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Abstract Fog is one of the most influential factors in fatal crashes because of reduced
visibility. This study aims to propose a systematic safety analysis framework for
selecting fog-crash-prone areas on freeways. To achieve these goals, the spatial analysis
in ArcGIS was combined with the latent class cluster-based crash severity estimation
models. Nine latent class cluster-based crash severity estimation models were built. Fog
events led to a statistically significant increase in the likelihood of fatal crashes in two
of the nine models. Comparing the ArcGIS spatial clusters of fog-related exposure with
the fatal crash-prone freeway segments, 28 freeway segments were found to be fog-
crash-prone areas where safety improvements are required, particularly in foggy
weather. Based on the spatial patterns of the fog-crash-prone freeway segments, this
study concludes that the current standard for fog-crash-prone area selection should be
modified to apply spatially different standards over the Korean freeway network. This
study is the first data-driven study to comprehensively examine the effects of fog
visibility levels and frequencies on fatal crashes in the entire Korean freeway system.
The findings provide meaningful insights to the policy decision making for fog-related
policy changes, highway safety enhancement and active traffic management strategies.
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Introduction

The reduced visibility caused by fog can compromise the safety of traveling public
(Abdel-Aty et al. 2011; Ahmed et al. 2014; Huang et al. 2010; Qin et al. 2009). In the
US, from 2010 to 2014, the only weather condition associated with a statistically
elevated rate of fatalities per crash was fog (Tefft 2016). During the same period,
crashes that occurred in fog resulted in 155% more fatalities per crash than crashes that
occurred in clear weather. In addition, US crashes that occurred in fog resulted in 17.3
fatalities per 1000 crashes, which is significantly more than the value in any other
weather condition.

The roadways in the Republic of Korea (called Korea hereafter) have also suffered
from severe crashes because of fog events. According to the records of the Korea Road
Traffic Authority from 2013 to 2015, 11.2 fatalities per 100 crashes occurred in the
entire Korean road network in foggy weather. This record is the highest of all weather
conditions in the same period (Korea Road Traffic Authority 2016) and much greater
than the aforementioned US record (17.3 fatalities per 1000 crashes). Particularly, in
2015, a disastrous rear-end freeway crash occurred in foggy weather, which caused 75
visible injuries with two fatalities, and 106 vehicles were involved in the crash. This
crash ignited the necessity to identify fog-crash-prone areas in the Korean road system.
Accordingly, the Korean Ministry of Land, Infrastructure, and Transport (KMLIT) has
encouraged the identification of freeway segments prone to fog-related crashes where
safety enhancement policies are preferentially required. Note that the fog-crash-prone
freeway segments in this study refer to the freeway segments with comparatively high
potentials of crash occurrences in foggy weather conditions.

Furthermore, the KMLIT has supported an evaluation of the current selection
standard for fog-crash-prone areas, particularly in the freeway system because the
freeway fatality rate in foggy weather conditions (20 fatalities per 100 crashes) has
been the highest of all road function classes. The current selection standard for fog-
crash-prone freeway areas in Korea is that Bif fog with visibility of 250 m or less occurs
on 30 or more days on average in a year or severe crashes occurred in a certain freeway
segment, then the freeway segment is considered as the fog-crash-prone area (KMLIT
2015).^ However, the 250-m visibility and 30-days thresholds in the current standard of
fog-crash-prone area selection are not data-driven and have not been validated by
comparing crash observations and fog occurrence records based on road surface
visibility levels. To select fog-crash-prone areas, a risk analysis using reliable road
surface visibility data is one of the most important tasks to address road safety issues
that are associated with the reduced visibility caused by fog. In general, weather station
data of airports are used to examine the increased hazard of limited-visibility for the
adjacent roadways, but the road surface visibility is not widely detected in Korea
because of the high system installation cost. In other words, the main obstacle for
revising the fog-crash-prone area selection standards is the lack of a scientific and
systematic safety analysis framework that incorporates fog-related crash risk and fog
exposure analysis. Fog occurrence or fog-crash-prone hot spots have been identified in
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past studies (Huang et al. 2010; Srivastava et al. 2016). However, few studies have
quantitatively and comprehensively proposed a systematic safety analysis framework to
identify fog-crash-prone areas and evaluated the relevant selection standards based on
fog occurrences and the relevant surface visibility data.

Hence, the goals of this study are to provide a systematic safety analysis method for
the selection of fog-crash-prone areas, which is specified by the following: (1) identi-
fying top-priority freeway segments where particularly fog-related safety improvements
are required (namely, fog-crash-prone areas), and (2) quantitatively evaluating the
current standards for fog-crash-prone area selection. To achieve these goals, this study
combines spatial cluster analysis with latent class cluster-based crash severity estima-
tion modeling.

Literature Review

Many studies have discussed the key contributing factors to crashes under foggy
conditions. Ni et al. (2012) explained that the reduced visibility caused by fog
decreased the driver’s ability to detect impending collisions. Several studies further
identified the degradation of driver’s driving ability with speed (McCann and
Fontaine 2016; Yan et al. 2014). More specifically, Yan et al. (2014) illustrated
through a driving simulator experiment that a driver could not respond in time to
impending changes in car-following speed and road geometries, although the driver
intended to reduce the speed to compensate foggy conditions. Regarding road
geometry and vehicle type, Peng et al. (2017) found that the reduced visibility due
to fog would significantly increase the risk of rear-end crashes for truck drivers or
drivers traveling on inner lanes. The authors concluded that these drivers should be
more careful about speeding during the reduced visibility. A study by Wu et al.
(2018) drew similar conclusions in regard to road geometry in fog based on a crash
risk increase indicator. The authors stated that more attention should be paid to ramp
vicinities when the visibility dramatically decreases due to fog. The authors also
identified the innermost lanes with heavier traffic to be more dangerous under foggy
conditions.

Appropriate safety improvement strategies have been proposed to reduce fog-related
crashes. Typical ITS-based traffic control strategies such as dynamic message signs,
variable speed limit signs, beacons, or ramp meter have been implemented to change
traffic speed and/or flow in fog-prone areas (Balke et al. 2007; Peng et al. 2017; Wang
et al. 2017). Wu et al. (2018) recommended an ITS-based safety management system in
specific regions in foggy weather. Their study stated that ITS devices can be system-
atically employed near ramp areas or innermost lanes to notify drivers about the
potential risk.

The use of overhead lighting in fog-prone locations is one of the most common
measures to show the road direction in foggy conditions (Perry and Symons 2003). On
the other hand, Buchner et al. (2006) considered vehicle backlight position. Vehicles
are perceived to be further away in foggy conditions than in clear ones. The authors
demonstrated that subjects perceived vehicles with higher-positioned rear lights that
were closer together as further away. They stated that such vehicles may have a higher
chance of being ‘rear-ended’ in fog. They also stated that rear lights that are positioned
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closer to the ground with greater separation may therefore help trailing motorists better
estimate and maintain a safer following distance.

Past studies have focused on the effect of fog on various factors that contribute to the
increase in crash risk. Some studies have developed indicators or index to measure the
impact of fog on safety. Few studies have systematically and comprehensively evalu-
ated the policy for selecting fog crash-prone areas, which is the purpose of this study.

Data

The study area is the entire freeway system in Korea. In connection with the study area,
three data sources were used for data collection and successive data processing: fog
frequency and visibility records, a crash dataset, and a freeway network log, which
were provided by the Korea Expressway Corporation (KoEX). In this section, we will
specify the data sources and relevant data processing as follows.

Fog Data

Surface visibility data in foggy weather are required to reliably analyze the
association between foggy weather and surface vehicle crashes. Generally, a
visibility meter is used to measure the road surface visibility in foggy weather.
However, the visibility meters in Korean freeway system have been installed on
only a few bridges, and their measurements suffer from considerable error. It is
understood that visual observation by naked eyes is more consistent with how far a
driver can see rather than equipment-based observations. Therefore, fog visibility in
foggy weather conditions was observed by visual measurements in the Korean
freeway system during periods of fog as follows.

The entire Korean freeway network has been managed by 396 KoEX regional
offices. The weather event in each freeway segment was observed by CCTV and the
assigned safety patrol of a specific regional office every 30 min. When a fog event was
reported to the regional office, a team of two recorders was dispatched to the area where
fog occurred to record the fog visibility distance. In the entire Korean freeway system,
fog visibility signs are installed on the roadside at 50 m intervals, which were used by
the recorders to visually measure the fog visibility. One recorder recorded the furthest
distance that the 50 m-interval fog visibility signs came in sight under the effect of fog,
and the other recorder verified the recorded fog visibility. The KoEX fog visibility sign
is shown in Fig. 1.

For each freeway segment where a fog event occurred, the KoEX teams recorded the
following fog-related data: the freeway route number, the segment starting/end post
miles, the code for the lowest level of administrative district (called Bdong^ in Korea),
the date of the fog event, and the level of fog visibility. The fog visibility was classified
into four levels: less than 50 m (V1), 50–100 m (V2), 100–250 m (V3), and 250–
1000 m (V4). A sample of the fog dataset reported by the KoEX is shown in Table 1.

Based on the KoEX fog visibility and frequency data, the monthly trends of foggy
days are provided in Fig. 2.

Figure 2 shows the monthly trends of the sum of foggy days over all freeway
segments from 2013 to 2015. The monthly trends are similar at each time point, where
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fog events are comparatively frequent in spring and autumn. This result indicates that
the study area had no annual disparity in the fog occurrence patterns during the 3 years.
Throughout the entire Korean freeway network, fog events occurred in at least one area,
on an average of 25 days in a month and 296 days in a year. Specifically, the foggy day
counts in the study area for each visibility level in the 3 years were as follows: 18 days
for the 50-m visibility, 60 days for the 50–100-m visibility, 393 days for the 100–250-m
visibility, and 417 days for the 250–1000-m visibility.

Crash Data

All crashes occurred in the entire Korean freeway system from 2013 to 2015 were
collected for the current study, which were provided by KoEX. The KoEX crash data
contained 24,238 crash observations with three severity categories: 662 fatal crashes,
1894 crashes with injuries, and 21,682 crashes with property damage only. Fatalities
were recorded based on the outcome 30 days after the crash. Multiple data fields were
linked to each crash observation, including information related to roadway, environ-
ment, traffic, vehicle, human, and emergency medical service (EMS) at the crash
location and moment.

In the KoEX crash data, most data fields were categorical. Categories with 30 cases
or more were coded separately. Common category coding in each data field was

Fig. 1 Fog visibility signs in Korean freeway system

Table 1 A sample of fog dataset

Route No. Segment post
mile (km)

Administrative
district code

Date of
fog occurrence

Surface visibility
(m)

Start End Less than 50 50~100 100~250 250~1000

1 282 293.1 2,505,061 2013-01-13 – – O –

1 282 293.1 2,505,061 2013-08-25 – O – –

1 293.1 296.6 3,331,035 2013-01-13 – – O –

1 293.1 296.6 3,331,035 2013-08-25 – O – –

- indicates Bnot applicable^
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employed in both the crash clustering and cluster-based crash severity estimation
models. Based on the study aims, two categories of crash severity (fatal crashes vs.
non-fatal crashes) were considered in the response variable to model cluster-based
crash severity. The fields in the KoEX crash dataset are shown in Table 2.

Korean Freeway Network Log

The entire Korean freeway network is currently composed of 31 freeway routes with a
total length of 3762 km (Korea Expressway Corportation 2013). The freeway network
is divided into 508 freeway segments. A freeway segment is defined as the segment of
freeway from one entry/exit ramp to the next ramp. For each freeway segment, the
freeway network log provided by the KoEX included geometric and traffic information,
such as the freeway route number, start/end post miles, segment length, number of
travel lanes, heavy traffic percentage, and annual average daily traffic (AADT). The
average freeway segment length is 7.4 km, with a range of 0.1 km to 31 km and an
average of three travel lanes. By multiplying the AADT by the segment length, vehicle
kilometers traveled (VKT) was computed for each freeway segment, and the average
VKT for a freeway segment was approximately 367 thousand vehicles∙km per day.

Methodology

This study aims to propose a systematic safety analysis framework to identify the top-
priority fog-crash-prone areas in the Korean freeway system and evaluate the current
standards of fog-crash-prone area selection. The framework includes two crucial
elements: risk analysis and exposure analysis. The risk analysis was conducted by
applying the latent class cluster (LCC)-based crash severity estimation model (binomial
logit regression) to identify areas where fatal crashes are more susceptible to fog. For
the exposure analysis, a local indicator of spatial autocorrelation (Getis-Ord G*) was
applied to the spatially cluster size of fog exposure by the visibility levels (e.g., the
number of foggy days by visibility levels). When a certain freeway segment with the
potential for fog-affected fatal crashes and significant spatial cluster areas of fog-related
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Fig. 2 Monthly trends of sum of foggy days over all freeway segments
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Table 2 Variable in crash dataset

Variable Categories

Response

Crash severity Fatal crashes vs. non-fatal crashes

Temporal & Environmental

Season of the year Spring, summer, autumn, winter

Weekday Weekend, weekdays

Weather Adverse conditions (foggy, snowy, rainy, gusty), cloudy, clear

Driver

Maneuvering At-fault driver’s maneuvering preceding crash: driving travel lanes, changing lanes,
mistaking wheel operations, other violations

Physical status At-fault driver’s physical status: under the effects of alcohol/drugs,
fatigue/drowsiness, sickness, distraction, normal

Sex At fault driver’s sex: female, male

Age group Young (aged less than 25), elderly (aged 65 or greater), others (aged 25 to 64)

Vehicle

At-fault vehicle type Passenger car, van, truck, machine

Number of vehicles Single vehicle involved, two vehicles involved, multiple vehicles involved

Roadway

Crash location Travel lane, ramp, acceleration/deceleration lane, shoulder, bridge/tunnel, rest area

No. of travel lanes Number of travel lanes at the crash location

Province Gangwon-do, Gyeonggi-do, Chungcheongbuk-do, Chungcheongnam-do,
Jeonrabuk-do, Jeonranam-do, Gyeonsangbuk-do, Gyeongsangnam-do

Curve Existence of a horizontal curve (R < 1000 m, R ≥ 1000 m), tangent

Grade Existence of a vertical curve (downgrade, upgrade), flat

Roadside protective
facility

Existence of roadside facilities (guard rail/cable/fence/pipe, concrete wall), absence

Type of median Fixed, moving, no median

Night light Darkness at night, no need for light

Traffic

Speed limit (km/h) Traffic speed limit posted at crash location

AADT (vehs/day) Average annual daily traffic volume for all travel lanes

Traffic limitation
type

Traffic limitation (mainline occupied, shoulder occupied, work zone, traffic jam) at
the moment of the crash, no traffic limitation

Crash

Primary cause of
crash

Driver factors (speeding, drowsiness, distraction, lane changing failure), vehicle
factors (malfunction of equipment), roadway factors (animal or road surface
interruption), others

Collision type Head-on, rear-end, sideswipe, vehicle to road facilities, vehicle to animal or people

Emergency Medical Service (EMS) Time

EMS unit response
level

Time interval between EMS call received and EMS unit arrival: less than 5, 5~9,
10~14, 15~29, 30 or more minutes

On-scene time Time interval between medical treatment by EMS unit and EMS unit leaving: less
than 5, 5~9, 10~14, 15~29, 30 or more minutes

Binary coding is applied for categories of each variable; Each sub-category within parenthesis in each variable
category is employed only for latent class cluster-based crash severity modeling
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exposure were common, the freeway segment was considered a top-priority fog-crash-
prone area in this study. Combining the crash risk with the fog exposure, the areas with
potential for improving safety were identified. The work flow for the study is shown in
Fig. 3.

Theoretical concepts for the LCC-based crash estimation models and Getis-Ord G*
for high fog occurrence locations and the reasons to use them are described as follows.

Latent Class Cluster-Based Crash Severity Estimation

Each element cluster membership in the LCC method can be computed from the
estimated model parameters. The LCC was formulated as follows (Hosmer and
Lemeshow 2000):

P Y ijθð Þ ¼ ∑
J

j¼1
f j P Y i jC j; θ j

� � ð1Þ

where P denotes the probability, Yi represents the injury severity of a crash for the ith
case (fatal crash or non-fatal crash), j (j = 1 to J) is a latent class number, fj is the prior
probability of data in latent class Cj, θj is the vector of cluster model parameters to be
estimated, and P (Yi | Cj, θj) is the mixture probability density. In the LCC method
shown in Eq. (1), the posterior membership probabilities are directly estimated from the
model parameters. Cases are assigned to the model class with the highest posterior
probability.

Fog is one of the most significant environmental factors that cause severe crashes,
but fog rarely occurs compared to other weather events such as clear, cloudy, snowy, or

Fig. 3 Work flow for the study
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rainy weather conditions. Moreover, the areas where fog frequently occurs are
spatially specific. The number of crashes that occur in foggy weather is usually
small. If we consider all crash observations that occur under all weather conditions,
the effect of fog on crash occurrences may not be identified in the full data model
because the effect of other factors with a large sample size on crashes is compara-
tively powerful. Therefore, this study did not rely on the full crash data-based model,
so the clustering analysis was used to separate crashes that are mainly characterized
by a few factors. The clustering approach enables us to identify crash groups where
fog contributes to death, which mitigates the effect of confounding variables that may
cause biased results (Jung et al. 2016).

The most common cluster analysis methods are partitioning-based (such as K-
means), hierarchical-based (such as Ward’s method), and density-based (such as latent
class clustering) methods (Mohamed et al. 2013). Among these methods, the latent
class clustering (LCC) method has several advantages. Several criteria to select the
optimal number of clusters, such as Akaike information criterion (AIC), Bayesian
information criterion (BIC), or consistent Akaike information criterion (CAIC), can
be used in the LCC method (Depaire et al. 2008; Magidson and Vermunt 2002).
Additionally, crashes are commonly associated with many contributing variables, and
the crash dataset in the current study includes many data fields with various distribu-
tions. In this circumstance, the LCC method is advantageous to formulate a flexible
model that does not imply any assumption regarding the nature of the variables, their
underlying distributions, and the correlation patterns across observations and variables
(Depaire et al. 2008; Magidson and Vermunt 2002). Therefore, the LCC method was
used to separate homogenous crash groups in this study.

After separating each homogeneous crash cluster using the LCC, we conducted the
LCC-based regression to quantify the effect of the explanatory variables in response to
each crash cluster that is affected by fog events. For the LCC-based regression, Y is the
crash severity, which is a binary response for fatal and non-fatal crashes. Because the
Btop-priority^ fog-crash-prone areas are of interest in this study, the effect of the fog
occurrence on fatal crashes in particular was emphasized instead of severe, moderate or
minor injury crashes. Thus, the binary response (fatal crash vs. non-fatal crash) was
considered in the LCC-based crash severity estimation. A standard binomial logit
regression was combined with the LCC, as shown in Eq. 2 (Ni et al. 2012):

logit P Yð Þ ¼ log P Yð Þ= 1−P Yð Þð Þ½ � ¼ αþ βX ð2Þ

where P is the probability of response Y (1 = fatal crash and 0 = non-fatal crash), α is
the intercept, β is the vector of slope parameters, and X is a vector of crash-contributing
variables.

Getis-Ord G* for High Fog Occurrence Locations

Freeway segments with a certain fog occurrence frequency are spatially distributed.
Each freeway segment has a representative value of the number of foggy days in a year
by visibility level, and each freeway segment is included in a single lowest administra-
tive district. Comparing spatial clusters of the fog occurrence frequencies with freeway
spots with potentials of fatal crashes discovered freeway segments where the number of
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foggy days and fatal crash potential were commonly high. The spatial cluster patterns in
the number of foggy days by fog visibility level were identified by a local indicator of
spatial autocorrelation (LISA). ArcGIS 10.1 was used for the LISA in this study.

For the LISA, the Getis-Ord G* statistic was employed to calculate the Z-score,
which indicates whether features with high (hot) or low (cold) values are clustered at
each location (Ord and Getis 1995). The Getis-Ord G* statistic begins with a null
hypothesis that there is no spatial pattern among the studied features. The outcome is a
Z-score and a p-value. If most values in the number of foggy days have higher positive
Z-scores and lower p-values (such as a conventional value of 0.05), then, it is likely that
this area is a fog-prone area. The Getis-Ord G* statistic is specified by:

Gi
* ¼ ∑

n

j¼1
wi; jx j−X ∑

n

j¼1
wi; j

" #
= S n ∑

n

j¼1
wi; j

2− ∑
n

j¼1
wi; j

 !2
0
@

1
A = n−1ð Þ

8<
:

9=
;

1=2
2
64

3
75 ð3Þ

where xj is the attribute value for feature j, wi,j is the spatial weight between feature i

and j, n is the total number of features, X = 1 / n ∑
n

j¼1
xj, and S = [1 / n ∑

n

j¼1
xj
2 ―X 2]1/2.

For the spatial clusters in ArcGIS, a fixed distance band was used for the concep-
tualization of spatial relationships and Euclidian distance was used for the distance
method. Because the distance band reflects the maximum spatial autocorrelation, this
study used 31 km for the distance band based on the maximum value of the freeway
segment length recorded in the Korean freeway network log.

Results and Discussion

LCC-Based Crash Severity Estimation

Based on the variables in Table 2, LCC was conducted to separate the homogeneous
groups of crashes. To determine the number of clusters, several information criteria
such as AIC, BIC, and CAIC were compared in the current study. For all three
information criteria, a lower score indicates the more appropriate number of clusters.
The three criteria values similarly and consistently decreased with the increase in the
number of clusters. In particular, the BIC is more reliable than the other criteria because
of its superior consistency and accuracy (Depaire et al. 2008; Magidson and Vermunt
2002; Nylund and Asparouhov 2007). Therefore, the BIC was preferentially considered
to determine the number of clusters. The BIC values were almost constant after nine
clusters. Therefore, nine was selected as the optimal number of crash clusters in the
LCC, and Fig. 4 confirms the selection.

The R2 value, which indicates how much of the variance of each explanatory
variable is explained by a specific number of clusters, was used to measure the
ability to discriminate the clusters. For each variable, its response attribute
significantly contributes to the ability to discriminate the clusters. Among all
variables in Tables 2, 10 variables had R2 values greater than 0.1, whereas the other
variables had notably small R2 values (less than 0.05).
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Various attributes associated with the road geometry, traffic, vehicle, EMS and
environmental factors were included in the following 10 variables, which are listed in
the order of their R2 values: the existence of a vertical curve, the primary cause of crash,
the at-fault vehicle size, the number of vehicles in a crash, the number of travel lanes,
the weather, a high level of the administrative district, the roadside facility, the EMS
unit response time, and the traffic limitation type. Using the 10 variables (called the
clustering variable hereafter), Table 3 provides the resulting nine-cluster profile by
conditional probabilities.

As shown in Table 3, all nine clusters included sizable crash samples of 2256 to
3098. Fatal crashes composed 0.7 to 16.8% of the total crash cases in each cluster. All
crash cases in Cluster 1 (C1) occurred on vertical curves, and approximately 3.7% of
the crash cases in Cluster 2 (C2) occurred on roadways with the installation of roadside
protective facilities. For Clusters 7 (C7) and 9 (C9), 89 and 93.6% of the crash cases
were primarily caused by vehicle malfunction and adverse weather conditions,
respectively.

Clusters 3 (C3) and 8 (C8) were located in the areas characterized by high propor-
tions of accidents occurring in particular administrative districts. For example, approx-
imately 70% of the crash cases in C3 occurred in Jeonrabuk-do and Jeonranam-do,
which are southwestern provinces of Korea. Approximately 20% of the crash cases in
C8 occurred in Chungcheongnam-do, which is a central province of Korea.

The crash cases in Cluster 4 (C4) were characterized by two or more vehicles in
the crash, crashes that occurred under traffic limitations such as an occupied
mainline or shoulder, a work zone, or a traffic jam, and crashes with relatively
long EMS unit response times. Truck and driver factors, such as speeding,
drowsiness, distraction, or lane-changing failure, caused approximately 76 and
46%, respectively, of the crash cases in Cluster 5 (C5). In Cluster 6 (C6), most
crash cases occurred on four-lane freeway sections in Gyeonggi-do province,
which is the capital region of Korea.

Based on the contributing variables, the labels for the nine clusters are listed as
follows:
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Fig. 4 Patterns of BIC values by the number of clusters
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Table 3 LCC profiles

Variables C1 C2 C3 C4 C5 C6 C7 C8 C9 F u l l
data

Crash sample 3098 2581 3006 2621 2286 2803 2843 2744 2256 24,238

Fatal crash (%) 1.4 0.7 1.0 16.8 2.1 1.4 1.0 1.0 0.7 2.8

Non-fatal crash (%) 98.6 99.3 99.0 83.2 97.9 98.6 99.9 99.0 99.3 97.2

Grade (%) 100.0 0.0 0.0 40.7 43.5 35.7 35.5 0.0 67.4 35.8

No. of lanes (mean) 2 3 2 3 2 4 2 3 2 3

Roadside protective facility (%) 73.9 3.7 59.4 63.3 66.2 61.0 56.7 38.3 75.0 55.3

Province (%)

Gangwon-do 25.0 4.5 21.4 9.3 11.7 0.0 4.6 0.0 22.0 11.1

Gyeonggi-do 0.7 38.6 0.0 16.2 8.8 92.5 0.0 20.2 12.3 20.8

Chungcheongbuk-do 4.8 3.0 8.6 6.2 5.9 0.0 5.4 0.0 6.9 7.7

Chungcheongnam-do 5.5 7.4 0.0 9.8 11.0 7.4 2.2 19.6 7.1 4.5

Jeonrabuk-do 11.6 2.2 32.9 12.4 12.1 0.0 11.1 0.0 10.2 10.3

Jeonranam-do 14.8 2.4 37.2 8.1 12.1 0.0 10.4 0.0 14.6 11.1

Gyeonsangbuk-do 19.1 19.8 0.0 21.2 23.3 0.0 27.9 26.8 11.6 16.7

Gyeongsangnam-do 18.5 22.2 0.0 16.9 15.2 0.0 38.4 33.4 15.3 17.7

No. of vehicles (%)

Single vehicle-involved 82.5 92.9 84.1 2.6 91.7 78.3 76.5 79.8 97.4 76.1

Two vehicle-involved 14.7 5.7 13.3 65.5 6.1 14.8 11.5 16.1 2.6 16.8

3 or more vehicle-involved 2.8 1.4 2.7 31.9 2.4 7.0 12.0 4.1 0.0 7.1

At-fault Vehicle type (%)

Passenger car 96.4 35.5 92.4 40.6 14.0 76.5 78.3 96.6 57.2 65.6

Van 2.7 6.8 4.9 11.1 10.4 5.4 4.8 3.3 7.9 6.3

Truck 0.9 57.8 2.7 48.2 75.6 17.9 16.9 0.0 34.8 28.0

Machine 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.1 0.1

Traffic limitation (%) 1.4 0.0 0.9 18.7 1.9 0.7 0.3 0.4 0.1 2.7

Primary cause of crash

Driver factor 7.8 7.5 7.7 1.1 46.4 3.7 0.0 3.7 1.8 73.9

Vehicle factor 11.4 6.6 8.9 2.5 6.7 22.9 89.0 6.9 0.0 9.0

Roadway factor 80.9 85.9 83.4 96.4 46.9 73.4 11.0 89.4 98.2 17.1

Level of EMS unit time (%)

Less than 5 min (level 1) 88.2 97.9 86.4 47.8 87.4 95.5 99.7 91.4 93.6 87.5

5 to 9 min (level 2) 1.9 0.6 2.4 7.6 2.2 1.0 0.1 1.0 1.1 2.0

10 to 14 min (level 3) 4.0 0.7 4.1 12.3 4.1 0.8 0.0 2.6 1.3 3.4

15 to 29 min (level 4) 4.7 0.6 6.0 27.0 5.8 1.9 0.0 4.2 3.4 5.9

30+ min (level 5) 1.1 0.2 1.1 5.4 0.5 0.8 0.2 0.8 0.7 1.2

Weather conditions (%)

Adverse weather (rain, snow, fog,
gust)

24.4 30.3 23.5 14.0 3.8 13.3 6.2 26.8 93.6 25.0

Cloudy weather 17.0 13.0 16.6 14.3 15.8 15.5 13.8 14.1 6.2 14.2

Clear weather 58.6 56.7 60.0 71.8 80.5 71.2 80.1 59.0 0.2 60.8

Bold indicates % value of special feature that contributes to discriminating a certain cluster; Because the
variable without sub-categories is based on binary coding, base category is not presented; C in title field of
column indicates Bcluster.^
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& C1: Crashes on freeway vertical curves (100%)
& C2: Few crashes on freeway sections with installed roadside protective facilities

(3.7%)
& C3: Crashes on the southwest (70.1%) province freeway sections
& C4: Multiple vehicles involved in crashes (97.4%) with traffic limitations (18.7%)

and long EMS unit response times (15 to 29 min)
& C5: Crashes caused by truck (75.6%) and driver factors (46.4%)
& C6: Crashes in the capital-area (92.5%) freeway sections with four travel lanes
& C7: Crashes caused by vehicle malfunction (89%)
& C8: Crashes in the central-area (19.6%) freeway sections
& C9: Crashes in adverse weather conditions (93.6%)

Only C9 was discriminated by adverse weather conditions such as rain, snow, fog,
and gusts of wind. However, it is not guaranteed that fog, in particular, significantly
affects the fatal crashes in C9 because other adverse weather conditions beside fog may
affect the fatal crashes. This result implies that the effect of fog on fatal crashes in each
cluster should be quantified and compared with those of other adverse weather condi-
tions. Furthermore, weather-related factors were not selected as a clustering variable in
the other eight clusters (C1 to C8). The LCC approach separates homogeneous groups of
crash cases. The clustering variables in a certain cluster most strongly characterize the
cluster. Thus, the effects of weather factors, particularly fog events, on the fatal crashes
could be identified in the LCC-based crash severity estimation model, although the fog
event was not selected as a clustering variable in the cluster that was not characterized by
weather-related factors. Correspondingly, the effect of fog on fatal crashes in all nine
crash clusters was examined using a LCC-based binomial logit regression as follows.

For the LCC-based binomial logit regression, the crash severity, which indicates a
fatal or non-fatal crash, and all sub-categories of each variable in Table 2 were
converted into dummy explanatory variables. A conventional significance level
(0.05) for the parameter estimation was used. Comparative LCC-based binomial probit
regression was also conducted. Based on the goodness of the model fit and the
significance level of the parameter estimates, the binomial logit regression
outperformed the binomial probit regression in estimating the crash severity. Table 4
provides the resultant LCC-based binomial logit regression models to estimate the
crash severity.

Because the current study aims to identify locations with potential fatal crashes
caused by fog, the discussion of the findings will focus on crash clusters where the
effect of the fog indicator on fatal crashes is statistically significant.

The fog indicator was statistically significant in only C2 and C3 among the nine
clusters. In both C2 and C3, the goodness-of-fit and all parameter effects were
reasonable. In particular, fog was significantly identified as increasing the probability
of fatal crashes in C2 and C3. In other words, the effects of other inclement weather
conditions such as snow, rain or gusts were not statistically significant for the proba-
bility of fatal crashes in C2 and C3. The comparative full data model did not identify
the effect of fog on fatal crashes but identified the effect of snow on fatal crashes. These
findings imply that fog affects fatal crashes that occurred in spatially specific areas such
as freeway sections without roadside protective facilities (C2) and the southwest region
of Korea (C3). Additionally, the freeway network in the southwest region of Korea is
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near the sea, where comparatively thick fog events frequently occur, which likely
affects the visibility during driving. The effect of fog on increasing fatal crashes in
the C2- and C3-based crash severity regressions indicates that the LCC-based crash
severity estimation models help to discover hidden fatal contributing factors. Further-
more, the interaction between fog and Bfreeway sections with roadside protective
facilities installed^ and the Bsouthwest province^ leads to more severe crashes, al-
though the fatal percentage in clusters C2 and C3 is not high. Using Eq. (2) and the
parameter estimates from C2 and C3 in Tables 4, 60 locations with the potential of fatal
crashes were identified. These locations are freeway points where the potential of fatal
crashes caused by fog is high, compared to the entire freeway network.

High Fog Occurrence Locations

For each fog visibility level, the product of the number of foggy days in a year and the
traffic exposure (VKT) was defined as the fog-related exposure in this study. Using
Getis-Ord G* statistic in ArcGIS, the spatial clusters for fog-related exposure were
identified, as shown in Fig. 5. Based on the study goals, a large fog-related exposure for
each visibility level is of interest. Therefore, areas with positive Z-scores of Getis-Ord
G* statistics that are higher than 1.96 (p-value less than 0.05) were considered
significant spatial clusters for each visibility level. The significant spatial clusters
(simply called spatial clusters hereafter) have more recurrent fog events than the other
areas, as highlighted in Fig. 5.

The spatial clusters for fog-related exposure were separately located by the fog-
visibility level. The spatial clusters for each visibility level were mainly located in the
following locations: the capital area and partial southwest coast freeway network for
visibility level 1 (less than 50 m); the southwest coast and partial northeast freeway
network for visibility level 2 (50–100 m); the central area and partial northeast freeway
network for visibility level 3 (100–250 m); and the south and partial northeast freeway
network for visibility level 4 (250–1000 m). These spatial clusters for all visibility
levels covered 42 crash locations with the potential of fatal crashes in the total of 60
crash locations identified in C2 and C3. The 42 crash locations were distributed
throughout the following 11 freeway routes: 1, 10, 15, 20, 25, 27, 30, 45, 50, 253,
and 300. They were defined as the fog-crash-prone points in the current study.

The spatial cluster areas for visibility levels 1 (V1) and 2 (V2) overlapped in the
southwest freeway network, as shown on the right side of Fig. 5. In the northeast
freeway network, the spatial cluster areas for visibility levels 2 to 4 (V2, V3, and V4)
were also common. These findings imply that multiple visibility standards for the fog-
crash-prone area selection should be used in the southwest and northeast freeway
networks. Generally, fog occurs throughout a certain area rather instead of a specific
point. For future freeway management, accordingly, freeway segments that include the
42 fog-crash-prone freeway points were identified as shown in Table 5.

According to Tables 5, 28 segments in 11 freeway routes contained all 42 fog-crash-
prone freeway points, which were nearly 323 km in total length. The 28 freeway
segments are freeway stretches where fog-related safety improvement is preferentially
required in the entire freeway network of Korea. As shown in Table 5 and Fig. 4, the
spatial clusters for visibility levels 1 to 3 included 29 fog-crash-prone points of the total
42 freeway points, which is approximately three-fourths of the entire spatial cluster
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area. In other words, 13 fatal crash locations associated with fog occurrence were
included in comparatively less dense (visibility level 4) fog-prone areas.

The current policy for the fog-crash-prone area selection in the Korean freeway
system is Brecurrent fog events for 30 or more days in a year with visibility of 250
meter or less^. The fog-crash-prone areas based on the existing selection policy are
displayed in Fig. 6.

The current fog-crash-prone areas in Fig. 6 are not data-driven results. Considerably
fog-crash-prone areas in Fig. 5 were excluded in the areas in Fig. 6. Particularly, the
southwest coast and southwest area freeway network (freeways No. 15, 25, and 27),
where most fog-crash-prone freeway points in Fig. 5 were placed, was completely
excluded from the fog-crash-prone areas in Fig. 6. In addition, the selected fog-crash-
prone areas in the central, north, and southeast regions of Korea were spatially different
between Figs. 5 and 6. In other words, segments in freeways No. 35 and 55 are the
current fog-crash-prone areas as shown in Fig. 6, but they were not selected as the
modified fog-crash-prone areas in Fig. 5 and Table 5. Furthermore, the current standard
threshold of 30 days of fog in a year approaches the maximum value of the number of
foggy days for visibility level 3, as shown in Table 5.

The spatial clusters in Table 5 were separately located according to the fog visibility
levels. This finding indicates that a modified policy standard for the fog-crash-prone
area selection should spatially vary for the freeway segments in terms of the fog
frequency thresholds by visibility levels. Interestingly, the spatial cluster areas for
certain visibility levels were located in the same places on the segments of freeways

Fig. 5 Significant spatial clusters for fog-related exposure by visibility levels (V1 to V4 indicate visibility
levels 1 to 4)
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15, 25, 50 and 253. This result implies that multiple standards of fog visibility levels are
required for the fog-crash-prone area selection.

Considering the average number of foggy days by visibility levels in Table 5, the
current policy to select top-priority fog-crash-prone areas in the Korean freeway system
should be modified as follows.

Table 5 Involvements of freeway points with potential fatal crash occurrences affected by fog

Segment
number

Freeway
route
number

Post
mile (km,
start~end)

The number of
fatal crash
locations
involved

Visibility 1
(days/yr)

Visibility 2
(days/yr)

Visibility 3
(days/yr)

Visibility 4
(days/yr)

1 1 232.3~248.3 2 – – 22 –

2 1 248.3~259.7 2 – – 29 –

3 10 79.7~83.9 1 – – – 6

4 15 58.1~74.2 3 – 10 – –

5 15 84.9~94.7 1 3 9 – –

6 15 124.8~137.4 1 3 9 – –

7 15 213.3~224.1 1 – – 8 –

8 20 43.1~58.9 1 – – – 35

9 25 74.2~77 1 – 4 – –

10 25 99~111.1 2 1 8 – –

11 25 111.1~120.3 2 1 2 – –

12 25 120.3~128.7 1 – – 8 –

13 25 128.7~141.6 2 – 3 – –

14 27 25~37.8 2 – – 25 –

15 27 37.8~52.6 2 – – – 31

16 27 62.1~75.8 1 – – – 29

17 27 75.8~85.6 1 – – – 32

18 27 85.6~103.5 4 – – – 37

19 30 24.4~36.9 1 – 1 – –

20 30 47.4~56.5 2 – – 29 –

21 45 194.9~209.1 1 – – – 12

22 50 130.2~142.9 1 – – 4 –

23 50 142.9~160 1 – – 9 –

24 50 160~177 2 – 2 12 10

25 50 191.9~199 1 – 1 6 8

26 253 2.5~12.6 1 1 4 – –

27 253 12.6~17.2 1 – 4 – –

28 300 5.7~13.3 1 – – 5 –

Average/Min./Max. 11.5/2.8/17.9 2/1/4 2/1/3 5/1/10 15/4/29 24/6/37

Sum 323.1 42 – – – –

Value in each visibility column indicates the number of yearly foggy days in each freeway segment involved in
significant spatial clusters; − indicates the cell that is not applicable; and Bold indicates that significant spatial
cluster areas are concurrent across visibility levels
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& Freeway segments with multiple visibility standards (concurrent spatial cluster
areas)

– Freeway 15, segments 84.9–94.7 km and 124.8–137.4 km (the southwest cost
area): yearly two-days (average number of foggy days for visibility level 1) fog
occurrence with visibility level 1 or five-days (average number of foggy days for
visibility level 2) fog occurrence with visibility level 2

– Freeway 25, segment 99–120.3 km (the southwest area): yearly two-days fog
occurrence with visibility 1 or five-days fog occurrence with visibility level 2

Fig. 6 Fog-crash-prone areas based on the current policy (KMLIT 2015)
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– Freeway 253, segment 2.5–12.6 km (the southwest area): yearly two-days fog
occurrence with visibility level 1 or five-days fog occurrence with visibility level 2

– Freeway 50, segments 160–177 km and 191.9–199 km (the northeast area): yearly
five-days fog occurrence with visibility level 2, 15-days (average number of foggy
days for visibility level 3) fog occurrence with visibility level 3, or 24-days
(average number of foggy days for visibility level 4) fog occurrence with visibility
level 4

& Freeway segments with a single visibility standard

– Segments of the southwest and partial north area freeways 15, 25, 30, and 253:
yearly five-days fog occurrence with visibility level 2

– Segments of the central and partial north area freeways 1, 15, 27, 30, 50, and 300:
yearly 15-days fog occurrence with visibility level 3

– Segments of the south and partial north area freeways 10, 20, 27, and 45: yearly
24-days fog occurrences with visibility level 4.

The aforementioned results provide meaningful implications on decision making for
fog-sensitive policy enforcement, active traffic management, and treatment strategies.
According to Table 4, driver distractions such as the use of a mobile phone, eating or
equipment operation significantly increase the likelihood of a fatal crash, which was
only identified in C3. As supplemental safety improvement polices, enforcement and
education against distracted driving will help to decrease crash severity, particularly in
the southwest region of the freeway network. In this region, prohibiting driver distrac-
tions such as the use of cellular phones, eating or car equipment operation in foggy
weather conditions should be reinforced through enforcement and driver behavior
education.

In the southwest region, speeding was also found to significantly increase the
likelihood of fatal crashes in the fog-crash-prone areas. An intelligent transportation
system (ITS) for traffic speed control will be helpful to improve highway safety in fog-
crash-prone areas, which was already recommended in several past studies (Peng et al.
2017; Wu et al. 2018; Yan et al. 2014). To decrease the freeway speed in foggy weather,
dynamic message signs (DMS) or variable-speed-limit (VSL) signs will warn drivers in
foggy weather. These traffic management strategies will be more effective in reducing
severe crashes caused by fog if the system serves to alert the driver of the potentially
hazardous areas ahead. Considering the ITS installment, the fog-crash-prone areas
found in the current study have top priority for the ITS-based traffic control strategy
implementation, which is cost-effective.

On the other hand, improved lighting or vehicle-based technologies may provide
extra driver assistance under foggy conditions. Lee et al. (2012) proposed the Fog
Detect and Warning System (FDWS) to inform drivers of safe speeds and distances
between vehicles. According to their study, the FDWS includes visibility meters for
measuring sight distance in fog, light bars for informing drivers the measured sight
distance, and vehicle detectors. Especially, the light bars, which display red warning
lights, inform a following vehicle of the position of the leading vehicle to keep a safe
distance between the two. The high visibility of main LED lights can be recognized by
drivers from far away. Their pilot study with the FDWS implementation on 1-km
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section of highway indicated that FDWS led to significant reduction in mean speed for
both daytime and nighttime compared to the time when the system was turned off.
Vehicle-based technologies such as lane departure warnings and forward collision
warnings in electronic stability control are intended to help drivers maintain proper
vehicle positioning and avoid rear-end crashes in fog- and smoke-related situations.
However, according to a recent study by Mehler et al. (2014), these vehicle-based
safety technologies received only 1 out of 5 stars in the user survey, which prompts the
need for a thorough evaluation for the actual safety benefits versus perceived benefits.

As shown in Table 4, rapid EMS arrival and freeway segments without protective
roadside facilities were found to decrease and increase the probabilities of fatal crashes
in C2 and C3, respectively. Correspondingly, providing more resources such as exclu-
sive freeway EMS stations or luminous protective roadside facilities should help to
mitigate the effect of fog on freeway safety.

In several countries, such as the U.S., the U.K. and Japan, fog visibility levels have
been classified and used to give warnings of low visibility and manage traffic speed
based on their classifications (Balke et al. 2007; Perry and Symons 2003; Yamamoto
2002). However, few countries have provided both methodological process and resul-
tant standards for the fog-crash-prone area selection. The current study provides a
quantitative method of policy making to identify fog-crash-prone areas and modify the
area selection standards, which can be applied in other countries to improve the fog-
related highway safety.

Conclusions

The goal of reducing traffic-related fatalities has been made more challenging in Korea
by the number of trips made under low visibility in foggy conditions. The study was
inspired to identify the top-priority freeway segments where fog-related safety im-
provements are required and to modify the current standard for fog-crash-prone area
selection. To achieve the goals, LCC-based crash severity estimation modeling was
combined with Getis-Ord G* statistic-based hot spot analysis for high fog occurrence
locations. This study is the first data-driven study to comprehensively examine fog
recurrence- and visibility-related fatal crashes in the entire Korean freeway network.
Accordingly, this study developed a systematic safety analysis framework for policy
decision making of the selection of fog-crash-prone areas. These efforts produced
following conclusions that would have useful implications on the applicability to
fog-related freeway safety issues in other nations.

Among the resultant nine crash clusters that were identified using the LCC, fog
caused a statistically significant increase in the probability of fatal crashes in two LCC-
based crash severity estimation models. Two clusters (Clusters 2 and 3) were charac-
terized by crash occurrences without roadside protective facilities and in the southwest
provincial freeway network, which included 60 locations with the potential of fatal
crashes in the entire freeway network. Spatial clusters for fog-related exposure in four
visibility levels were also identified using the ArcGIS Getis-Ord G* statistics. As
common areas between the spatial clusters and 60 fatal crash-prone locations, 28
freeway segments were identified as top-priority links where fog-related safety im-
provement is required. The top-priority freeway links were separately affected by
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significant spatial clusters with highly positive Z-scores of Getis-Ord G* statistics. This
finding indicates that spatially different standards for the fog-crash-prone area selection
are more appropriate than the current single global standard in the Korean freeway
system. For example, Freeway 15 that stretches along the southwest coastline of South
Korea where the area is relatively warm and humid may experience more fog events. In
this study, some sections of Freeway 15 are ranked high as fog-crash-prone areas by
more than two spatially different selection standards. Furthermore, speeding, driver
distraction, and EMS time factors, which are significantly identified in Clusters 2 and 3,
contribute meaningful implications to the decision making for fog-related advisory,
ITS-based traffic control, treatment strategies and part of high-cost road- or vehicle-
based technologies in fog-crash-prone areas.

The crash sample size in foggy weather conditions is relatively small. In this study,
there are some limitations caused by data deficiency. Only two data fields associated
with fog information (fog recurrence and visibility levels) were available. The duration
of fog existence, roadway terrain, weather data such as temperature, humidity, wind
speed, etc. should be used to define clustering variables. Temperature, humidity, and
wind are closely associated with fog production, which varies by time of day or by
topographic pattern. Between overnight and early morning hours, the temperature is
generally the coolest and water vapors can condense into droplets, which is likely to
form fog (Abdel-Aty et al. 2011). Additionally, fog occurs when the warmer airmass
loses heat through conduction to the cooler surface, thus lowering temperature to its
dew point. This phenomenon frequently occurs near coastal areas or upslope with
natural wind (Ray et al. 2013). Therefore, safety studies will benefit from the use of
long-term and extended crash- and fog-related data. Moreover, field survey for drivers
can be helpful to identify relevant self-adjusting efforts under foggy conditions. Traffic
counts on foggy days can provide more accurate measure of traffic exposure.
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