather condition variable in environmental charac-
teristics is found insignificant in predicting latent risk
propensity, thus left out from the final model. In the case
of lighting conditions, the risk propensity is the highest
in the daytime compared with the night condition (both
with light and unlit). Several past roadway safety studies
noted that drivers tend to travel at a higher speed during
daylight conditions (45, 46), which can result in a higher
impact speed during a crash. Consistent with previous
roadway safety studies, roadways without lights were
found to have a higher risk propensity compared with
roadways with lights for nighttime crashes (47, 48). It is
plausible that in the nighttime with roadway lights, a
driver may be able to take remedial maneuvers to avoid
a more severe impact.

Regarding roadway pavement condition, the Ordered
Probit model estimates indicate that dry pavement condi-
tion has the highest risk propensity compared with its
counterparts. This result indicates that drivers may adopt
a higher speed or risker behavior while driving on dry
pavement, or drive more cautiously when the pavement
is wet or snowy. Comparing wet and snowy pavement
conditions, the likelihood of injury risk propensity is
higher in wet condition. Similar to the driver and road-
way characteristics variable, the Ordered Probit model
parameter estimates also have a similar pattern in Model
1 and 3.

Table 6. Estimated Marginal Effects

Variable No injury Minor injury Major injury

O Base level
R –0.128 0.095 0.033
D –0.08 0.061 0.019
P –0.115 0.086 0.029
N –0.143 0.104 0.039
RD –0.121 0.089 0.032
RP –0.2 0.139 0.061
RN –0.197 0.136 0.061
DP –0.137 0.101 0.036
DN –0.171 0.121 0.05
PN –0.239 0.159 0.079
RDP –0.218 0.148 0.069
RDN –0.22 0.149 0.071
RPN –0.231 0.155 0.076
DPN –0.288 0.183 0.105
RDPN –0.234 0.156 0.078

Note: D = decision error; DN = decision+non-performance error; DP =

decision+performance error; DPN = decision+performance+non-

performance error; N = non-performance error; O = no error; P =

performance error; PN = performance+non-performance error; R =

recognition error; RD = recognition+decision error; RDN = recognition+

decision+non-performance error; RDP = recognition+decision+

performance error; RDPN = recognition+decision+performance+non-

performance error; RN = recognition+non-performance error; RP =

recognition+performance error; RPN = recognition+performance+non-

performance error.
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Crash Characteristics

All crash characteristics variables used in this study were
found to be a significant contributor to injury severity.
Higher injury risk propensity was observed when a pedes-
trian or bike is involved in a crash. The likelihood of
injury risk propensity is high if a vehicle rolled over in an
event of a crash. These results are consistent with the
results noted in safety literature for both variables.

For roadside elements, the existence of a roadside
ditch is associated with higher injury propensity, indicat-
ing a crash may result in more severe injury if it hits the
ditch compared with its counterparts. Hitting a moving
object decreases the risk of injury crashes. Among differ-
ent manners of collision, higher injury risk is associated
with head-on crashes among multi-vehicle crashes. On
the contrary, single-vehicle crashes tend to result in PDO
crashes. Again, the Ordered Probit model parameter esti-
mates were found to have a similar pattern in Model 1
and 3.

Conclusion

This study attempted to understand the effect of driver
errors on the crash injury outcome in rural areas. In this
process, driver errors were categorized as recognition,
decision, performance, and non-performance based on
the stage of information processing during a driving task.

Sixteen possible combinations of driver errors
were generated because a crash may involve multiple
errors. The statistical dependence between different com-
binations of driver error categories with ordered levels of
injury severity was investigated and ranked by the odds
ratio of the major injury for a specific error combination.
The results show that different combinations of driver
error categories and injury severity levels are not statisti-
cally independent; the more severe crashes tend to occur
when the driver makes multiple errors sequentially.

The OP model was then applied to quantify the impact
of driver errors on the crash injury outcomes. Estimated
ordered risk propensities were discussed and compared
between models with different sets of variables. The
model results indicate that all driver error combinations
have a statistically significant and higher impact on
injury crashes compared with crashes with no driver
errors. The results also indicate that the contribution of
some variables may be overestimated if important contri-
butors such as driver errors are not used in model devel-
opment. The model performance comparison shows that
including driver errors can significantly improve predic-
tion accuracy.

Typically, driver characteristics, vehicle characteris-
tics, roadway design and operational attributes, and
environmental factors are considered as statistically

significant contributors to injury severity in safety litera-
ture. Although these traditional sets of variables provide
valuable information, they only provide partial informa-
tion on crash injury severity. Several studies also noted
the existence of heterogeneity in injury severity data
because of the absence of driver behavior (49–51). As a
result of improved model performance, it is safe to note
that driver errors have a substantial influence on the
crash occurrence and resultant injury outcome, and
should be considered in the model development for bet-
ter prediction accuracy.

The driver errors used in this study were collected from
the crash reports with the assumption that driver errors
reported by responding police officers are correct. This
study is also limited to exploring the effect of driver errors
on crash injury severity for segment-related crashes. A
driver may be more prone to errors at an intersection, as
the traffic movements at an intersection are more com-
plex in nature than a segment. Different study designs
may be needs to address the complex interactions and
conflicts between vehicles and between different modes.
This study is an attempt to explore whether the proposed
method can be helpful to discover meaningful and useful
relationships. Based on the knowledge obtained from this
study, a future study can be designed to explore the effect
of driver errors on intersection-related crashes.

Knowing what errors are associated with more severe
crashes, more research is needed to explore why drivers
make mistakes and what interventions can help to pre-
vent them. When more information becomes available,
the contribution of each driver error also needs to be
explored in the future to understand its specific role in
causing injuries. The findings along this line of research
may help reduce severe crashes by developing specific
safety countermeasures and advanced vehicle features
targeting specific driver errors.
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