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ABSTRACT
Lane changes are particularly frequent on urban streets, which not only impact traffic operations, but also
cause negative effects on safety. This study uses vehicle trajectory data collected from Southwest Road in
Dalian, China, to investigate the influential factors of discretionary lane changing in an urban road
environment. Both the standard logit model and mixed logit model were fitted to the data, which
evidently identified several key factors. The mixed logit model outperformed the standard logit model in
terms of model fit. The results suggest that driver heterogeneity is present on the speed differentials of the
subject vehicle and the leading vehicles, and the distance gap in the target lane. A sensitivity analysis was
further conducted to quantify the degree of influence of the statistically significant variables. The findings
support the notion and purpose of discretionary lane changing, i.e. seeking a speed advantage and/or
a more satisfactory driving environment.
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Introduction

Changing lanes is a basic driving task, but it is also one of the most
important decisions on the part of the driver. Improper lane-
changing behavior not only impacts traffic flow characteristics but
also threatens traffic safety. Studies have shown that lane changing is
one of the main causes for escalating local traffic oscillations to large-
scale disturbances that lead to traffic congestion or breakdowns (Ahn
and Cassidy 2007; Zheng, Ahn, and Monsere 2010; Sun, Zhang, and
Zhang 2014). During lane changes, drivers need to process a large
amount of information in a short period of time, making them prone
to errors and accidents. It is necessary to conduct comprehensive and
in-depth research on drivers’ lane changing decisions and behaviors
in order to improve traffic operations and safety.

Lane changes generally can be divided into two categories based
on purpose: mandatory lane changing (MLC) and discretionary lane
changing (DLC). The former refers to the driver’s lane-changing
behavior when he/she has to leave the current lane in order to reach
the planned destination, whereas the main purpose of DLC is to
gain an advantage in speed or improve driving conditions (e.g.
greater driving space), and changing lane is not necessary (Zheng
2014). Compared with MLC, DLC is more complex due to the
flexibility and uncertainty. In some cases, it is difficult to distinguish
between the two; for example, a driver may change to the adjacent
left lane to prepare for a left-turn at the downstream intersection
long before the actual left-turn is executed. A more accurate way to
distinguish between the two is to model them separately, as drivers
are expected to think and act differently due to different purposes.

As one of the most vital components in traffic flow theory, the
lane-changing model has been fully incorporated in the microscopic
traffic simulation (Yang, Koutsopoulos, and Ben-Akiva 2000;
Choudhury et al. 2007; Laval and Leclercq 2008). Though more
research on the lane-changing model is needed, progress is limited
because lane-change behavior is more complicated than other beha-
viors such as car-following. Moreover, large-scale data is lacking for

analyzing, modeling and calibrating such behaviors, and the collec-
tion and compilation of a large trajectory dataset for model develop-
ment is costly and time-consuming (Moridpour, Sarvi, and Rose
2010; Rahman et al. 2013; Zheng, Suzuki, and Fujita 2014). Another
issue with lane-changing modeling is that the heterogeneity of driver
behaviors is often neglected. In many existing models, drivers are
assumed to behave in the same way for a given situation, when in
reality the factors affecting the lane changing behavior can possibly be
given different importance by different drivers. For example, an
aggressive driver may perceive the speed advantage to be more
important, so he/she is more likely to execute a lane change. By
incorporating such effects into modeling, the results should more
accurately reflect the actual driving behaviors.

The objective of this paper is to develop a lane-changing model to
quantitatively analyze the factors affecting drivers’ lane-changing
decisions, specifically focusing on discretionary lane changes of cars
in an urban road environment. Models in this paper were based on
vehicle trajectory data collected from urban streets. To account for
a complex traffic environment, probabilistic decision models were
developed based on the random utility theory. A mixed logit model
was fitted and compared with the standard logit model to accom-
modate heterogeneity among drivers.

The remainder of this paper is organized as follows. Section 2 is
a literature review on lane-changing models, followed by the
methodology in Section 3. Section 4 comprises data collection
and analysis. Model estimation and validation are presented in
Section 5 and the impacts of factors on the lane changing are
evaluated and discussed in Section 6. Finally, conclusions and
recommendations for future work are provided in Section 7.

Literature review

According to Rahman et al. (2013), there are four categories of
lane-changing models: ruled-based, discrete-choice-based, artificial
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intelligence, and incentive-based. Among the existing models,
rule-based and discrete-choice-based models appear to be the
most popular ones.

The ruled-based model treats the lane-changing process as
a decision tree with a series of fixed conditions. The result is
a binary choice (change or not change), but the model parameters
are difficult to calibrate. As one of the earliest rule-based models,
Gipps’ model included several important factors, such as the exis-
tence of a safety gap, the location of permanent obstructions, the
intent of turning movement, the presence of heavy vehicles, and the
speed advantage (Gipps 1986). Drivers decided whether or not to
execute a lane-changing manoeuver by considering the physical
possibility or safety, the necessity, and the desirability to change
lanes. AlthoughGipps’model has been applied in several microscopic
traffic simulations, it has not been validated using microscopic traffic
and driver behavior data. In Deutsch’s research, the cellular automata
model was developed, assuming that a vehicle makes lane changes
after assessing speed conditions in the current and target lanes as well
as the availability of sufficient space to execute the lane change
(Deutsch et al. 1995). Kita (1999) proposed a game theory model
based on the give-way behavior in a merging situation.

Hidas (2002, 2005) classified lane-changing maneuvers as either
free, forced, or cooperative, depending on the gaps between the
lead and lag vehicles in the target lane. A free lane change was
considered to be feasible if the target lead and lag space gaps were
both greater than the desired critical space gaps. A cooperative
lane change relied on the willingness and feasibility of the lag
driver to slowdown. The forced lane change was different from
a cooperative lane change in the maximum speed decrease and
deceleration assumed by the subject vehicle driver. Hidas imple-
mented and tested his model using the ARTEMiS microscopic
traffic simulator, but there was no framework for calibrating
model parameters. In addition, some factors that may influence
lane changes, such as a heavy vehicle, were not considered.

The discrete-choice-based model assumes lane-changing deci-
sions are made on the basis of maximum utility, and the output is
a probabilistic result (Moridpour, Sarvi, and Rose 2010; Rahman
et al. 2013). It was first proposed to describe the lane changing by
Ahmed et al. (1996). In this lane-changing model, the utility
function of the current lane and adjacent lane would be estimated
if the driver was not satisfied with the current driving condition.
The probability function to determine the lane-changing decision
could then be calculated. The lead and lag gaps were checked to
determine whether a lane change should be executed. Ahmed
estimated the parameters of his model for a special case using
vehicle trajectories: merging to the left lane from a freeway on-
ramp but in reality, it is difficult to determine the utility functions
for the various decision choices for Ahmed’s model.

Toledo et al. (2003, 2009) developed an integrated probabilistic
lane changing model based on utility theory considering manda-
tory and discretionary lane changing at the same time. Variables
underlying lane-changing decisions were considered, such as gaps,
speeds, distance from the intended exit off-ramp, avoiding the
nearest lane to the shoulder, driving styles driving capabilities,
etc. The general framework for estimating the probability of
a lane change and its execution was similar to Ahmed’s model.
Sun et al. (2010) conducted a focus group study in which driver
types, the likelihood of attempting a given discretionary lane
change, and the factors affecting the execution of a given lane
changing maneuver were revealed. An ‘in-vehicle’ experiment was
also conducted. Probability functions for each lane change sce-
nario were established, incorporating the driver characteristics
which most previous models did not take into account (Sun and
Elefteriadou 2012).

Based on the literature, while many studies have involved the
modeling of lane-changing behavior, few have accounted for the
effects of drivers’ heterogeneity on the lane-changing process. In
fact, behavioral variation does exit among different drivers. While
observed characteristics such as age and gender may to some
extent explain the variation, differences are caused by drivers’
various perceptions and preferences in the choice-making process,
which must be further researched.

Methodology

The rule-based model is more difficult to calibrate than the dis-
crete-choice-based model. In this paper, using the random utility
theory, the discrete-choice-based model was developed to explore
the influential factors of the lane-changing behavior and quantita-
tively evaluate their impacts.

Random utility theory

Random utility theory is based on utility maximization hypothesis,
in which the individual will always choose the alternative that he/
she thinks has the largest utility. Assuming that there are
J independent alternatives in a choice set An, and each alternative
corresponds to a certain utility, according to this theory, the
individual n will choose the alternative i if the following condition
holds true:

Uin >Ujn; i�j; i; j 2 An (1)

where Uin, Ujn are the utilities for the individual n of alternatives
i and j, respectively.

The utility Uin of the alternative i for the individual n consists
of two components, the observed utility Vin and the unobserved
error term εin, given by:

Uin ¼ Vin þ εin (2)

The Vin is observable in that it is a function of the observable
characteristics of the individual n and the alternative i. A linear
utility function has often been assumed, as shown in Equation (3).

Vin ¼ β0 þ
XN
k¼1

βkXink (3)

where Xink is the kth attribute variable for individual n and the
alternative i; N is the total number of attributes studied; β0 is the
constant term; βk is the coefficient for the kth attribute variable.

Based on the utility maximization hypothesis, the probability of
any alternative i being selected by the individual n from the choice
set An (denoted as Pin) is given by:

Pin ¼ ProbðUin >Ujn; i�j; i; j 2 AnÞ
¼ ProbðVin þ εin >Vjn þ εjn; i�j; i; j 2 AnÞ (4)

0 � Pin � 1 ;
X

i2An
Pin ¼ 1 (5)

The error term εin is a random variable described by a probability
distribution. Assuming it to be independently and identically dis-
tributed, following the double exponential distribution, it yields
the logit model, and the following equation can be derived:

Pin ¼ expðVinÞP
j2An

expðVjnÞ ; i 2 An (6)

2 H. ZHOU ET AL.



Mixed logit model

In a standard logit model, the heterogeneity among individuals is
not considered because the parameters in the utility functions are
all fixed. A mixed logit model obviates the limitations of the
standard logit model by allowing for random taste variation and
correlation in unobserved factors over time (Train 2003). The
mixed logit probabilities are the integrals of the standard logit
probabilities over a density of parameters, of which some may be
fixed and some may be randomly distributed. A mixed logit model
can be expressed as:

Pin ¼
ð
Lin βð Þf ðβjθÞdβ

(7)

where Lin(β) is the logit probability as expressed in equation (6),
evaluated at parameters β; f(β|θ) is the density function of β, and θ
refers collectively to the parameters to be estimated of the distri-
bution (e.g. the mean and the variance of β). If observable utility
Vin is linear in β, the mixed logit model can be written as

Pin ¼ �
expðβXinÞP
j2An

expðβXjnÞ f ðβjθÞdβ (8)

The mixed logit probability is a weighted average of the logit
formula evaluated at different values of β, with the weights given
by the density f(β|θ). If the βs are all fixed, the mixed logit reduces
to the standard logit. Thus, the heterogeneity across individual
decision makers can be introduced by specifying the distribution
of β. Normal, lognormal, uniform and triangular distributions are
usually used.

The choice probability in (7) or (8) cannot be calculated exactly
because the integral does not have a closed form in general.
Alternatively, the integral is approximated through simulation.
For any given value of θ, a value of β is drawn from f(β|θ),and
Lin(β) can be calculated. Repeating the process for many times, the
average of the results is taken as the simulated probability:

~Pin ¼ 1
R

XR
r¼1

LinðβrÞ (9)

where r is the number of draws. ~Pin is an unbiased estimator of Pin.

Model development

In a lane-changing maneuver, the vehicle that intends to change
lanes (referred to as the subject vehicle) will interact with its
surrounding vehicles, especially the immediate leading and follow-
ing vehicles (if there are any) in the lane in which it is traveling
(current lane) and the lane to which it’s going to change (target
lane). The lane-changing scenario is depicted in Figure 1, which
involves at least four vehicles: the subject vehicle (denoted as S),
the vehicles in front of the subject vehicle in the current lane and
in the target lane (denoted as CL and TL, respectively), and the

vehicles following behind the subject vehicle in the target lane
(denoted as TF). The speeds of these vehicles and the distances
between them are factors that may affect the driver’s decision to
change lanes, so they are considered as the variables in the models.
Specifically, in the target lane we use the distance between the TL
and TF (DTLF) to capture drivers’ gap acceptance instead of con-
sidering the distances between the TF and S, and S and TL
separately. Based on our observations, a large DTLF usually stimu-
lates a driver to change lanes, even if TF is parallel to the subject
vehicle. Chinese drivers will accelerate and cut in front of TF with
very small back gaps. Thus, using DTLF may be more appropriate
to model drivers’ lane-changing behaviors in this case because
drivers seem to be more sensitive to DTLF than to the distances
with the TL and TF. Besides, the influence of buses in urban areas
should not be neglected because of their frequent stops, slow
speed, and large size that can block the view of the vehicles
following them.

Based on random utility theory, a driver’s satisfaction of driv-
ing in a lane can be represented by the utility of the lane, which
obeys the utility maximization hypothesis. In other words, the
driver will generate the desire to change lanes once the satisfaction
of driving in the current lane is lower than the adjacent lane. There
are two choices: to stay in the current lane or change to the target
lane; thus, the logit model is reduced to a binary logit model. The
observable utilities for staying in the current lane (VC) and for
changing to the target lane (VT) can be expressed as linear func-
tions of the variables discussed above.

VC ¼ β0 þ
XN1

k¼1
βkXCk (10)

VT ¼
XN2

k¼1
βkXTk (11)

where XCK and XTK are the variables included in the utility func-
tions of the current lane and the target lane, respectively; N1 and
N2 are the number of variables in the utility functions of the
current lane and the target lane, respectively; β0, βk were the
coefficients to be estimated. Then, the probability of changing
into the target lane (PT) can be calculated as:

PT ¼ exp VTð Þ
exp VCð Þþ exp VTð Þ (12)

Accounting for drivers’ heterogeneity, the probability of changing
into the target lane (PT) is:

PT ¼ �
expðVTÞ

expðVCÞ þ expðVTÞ f ðβjθÞdβ (13)

where f(β|θ) is the density function of β, as defined previously.
The variables used in this study are specified in Table 1. Two

dummy variables, BUS and PS, were created for the existence of
a bus in front of the subject vehicle in the current lane and for the
position of the subject vehicle.

Figure 1. Schematic diagram of a lane changing.
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Data collection and processing

Selecting the study sites for data collection is the first and crucial step.
Study sites were screened following principles such as availability of
a commanding position nearby (e.g. a footbridge or a tall building
which provides good views of the study site for video recording),
minimum lateral interference to the traffic flow, and distinguishable
mandatory and discretionary lane changes through video data. One
segment of Southwest Road in Dalian, China was chosen, as illu-
strated in Figure 2. The study area is about 180 m in the length. The
segment has four lanes in each direction, and data were collected on
the direction from southwest to northeast (the study direction). The
four lanes in this direction are denoted as 1–4 from the rightmost
lane. The Huanghe interchange (drawn in the blue color in Figure 2)
is in front of the study area in that direction. All through vehicles take
the interchange by Lane 3 or 4, and vehicles going other directions
travel under the interchange by lane 1 or 2. However, because vehicles
in lane 1 were observed to be greatly affected by bus stops, only lane
changes occurring between Lane 3 and lane 4 were considered dis-
cretionary lane changes.

Data were collected in October and November of 2015. Video
recording was conducted from 7am to 10am on four weekdays with
clear weather and good visibility conditions. Two video cameras were
placed on the footbridge to record the traffic flow on both sides of it.
It should be noted that during the time period, traffic flow in the
study direction was relatively large but not congested, thus making it
easier to observe a sufficient number of lane changes.

The videos were processed to extract vehicle trajectories. Detailed
trajectories of vehicles with or without lane changes were extracted.
First, vehicles conducting a lane change between Lane 3 and 4 were
identified as a subject vehicle. Only the vehicles making one lane
change were considered; so if a vehicle changed fromLane 4 to Lane 3
and then further changed to Lane 2 (two lane changes), this vehicle
would not be counted as a subject vehicle. Next, the surrounding
vehicles (CL, TL and TF) were identified. The time and the position
of each vehicle could be extracted from the video, based on which the
speeds of these vehicles and the distances between them could be
obtained. It was noted if a bus was positioned in front of the subject
vehicle. In addition to collecting the lane-changing vehicles, vehicles
making no lane changes were also selected from Lane 3 and 4 as well
as their surrounding vehicles.

George 2.1, a video image processing software developed by
Nagoya University, was used to collect vehicle trajectory data. The
software needs to be calibrated before use. At least five reference
points are added on the video screen and the coordinates of the
points measured from the real world are entered to transform the
coordinate system. The software calculates eight coordinate con-
version parameters, and uses them to estimate the real coordinates
of the reference points. The estimated values and observed values
are compared, and R2 and adjusted R2 are used to evaluate the
goodness-of-fit. If the accuracy is low, there may be an error in the
location of some reference points, and we need to identify them
and modify or remove them. New reference points can be also

Table 1. Variable specification.

Variable Definition Unit

LC Choice by the subject vehicle to either change a lane (T) or remain in the current land (C) –
VS speed of the subject vehicle (S) km/h
VCL speed of the leading vehicle in current lane (CL) km/h
VTL speed of the leading vehicle in target lane (TL) km/h
VTF speed of the following vehicle in target lane(TF) km/h
DCL distance between vehicles S and CL m
DTLF distance between vehicles TL and the vehicle TF m
⊿VCL(= VCL – VS) speed difference between the vehicle CL and the vehicle S km/h
⊿VTL (= VTL – VS) speed difference between the vehicle TL and the vehicle S km/h
⊿VTF (= VS – VTF) speed difference between the vehicle S and the vehicle TF km/h
BUS Existence of a bus in front of the vehicle S in current lane. BUS = 1, if there is a bus in front of S; BUS = 0, otherwise –
PS The position of the subject vehicle S. PS = 1, if S is in the rightmost lane of the study lanes; PS = 0, otherwise –

1
4 23

18
0m

N

S

W E Huanghe
interchange

Footbridge

Study area
Video camera

Study direction

Figure 2. The schematic illustration of the study site.
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added. The process will be repeated till the results are satisfactory.
In our study, we used the adjusted R2 larger than 0.99 as the
criteria to ensure the accuracy of the extracted trajectories. The
target vehicles can be manually traced in every one-tenth of
a second, and the coordinates of the vehicle trajectory are
obtained, based on which the distances and speeds are computed,
as shown in Figure 3. The performance and accuracy of the soft-
ware have been evaluated for practical use (Suzuki and Nakamura
2006).

Trajectories for 1632 vehicles were collected, which constituted
a total of 408 samples, including 145 lane-changing samples and
263 no-lane-changing samples. For each lane-changing sample, the
vehicles including S, CL, TL, and TF are traced from 2 to 3
seconds prior the start of the lane change (i.e. the vehicle starts
to turn) to 2–3 seconds after the completion of the lane change
(i.e. the vehicle completely enters the target lane and goes
straight). For each no-lane changing sample, the time interval is
about 2–3 seconds because the vehicles speeds are generally stable.

Field speed measurements in the study area were also conducted
on the footbridge while doing the video recording and speeds of 518
vehicles in the study area of Lane 3 and 4 were recorded using radar
guns. We assume that if a vehicle is not disturbed by others, it will
keep the same speed within the study area. As shown in Figure 4, the
distribution of the extracted speeds was plotted and verified to be
generally consistent with that of themeasured speeds. The descriptive
statistics of the variables are listed in Table 2.

Model results and discussion

Model estimation

The dataset was randomly divided into two subsets: dataset 1,
including 104 lane-changing samples and 202 no-lane-changing
samples, was used for model estimation, and dataset 2, including
41 lane-changing samples and 61 no-lane-changing samples, was
used for model validation.

Figure 3. The interface of the software George.

Figure 4. The distribution of measured and extracted speeds in the study area.

TRANSPORTATION LETTERS 5



Firstly, standard logit models were fitted to the data, in which the
lane utilities VC and VT are expressed as linear functions of the
variables that are expected to have an influence on them. All
variables listed in Table 1 were tested in the models. When it
comes to the variables concerning the speeds, either the speeds of
the individual vehicles (VS, VCL,, VTL, VTF) or the relative speeds
between the subject vehicle and its surrounding vehicles (⊿VCL,

⊿VTL,⊿VTF) were included in the model. The models were esti-
mated using the maximum likelihood method. Based on the t-values
of the coefficient estimates, the speed and position of the subject
vehicle (VS and PS) are not significant at the confidence level of
95%. Excluding the insignificant variables, the ‘best’ model was
selected, using the relative speeds instead of the absolute speeds
based on the model fit. The utility functions took the forms of

VC ¼ β0 þ β1ΔVCL þ β2DCL þ β3BUS (14)

VT ¼ β1ΔVTL þ β4ΔVTF þ β5DTLF (15)

where VC and VT were the observable utilities of the current lane
and the target lane, respectively; βS (s = 0 ~ 5) were the coefficients
to be estimated; other variables were as defined previously.

Similar procedures were followed in the fitting of the mixed
logit models. The differences were that in this case the βs might no
longer be fixed values, but can be randomly distributed. In this
paper, normal, lognormal, and uniform distributions were consid-
ered and tested for the coefficients to find the most suitable one.
The mixed logit models were estimated with simulation-based
maximum likelihood methods. Five hundred Halton draws were
used to accomplish the simulation because Halton draws were
more efficient and involved far fewer draws to achieve conver-
gence as opposed to random draws. Based on the results, the
variables VS and PS were not significant, which was consistent
with the result of the standard logit model. It was also found
that by assuming the coefficient of speed difference of the subject

vehicle and the leading vehicle in the current/target lane (β1)
a uniform distribution and the coefficient of the distance gap in
the target lane (β5) a lognormal distribution, the model fit was
better than others.

The two ‘best’ models selected from the above process are
listed in Table 3. All variables except the constant term in the
model are significant at the confidence level of 95% or 90%,
indicating that all have a significant impact on a driver’s lane-
changing behavior.

Discussion

The speed of the subject vehicle, VS, is not statistically significant
when other speed-related variables are included in the model. This
is probably because the subject vehicle cannot arbitrarily deter-
mine its speed but must adjust the speed according to that of the
leading vehicle, which results in a high correlation between the
two. And drivers may be more concerned with the relative speed
than the absolute speed. It also shows that the position of the
subjective vehicle, i.e. whether it is in Lane 3 or 4, does not have an
influence on the utility of the current lane.

In the standard logit model, the positive coefficients for ⊿VTL,
⊿VTF, and DTLF suggest that the driver tends to change into the
target lane when the speed of the leading vehicle in the target lane
is higher than the subject vehicle, when the speed of the subject
vehicle is higher than the vehicle following in the target lane, and/
or when the distance gap in the target lane increases. The positive
coefficients for ⊿VCL and DCL indicate that the driver’s satisfac-
tion with the current driving state enhances as the speed and
distance of the vehicle in front of it increases. The negative coeffi-
cient for BUS signals the existence of a bus in front of the vehicle
will reduce the utility of the current lane.

Odds ratios (ORs) were computed for the interpretation of
the results. The ORs of ⊿VTL and ⊿VTF are 1.117 (95% CI
[1.069, 1.166]) and 1.060 (95% CI [1.025, 1.095]), respectively.
This suggests that the odds of executing a lane change will
increase by 1.117 and 1.060 when ⊿VTL and ⊿VTF increase
by 1 km/h, respectively. The OR of DTLF is 1.017 (95% CI
[1.002,1.033]), meaning that the odds is 1.017 times larger
with 1 m increase in the distance gap in the target lane.
Meanwhile, the ORs of ⊿VCL and DCL are 0.896 (95% CI
[0.858, 0.935]) and 0.915 (95% CI [0.877, 0.954]), both of
which are smaller than 1, indicating that that lane-changing is
less likely to occur with an increase of speed and distance of the
leading vehicle in the current lane.

In the mixed logit model, the estimates of the fixed coefficients are
similar to those in the standard logit model. The standard deviations
of two random coefficients are significant, indicating the existence of
drivers’ heterogeneity with regard to these two factors: (1) the speed
difference with the leading vehicle in the current/target lane (⊿VCL,

⊿VTL), and (2) the distance gap in the target lane (DTLF). The
estimation of the random coefficients are shown in Table 4. When
looking at the speed difference with the leading vehicle in the current/
target lane (⊿VCL,⊿VTL), the result shows that the coefficient (β1) is
smaller than 0.0963, 0.2973 and 0.4983 for 25%, 50% and 75% of the
drivers, respectively. The maximum value is 0.6693, which represents
those drivers who see the speed advantage as more important than
other drivers. These drivers may make more risky lane changes in
pursuit of increase speed. It should be noted that there are also
a proportion of drivers who have negative coefficients for the speed
difference with the minimum value of −0.1047. In real driving pro-
cess, there are drivers who are very conservative, not pursuing the
high speed, but willing to drive at a comfortable speed. There are also
drivers who change to the adjacent lane only to seek acceleration

Table 2. The descriptive statistics of the variables.

Variables Unit Min. Max. Average
Standard
deviation

Measured
speed

VR km/h 25.00 68.00 44.82 6.48

All samples VS km/h 24.07 59.37 41.77 5.63
VCL 27.46 60.00 42.27 5.92
VTL 29.29 64.63 44.15 5.62
VTF 14.39 64.18 39.37 7.65

⊿VCL −20.76 16.77 0.46 5.18
⊿VTL km/h −18.55 25.64 2.38 7.01
⊿VTF −25.08 34.08 2.41 8.63
DCL m 8.95 55.11 22.79 7.76
DTLF 16.67 144.57 46.26 18.81

Lane-changing
samples

VS km/h 24.07 59.37 40.94 6.99
VCL 27.46 59.3 39.82 5.98
VTL 29.29 64.63 45.57 5.68
VTF 14.39 61.69 38.00 8.02

⊿VCL km/h −20.76 12.04 −1.12 6.10
⊿VTL −18.55 25.64 4.63 7.24
⊿VTF −25.08 34.08 2.94 9.88
DCL m 8.95 55.11 20.18 8.74
DTLF 20.53 144.57 49.32 20.85

No-lane-
changing
samples

VS km/h 26.37 57.47 42.23 4.67
VCL 29.58 60 43.62 5.45
VTL 30.53 63.73 43.37 5.43
VTF 19.88 64.18 40.12 7.34

⊿VCL km/h −9.51 16.77 1.34 4.36
⊿VTL −14.4 21.68 1.13 6.58
⊿VTF −19.45 21.11 2.11 7.87
DCL m 10.77 47.71 24.24 6.76
DTLF 16.67 100.05 44.58 17.41
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space to overtake the vehicle in front, so they may temporarily ignore
the speeds of the leading vehicles. For the two types of drivers
discussed above, they can possibly exhibit a negative coefficient for
the speed difference. In the standard logit model, this coefficient is
positive and fixed, indicating that the larger the speed difference of
the subject vehicle and the leading vehicle in the current/target lane,
the larger the utility of the current/target lane is. Comparatively, the
mixed logit model estimates are more consistent with the actual
driving behavior.

The random coefficient for the distance gap in the target lane
(DTLF) (β5) is a lognormal distribution. In other words, the
logarithm of β5 follows a normal distribution with the mean
u and the variance σ2. The estimated values of u and σ of this
normal distribution are shown in Table 3. The mean and
variance of β5 can then be derived by exp(u+ σ2/2) and exp
(2u+ σ2)(exp(σ2)-1), respectively. As shown in Table 4, the
positive coefficient implies the larger the gap in the target
lane, the greater the possibility of a lane change. The median
of the coefficient is 0.0168, which is close to the coefficient
0.0171 in the standard logit model. However, in the mixed
logit model the coefficient is not fixed but smaller than 0.0168
for 50% of the drivers and larger than that for the other 50%.
By assuming the coefficient a random parameter, it offers more
flexibility to capture drivers’ heterogeneity in gap acceptance,
and helps understand the effects of gap acceptance on drivers’
lane-changing choice.

The coefficient of McFadden (ρ2) is used to evaluate the overall
goodness of fit of the model and a higher value of ρ2 means better
fit. Comparing the two models, the mixed logit model with a ρ2 of
0.2422 fits the data better than the standard logit with a ρ2 of
0.2180.

Model validation

The mixed logit model with better model fit was used for model
validation. Firstly, the calibrated model was used to compute the
probability of changing into the target lane or remaining in the
current lane for dataset 1. In order to evaluate the accuracy of the
results, the probability values must be transformed into options (i.e.
changing lanes or not changing lanes). When the calculated prob-
ability is smaller than a value, the driver would choose one option,
and if greater, the other. Different split values, such as 30%, 40% or
50% were tested. In this case, a value of 30% means that if the
probability of changing lanes is greater than or equal to 30%, a lane
change is predicted. The percentage of correct predictions for the
training dataset is listed in Table 5. Results suggest that choosing
a smaller split value will lead to higher accuracy for the lane-changing
samples but lower accuracy for the no-lane changing samples, and
vice versa. The percentage of correct predictions for all samples is
larger when the split value is 40%. For model validation, 40% is
selected as the split value.

Using the split point of 40%, the percentage of correct predic-
tions for dataset 2 (the validation dataset) is listed in Table 5. The
correct prediction for the lane-changing samples and non-lane-
changing samples are 73.2% and 82.0%, indicating that the cali-
brated model can be used to predict the lane-changing behavior
for the new dataset.

Sensitivity analysis

Although the parameter estimates of the logit model can provide
whether or not the variables significantly affect the driver’s lane-
changing behavior and the weight of each variable in the utility
function, it is difficult to judge the degree to which the variables
affect the probability of different options. In order to quantitatively
evaluate the influence of each variable, analyses were conducted to
evaluate the sensitivity of an individual’s choice probability to
a change in the value of a variable.

The probabilities were predicted by the mixed logit model with
500 Halton draws. Figure 4 shows the effects of ⊿VCL and ⊿VTL

Table 4. Estimation of the random coefficients.

Minimum
1st

Quartile Median Mean
3rd

Quartile Maximum

⊿VCL, ⊿VTL −0.1047 0.0963 0.2973 0.2973 0.4983 0.6993
DTLF 0 0.0055 0.0168 0.0661 0.0513 Infinite

Table 3. Estimation results of the models.

Standard logit model

Variables Coefficient estimate Std. Error t-value Pr(>|t|)

Constant 0.0570 0.5629 0.1013 0.9193
⊿VCL, ⊿VTL 0.1103 0.0221 4.9866 <0.0001**
⊿VTF 0.0580 0.0169 3.4335 0.0006**
DCL 0.0891 0.0215 4.1514 <0.0001**
DTLF 0.0171 0.0077 2.2321 0.0256**
BUS −3.4070 1.1432 −2.9802 0.0029**
Log-Likelihood −153.38
ρ2 (adjusted) 0.2180

Mixed logit model

Variables Coefficient estimate Std. Error t-value Pr(>|t|)

Constant −0.3699 1.2704 −0.2912 0.7709
⊿VCL, ⊿VTL 0.2973 0.0758 3.9242 <0.0001**
⊿VTF 0.1434 0.0503 2.8490 0.0044 **
DCL 0.2198 0.0636 3.4590 0.0005 **
DTLF −4.0845a 0.9657 a −4.2297 <0.0001**
BUS −6. 8079 2.4501 −2.7786 0.0055**
SD.⊿VCL(⊿VTL) 0.4020 0.2241 1.7941 0.0728*
SD. DTLF 1.6544 0.5555 2.9780 0.0029 **
Log-Likelihood −148.63
ρ2 (adjusted) 0.2422

**: significant at the confidence level of 95%; *: significant at the confidence level of 90%; SD.: the standard deviation;
a the parameter estimates of ln(β5).
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on the probability of lane changing, assuming that the other
variables are fixed and take the average values of all samples in
Table 2. The values of ⊿VCL and ⊿VTL range from −30 to 30.
The increase of the speed difference between the leading vehicle in
the current lane and the subject vehicle (⊿VCL) will reduce the
lane-changing probability On the contrary, if the speed difference
between the leading vehicle in the target lane and the subject
vehicle (⊿VTL),, the lane-changing probability will increase
accordingly. The probability surface (with the maximum and
minimum equal to 0.09 and 0.83, respectively), is divided into
different regions with clear boundaries. When ⊿VTL is not larger
than ⊿VCL, the probability of a lane change is less than 0.2.
Similarly, when the differences of ⊿VTL and ⊿VCL are 0–6,
6–12 and 12–40 km/h, the probabilities are in the ranges of
0.2–0.4, 0.4–0.6, and 0.6–0.8, respectively. The results indicate
that seeking a speed advantage is one of the main reasons for
a lane change.

Figure 5 shows the probability of a lane change for ⊿VTL,
⊿VCL, and DCL in scenarios with different values for DTLF,
⊿VTF and BUS. For each scenario, the other variables are set to
the average values of all samples in Table 2. The figure indicates
how DTLF, ⊿VTF, and BUS influence the decision of whether or
not to make a lane change. For example, in Figure 6(a), the lane-
changing probability increases with ⊿VTL, but when DTLF and
⊿VTF take different values, the probabilities are not the same. In
general, the higher the value of DTLF or ⊿VTF, the greater the
probability. In Figure 6(b,c), although the lane-changing probabil-
ity decreases with the increase of ⊿VCL and DCL, the effects of
DTLF and ⊿VTF on the lane-changing choice are the same as in
Figure 6(a). Take DTLF for instance, when ⊿VTL and ⊿VCL values
between −10 and 10 km/h, and DCL between 20 and 40 m, the

impact of DTLF on the probability is greater, particularly when
DTLF is small. When ⊿VTL, ⊿VCL and DCL are not within the
above range, the effect of DTLF is relatively small. This indicates
that a driver may not change lanes for a small gain in speed even
when DTLF is enough; when the speed advantage is high, a driver
may be highly likely to accept a small gap. Similarly, when ⊿VTL,
⊿VCL and DCL are in the ranges of 0–20 km/h, −20–0 km/h and
0–40 m, respectively, ⊿VTF has a significant impact on the prob-
ability of a lane change. The results suggest that in these cases,
⊿VTF plays a key role in drivers’ lane-changing behavior. In other
cases, drivers are more sensitive to ⊿VTL, ⊿VCL, and DCL when
making their lane-changing decisions. In addition, the presence of
buses affect the probability significantly. When ⊿VTL is greater
than 0, ⊿VCL is less than 0, or DCL is less than 25 m, the
probability is close to 1with the existence of a bus in the current
lane.

Conclusions

In this paper, the discretionary lane-changing behavior was col-
lected from an urban street segment on Southwest Road in Dalian,
China. Logit models were developed using data extracted from
vehicle trajectories to predict the lane-changing decisions. The
mixed logit model has a better goodness of fit for the data than
the standard logit model, and provides more information on
drivers’ lane-changing preferences. Drivers exhibit heterogeneity
in (1) the speed difference between the leading vehicle in the
current/target lane and the own vehicle and (2) the gap in the
target lane. For most drivers, the larger the difference of speed
difference between the leading vehicle in the current/target lane
and the subject vehicle, the larger the utility of the current/target
lane is. However, there are still a portion of drivers who may do
the opposite. The gap in the target lane guarantees a safe lane-
changing maneuver. It is natural for drivers to have different
driving styles (conservative or adventurous), and to attach differ-
ent importance to this factor. The distance between the leading
vehicle and the subject vehicle reflects the comfort level in terms of
the driving space, which affects the driver’s satisfaction on the
current lane. In addition, the existence of a bus in front of the
vehicle has a large influence on the utility of the current lane. The

Table 5. Percentage of correct predictions.

Split
value

Lane-changing
samples

No-lane-changing
samples

All sam-
ples

Dataset 1 ≥30% 75.0% 73.8% 74.2%
≥40% 62.5% 85.2% 77.5%
≥50% 53.9% 89.1% 77.1%

Validation
(Dataset 2)

≥40% 73.2% 82.0% 78.4%

Figure 5. Lane-changing probability for different⊿VCL and⊿VTL.
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validation of the model has yielded 73.2% correct prediction for
lane-changing samples and 82.0% for non-lane-changing samples
in the validation dataset. The prediction accuracy is acceptable,
which demonstrates the transferability of the model results to new
data.

Sensitivity analyses were introduced to quantify the degree of
influence of different factors on the probability of a lane change.
Although all factors in the model are statistically significant, their
degrees of influence are different. ⊿VTL, ⊿VCL and DCL have
strong influences because the motivation of changing lanes is to
seek better driving conditions in terms of speed and space. DTLF or
⊿VTF are related to the safety of the lane changing, which have
strong influences within certain ranges of ⊿VTL, ⊿VCL, and DCL.
It is not surprising to find that the presence of a bus is a strong
factor in the decision to change lanes.

The results of this study help to better understand the effects of
influential factors and the drivers’ heterogeneity with regard to lane-
changing decisions, which in turn provide a strong reference for
improving the accuracy of microscopic traffic simulation models.
Heterogeneity is specifically evident in the pursuit of speed and the
gap acceptance. This finding can be further applied in simulation to
assess the safety effects of lane changes and examine the risk level of
individual drivers. Another application of the finding is that when
developing safety countermeasures. Highly adventurous drivers can
reduce the safety risks of lane changing through targeted and effective
safety education. Driving assistance systems should be able to assist
with the gap acceptance and prevent risky lane changes.

Further research can incorporate driver characteristics into the
lane-changing model, and examine the impact of a lane change on
the surrounding traffic, which matters to the improvement of
traffic operations and safety. The relative position of the subject

vehicle with respect to the leading and following vehicles in the
target lane as well as the reactions of them (e.g. the following
vehicle may be forced to brake) are not captured in this study.
Incorporating them into the model along with the acceleration/
deceleration of the subject vehicle during the lane changes may
help to understand the process more deeply. Another limitation of
the study is that only single-lane changes were included. Multiple
lane changes may have an even greater impact on traffic flow and
safety, and should thus be studied further. Lastly, a larger sample
size would improve the accuracy of the lane-changing model.
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