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Emergency Medical Services (EMS) are acute services provided outside of the hospital. EMS are crucial in rural
environmentswhere hospitals are often far away and difficult to access. Establishing EMS performancemeasures
is critical in improving a rural community's access to these services and eliminating systemic inequalities. How-
ever, an absence of data leads to challenges in developing objective and quantifiable servicemetrics. EMS data are
regularly collected through the National EMS Information System (NEMSIS), yet the manner of data collection
and quality of data vary across agencies. Moreover, the amount and complexity of information makes data anal-
yses difficult, subsequently effecting EMS leaderships' ability to identify improvement needs.
This study used NEMSIS data to exemplify approaches for establishing two data-driven performancemeasures. The
measures used in this study – timely service and service coverage – are both dependent on the mobility and acces-
sibility of the EMS transportation network. Two types of spatial models: the spatial econometric model and
geographically weighted regression (GWR) model, were developed and then compared to the linear regression
model to help identify response time factors. GWRperformedbest in terms of goodness-of-fit statistics andwas cho-
sen to help understand how factors (e.g., weather, transportation) impact the timely provision of EMS in rural areas.
The GWR results provided additional insights through the particular spatial patterns of the coefficient estimates and
their statistical significance to EMS practitioner for their references to reduce local response times.
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1. Introduction

Rural emergency medical services (EMS) face unique challenges re-
lated to limited resources, sparsely distributed populations, and long
transport times [1]. There are real-world impacts of these challenges.
For example, the fatality rate for motor vehicle crashes in rural areas is
considerably higher when compared with urban areas [2,3]. Each year
N30,000 people lose their lives on United States roads, approximately
70% of those fatalities occur on rural roads. According to the National
Highway and Transportation Safety Administration (NHTSA), “Delay
in delivering emergencymedical services is one of the factors contribut-
ing to the disproportionately high fatality rate for rural crash victims”
[4]. Addressing rural EMS availability and service performance is key
to improving emergent 911 call/incident survival rates. EMS systems'
quality improvement initiatives are based on established performance
.edu (X. Qin),
d@med.und.edu
measures. But, rural EMS quality improvement endeavors are hindered
by a lack of appropriate evaluation methods and performance metrics
[5-7].

Improving access to rural EMS is often challenging due to lack of re-
sources, personnel, infrastructure, and long transport times [8]. This
context is often compounded because the operational structure of
EMS systems varies across communities. For example, EMS can be lo-
cated within a fire department, hospital, or a stand-alone agency,
governed by municipality or county, or even run privately. Further,
rural EMS services can be volunteer or professional, municipal or pri-
vate, air or ground, large or small. The vast differences across EMS ser-
vices creates challenges for capturing system-wide information using
consistent performance metrics. Having similar metrics would allow
rural EMS services to aggregate data across services. This is especially
important since any rural service typically has an insufficient number
of time urgent cases (e.g., cardiac arrest, STEMI, etc.) upon which to
base improvements to operating procedures. In recent years, NEMSIS
– the national repository used to store all United States' EMS data –
has helped mitigate some of these challenges [9], but a lack of compli-
ance across services still yields unreliable data.
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Despite the challenges, there are some promising data being col-
lected to evaluate rural EMS performance. For example, NHTSA devel-
oped 35 EMS performance measures for local EMS services, including
both time-based (e.g., mean emergency patient response interval) and
outcome-based (e.g., EMS cardiac arrest survival rate, emergency depart-
ment discharge) variables. The local service chooses which variables to
use to evaluate its service performance based on its situation [10].

Although a patient's outcome depends on many factors, the time re-
quired for an EMS unit to arrive at the scene (or response time) and the
time required for a patient to receive definitive care (or overall response
time) plays a key role in their survival. The Centers for Disease Control
andPrevention (CDC) reports thatwhen traumavictims receivedefinitive
care at a level I trauma center, the mortality risk is reduced by 25% [11].
However, crashes or other severe incidents occurring in rural areas can
happen far away from a level I trauma centers, meaning quick response
and fast transport to the receiving agencies are difficult to achieve. There-
fore among all performancemeasures, response time is considered one of
the most important to improve emergent incident survival rates [12].
Thus, to improve overall rural EMS patient outcomes, response time
data must be analyzed to identify factors effecting EMS performance.

The linear regression model is popular, for identifying the statistical
relationship in which the time-related performance is the dependent
variable and contributing factors are the independent variables. How-
ever, because this model was not designed to handle spatial depen-
dence, results can provide inaccurate coefficient estimates and
unreliable statistical inferences if spatial dependence exists. Spatial de-
pendence on the model's residuals and spatial heterogeneity are the
two emerging issues when a statistical regression is conducted on spa-
tial data. Anselin developed the spatial lag model and spatial error
model to solve the issue of spatial autocorrelation [13]. A spatial lag
model is appliedwhen a spatial structure exists in the response variable.
A spatial errormodel is appliedwhen a spatial structure exists in the re-
siduals [13]. Such spatial models are widely used in economics [14,15]
and are applied to study transportation issues [16,17]. One study
found a spatial lag model and spatial error model performed better
than a linear regression model when investigating the impact of acces-
sibility and weather on emergency unit reaction times [18].

When the variable coefficients vary across space or are weighted
geographically, they are best addressed by the geographically weighted
regression (GWR) model [19]. The GWRmodel was used to account for
spatial heterogeneity in previous studies [20-24]. Zhao et al. used the
GWR model to estimate annual average daily traffic and found the
GWR model had a better goodness-of-fit than the generalized linear
model [20]. Du et al. used the GWR model to capture the relationship
between transport accessibility and land value [21]. Li et al. used the
geographically weighted Poisson regression for county-level crash
modeling in California [22].

This paper is an empirical study utilizing NEMSIS data to establish
and highlight plausible performance metrics for EMS in rural areas.
The study aims to measure timely service and service coverage, and to
use spatial statistical methods (e.g., spatial econometric models and
GWRmodel) to identify factors significantly affecting EMS performance.
The findings of the study are instrumental in assisting decision-makers
with resource optimization, strategic planning for rural EMS, and tacti-
cal placement or relocation of ambulance services.

2. NEMSIS dataset & service-based performance measures

This studyused the2013NEMSIS dataset obtained from the SouthDa-
kota EMS office, and South Dakota roadway information as provided by
the South Dakota Department of Transportation. According to NEMSIS,
36,198 emergency (911) calls were answered by 109 South Dakota
EMS stations. Detailed descriptions regarding EMS data attributes and
data quality assurance/quality control (QA/QC) are omitted for brevity,
asmore information is available fromQin et al. [25]. After removing inva-
lid information (e.g., extremely high values of response time), 13,041
emergency records with valid response times were used to evaluate ser-
vice performance (i.e. response time). Response time in this study is the
time interval between two consecutive time-stamped events: the length
of time betweenwhen the responding unit starts moving to the time the
responding unit physically arrives at the scene. Note that this time inter-
val does not include the length of time that passes during the 911 call or
the time it takes to dispatch the first responders.

The quantitative assessment provides the measure of coverage area
for each EMS service, in square miles, that can be served by an EMS ser-
vice within an acceptable time interval. Based on the requirement for
South Dakota EMS, a 15-minute threshold value was used for response
time [26]. One caveat for this network-level analysis is that the area cov-
ered by 15-minute travel time was calculated by the estimated travel
speed and for the areaswith unknown speed limit, the average response
speed of 35 mph was used. Fig. 1 presents a 15-minute benchmark for
response time in which the coverage area was generated by the road
network and network analyst toolbox in ArcGIS [27]. Location coordi-
nate information of each incidentwas retrieved fromGoogleMaps APIs.

As shown in Fig. 1, only a portion of the state was covered by EMS
within the15-minute travel time. Countieswith amore sparsely distrib-
uted population (e.g., Shannon County) havemore points uncovered by
EMS. Coverage ratio, or the number of 911 calls within the 15-minute
coverage area for all EMS stations over the total call volume, was calcu-
lated as 71%. This relatively low value is due to sparsely distributed de-
mands, which is common in rural areas.

Fig. 2 presents two performance indexes: the service coverage ratio
index and the service timeliness index. The service coverage ratio index
is defined as the number of cases within the 15-minute coverage area
over the total number of calls responded to by an EMS service. The ser-
vice timeliness index is defined as the percentage of caseswith an actual
response time of no more than 15-min within the 15-minute coverage
area for each station.

Fig. 3 offers a closer view of EMS performance. Among 13,041 cases
with complete information, only services with N10 cases (minimal re-
quired number of observations for statistical analysis) were analyzed
and included in the map: 95 cases responded by 37 service stations
were removed. Fig. 3(1) shows that about half of the services have a cov-
erage index of 0.75 or higher. The index valueswere randomly distributed
across the state without obvious patterns. Fig. 3(2) shows that almost
three-quarters of the services had a timeliness of 0.85 or higher, which
means most of the stations responded within 15 min of the presumed
15-minute coverage areas. Stations with a high performance index are
concentrated around Interstate highways I-29 and I-90.

Both performance indices represent the service-based performance
from two perspectives: service coverage ratio and timely service rate.
Travel distance is the main factor impacting response time; therefore,
optimizing EMS service location to improve service coverage will ulti-
mately improve service performance. It is possible that factors other
than distance contribute to the variation of response time. A regression
analysis can help identify factors significantly impacting response time
(e.g., weather, roadway conditions) and can also identify ways of
improving timely services. The following sections discuss the related re-
gression methods and analysis.

3. Data preparation for regression models

Each 911 record had at least 50 case-specific attributes
(i.e., attributes associated only with each 911 case) or service-specific
attributes (i.e., attributes associated only with each EMS stations).
After a careful review of all available attributes, the followingwere con-
sidered as case-specific variables: caller's complaint, light and siren, dis-
patch time, location type, and weather. Response time can be affected
by many factors, such as the severity of the incident, EMS station loca-
tion and staffing, weather, highway, and traffic conditions.

The “caller's complaint” can significantly impact response time, be-
cause urgent, life-threatening incidents such as strokes, breathing



Fig. 1. EMS coverage map.
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problems, and cardiac arrests demand shorter response time. The use of
ambulance “light and siren” indicates the 911 response is urgent or that
the driver is trying to avoid traffic congestion. “Dispatch time” includes
the time of day and day of the week for each dispatch and may be im-
pacted by service demand, light conditions, and staffing status. “Loca-
tion type” indicates whether the incident is in a public area. Compared
with a private address, a public area such as a nursing home usually
has better location information and more convenient access points for
an ambulance. This study extracted “weather”data such asmeanvisibil-
ity, mean wind speed, and weather indicator (if there is rain, snow or
fog) from Weather Underground (WU) (https://www.wunderground.
com/). Each event adopted the weather condition from the nearest
weather service station on the same day.

Only life-threatening or severe cases (i.e. strokes, breathing prob-
lems, and cardiac arrests) were included in the analysis because for
these cases, 1) the response time is more sensitive to a patient's out-
come; and 2) event address information is more accurate. The response
All 911 Cases for each 
EMS station

Cases outside of 15-min 
coverage area

Cases inside of 15-min 
coverage area

Response time > 15 mins

Response time<= 15 mins

Fig. 2. Illustration of two performance indexes.
time of 8 min is considered a well-accepted criterion across United
States EMS regions, especially for those life-threatening cases [28].
Thus, severe cases within each station's 8-minute coverage area were
analyzed to explore the factors contributing to long travel time. Eight
hundred and eighty-one (881) severe cases with 63 responding EMS
stations met the inclusion criteria.

Several EMS service-specific variables were also considered in the
regression analysis, including whether an EMS service is staffed with
professional emergency medical technicians, vehicles and medical
equipment at the station, and the proximity of streets and highways.
Relevant literature suggests road density and connectivity (e.g., the
number of nodes divided by the number of links) are accessibility
indicators, while average traveling speed is a mobility indicator [29].
From this stance the authors based the roadway accessibility and
mobility indexes on a highway network created by an 8-minute travel
distance from the associated EMS station. The accessibility andmobility
indicators for each station are formulated from Eqs. (1) to (3) as follows
[29]:

Density ¼
P

link length
covered area

ð1Þ

Connectivity ¼ number of links
number of nodes

ð2Þ

Speed ¼
Pðlink speed� link lengthÞP

link length
ð3Þ

https://www.wunderground.com
https://www.wunderground.com


1) Service Coverage Index 

2) Service Timeliness Index 

Fig. 3. Performance indexes for each EMS station.
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Fig. 4. Accessibility and mobility of the EMS station in Brookings County.
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The roadway length, number of links, and number of nodeswere de-
rived from the South Dakota state highway links and nodes map in
ArcGIS by clipping an 8-minute polygon for each EMS station. Fig. 4
uses Brookings County as an example to show the clipped area for an
EMS station alongwith the variables used to calculate highwaymobility
and connectivity.

Besides highway accessibility and mobility, workload factor is
included as another service-specific attribute to show level of EMS
activity. Two types of service workload were introduced: yearly call
volume and unit hour utilization (UHU) [30]. Yearly call volume is
simply the number of 911 calls received by an EMS station. UHU is the
length of time one ambulance unit is occupied over the total amount
of time (i.e., 24/7 and 365 days a year). UHU is formulated in Eq. (4)
[30]:

UHU ¼ D� Total Time
n� 8760

ð4Þ

where,
D is the yearly demand for each station,
TotalTime is the average total time in hour for each station and,
n is the number of ambulances for each station.
As a common practice, EMS services with a UHU below 35% are con-

sidered less active [30]. UHU was calculated for each EMS service, with
results ranging from 2% to 10%. These results are expected because
these are less-populated areas in the rural countryside.

Both case-specific and service-specific variables were calculated.
Table 1 lists the variables and their descriptions.
Table 1
Variable description.

Variable

Dependent variable ERTime
Independent variable Case-specific Caller's complaint

Response mode
Time of day
Day of week
Location
Visibility
Wind speed
Weather indicator

Service-specific Density
Connectivity
Speed
Professional
Vehicle
EMS demand
UHU

a NHTSA 2 Code for items in NEMSIS EMS dataset to retrieve information for case-specific var
4. Methods

To capture the relationship between response time and its
contributing factors (including both case-specific attributes and
station-specific attributes) for the 881 severe cases, three types of re-
gression models: linear regression, spatial econometric models, and
Geographically Weighted Regression (GWR) were used. The latter
two are capable of handling spatial autocorrelation in the data. To
choose the best model fitting South Dakota EMS data, the regression
models were evaluated by measure of spatial autocorrelation and
measure of goodness-of-fit. Instead of using the aggregated values
of time over a predefined area [18], this study focuses on response
time related to individual incidents using these statistics, which can
accurately reveal the underlying factors affecting response time for
each event. The rest of this section discusses the regression models,
model assessment and comparison.

4.1. Linear regression

The linear regression model can generate a linear relationship
between a dependent variable and multiple independent variables.
The model assumes that the residuals are independent, normally dis-
tributed, and have a mean of zero and constant variance. The equation
is shown in Eq. (5):

y ¼ β0 þ
Xp
k¼1

βkxk þ ε ð5Þ
Description NHTSA 2 codea

Response time (minutes)
Severe (1) or not (0) E03_01
Light/siren on (1) or not (0) E02_20
Day (1) or night (0) E05_03
Weekday (1) or weekend (0) E05_03
Public area (1) or not (0) E08_07
Mean visibility (miles)
Mean wind speed (mph)
Extreme weather such as rain, snow (1) or not (0)
Highway density
Highway connectivity
Average speed or posted speed limit (mph)
Professional (1) or volunteer (0)
Number of ambulance
911 call volume
Unit hour unitization

iables (https://doh.sd.gov/documents/EMS/DataDictionary.pdf).

https://doh.sd.gov/documents/EMS/DataDictionary.pdf
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where y, xk, ε indicate dependent variable, kth independent variable
and the normal error respectively; and coefficients βk are the global
parameters.

4.2. Spatial econometric models

Spatial econometric models consider the spatial autocorrelation ef-
fect from neighbors, which requires a spatial weight matrix of neighbor
data points. The matrix is generated using neighbors that share the
same border, or the k-nearest neighbors, or neighbors within a certain
distance. Two popularmodels that address spatial autocorrelation in re-
sponse variable and residual respectively are the spatial lag model and
the spatial error model (shown in Eqs. (6) and (7)).

Spatial Lag Model : Y ¼ ρWY þ Xβ þ ε ð6Þ

Spatial Error Model : Y ¼ ρW Y−Xβð Þ þ Xβ þ ε ð7Þ

where, Y, X, and ε indicate response variable, independent variables and
identical independent error term respectively. β is the vector of coeffi-
cients and W is the spatial weight matrix. ρ denotes the autoregressive
parameter.

4.3. Geographically weighted regression (GWR)

Compared to a linear regression model, the GWR model considers
that parameters vary across space. The purpose of GWR is to estimate
different relationships between the dependent and independent vari-
ables for each geographic location. Local parameters are used in the
GWR model, which is formulated in Eq. (8):

yi ¼ β0 ui; við Þ þ
Xp
k¼1

βk ui; við Þxk;i þ εi ð8Þ

where yi, xk, i, εi indicate dependent variable, kth independent variable
and the normal error at location i respectively; (ui,vi) is the coordinate
of the ith location; and coefficients βk(ui,vi) are the local parameters
at the location [19]. Based on the concept of GWR models, the local
parameters βk(ui,vi) (k: 0, 1, …, p) are estimated for each location i,
thus n ∗ (P + 1) parameters are estimated for n observations.

Apart from traditional GWR, the extension of GWR (mixed GWR)
can have both global variables and local variables in the model struc-
ture. In GWRmodeling, the local parameters for each location can be es-
timated based on observations from nearby locations. A location's
parameters are more strongly affected by the observations occurring
close by as opposed to observations made from farther away. The influ-
ence factor is called the weighting function wij. Two commonly used
weighting functions, Gaussian and bi-square, are listed below:

Gaussian : wij ¼ e−
dij

2

h2 ð9Þ

Bi‐square : wij ¼ 1−
dij
hi

� �2
 !2

; i f dij < hi

0; otherwise

8><
>: ð10Þ

where dij is the distance from location i to location j, h and hi are the
bandwidth for these two functions [19].

Bandwidth for the Gaussian function is constant, meaning the mag-
nitude of the function is the same for each location [19]. Bandwidth for
the Bi-square function hi varies across locations and is defined as the nth
nearest observation from location I [19]. Bi-square's adaptive function
is often used when data are not distributed randomly because this
function can be adjusted to the density of data. The Akaike information
criterion (AIC) is often used to select the optimal bandwidth and the
best model; models with a lower AIC perform better [19].
4.4. Model assessment & comparison

4.4.1. Measure of spatial autocorrelation
Moran's I, is a spatial statistical method that uses feature location

and feature values to measure whether spatial autocorrelation exists
across the entire study area. The value of Moran's I index denotes
whether it shows clustered, dispersed, or randomly distributed patterns
in the study area [31]. Z-score and p-value are generated to evaluate the
index significance. A large enough absolute value of z-score or low
enough p-value indicates a failure to accept the null hypothesis, mean-
ing a clustered or dispersed pattern exists; a low enough absolute value
of z-score means the null hypothesis cannot be rejected, and that a ran-
domly distributed pattern exists.

4.4.2. Measures of goodness of fit
Several goodness of fit measures can assess model performance: R-

squared, Akaike information criterion (AIC), Mean absolute deviation
(MAD), and Mean squared prediction error (MSPE). R-squared, the
most popular measure, indicates the percentage of variation in the de-
pendent variable which can be explained by the independent variables.
The higher the R-square, the better themodel performance. A lower AIC
indicates that the predicted values are closer to the real values.MADand
MSPE measure the accuracy of the predicted values, with a lower value
suggesting better accuracy.

5. Findings & discussion

5.1. Linear regression

The linear regression analysis began with seven case-specific vari-
ables and seven station-specific variables. A collinearity analysis was
conducted for all independent variables, and the results suggested
that correlations exist in the following three pairs: Professional and Vehi-
cle (Pearson correlation coefficient = 0.83), Vehicle and Demand (Pear-
son correlation coefficient = 0.78), and Demand and UHU (Pearson
correlation coefficient = 0.74). Stepwise selection was used to keep
the statistically significant variables in the final model. The final model
includes six variables and is specified as: Response time ~ Response
Mode + Location + Mean Visibility + Highway Connectivity + Profes-
sional + EMS Demand. Descriptive statistics of the variables are shown
in Table 2. Continuous variables (Mean Visibility, Highway Connectivity
and EMS Demand) have the mean value, standard deviation, minimum
value and maximum value, and binary variables (Response Mode, Loca-
tion and Professional) have the percentage of category “1”.

The R software was used to develop this linear model. Parameter es-
timates and model performance are shown in Table 2. The positive sign
for Response Mode means that response time increased when the light
and sirenwere on, suggesting possible traffic congestion. Incidents hap-
pening in public areas had a reduced response time.Mean Visibility had
a negative effect on the response time. Response time decreases with
the increase of road accessibility (Highway Connectivity). EMS services
with professional staff show a shorter response time compared to sta-
tions using only volunteers. Higher EMS demand, which indicates that
the service is busy, increased the response time. The Moran's I statistic
(4.67) shows a positive statistically significant (p-value <0.001) spatial
autocorrelation.

5.2. Spatial econometric models

A spatial lag model and a spatial error model were implemented in
the R software to account for the spatial autocorrelation. The model
began by including the six statistically significant variables obtained
from linear regression and then added other variables one by one.
Each time when a new variable was added, the variable significance
and model AIC value were checked and compared to the previous
model. After exhausting all the available variables, the performance of



Table 2
Comparison among models.

Variables Descriptive statistics Linear Spatial lag Spatial error GWR

(Mean, STD, min, max) or % of “1” Estimate t-Test Estimate z-Test Estimate z-Test Min Median Max

95% confidence
interval

95% confidence
interval

95% confidence
interval

Dependent Response time (4, 4.1929, 1, 46) –

Independent

Intercept –
11.4641 6.4735 16.8194 5.3509 11.2519 6.8989

−14.0532 7.9212 26.8969
(7.9874, 14.9429) (13.3465, 20.2893) (7.7778, 14.7313)

Response mode 24.97% of “1”
0.8906 2.8201 0.8523 2.7196 0.8473 2.6406

(Est., t-test) = (−0.335, 0.861)
(0.2699, 1.5104) (0.2288, 1.4813) (0.2248, 1.4660)

Location 30.87% of “1”
−0.5529 −1.922 −0.6292 −2.1896 −0.5518 −1.9213

−3.3015 −0.573 0.4617
(−1.1188, 0.0113) (−1.1941, −0.074) (−1.117, 0.0133)

Mean visibility (9, 1.9360, 1, 10)
−0.2905 −4.2711 −0.2846 −4.2204 −0.2899 −4.285

−2.0345 −0.1103 −0.0008
(−0.4239, −0.1567) (−0.4182, −0.1427) (−0.4187, −0.1619)

Road connectivity (1.3690, 0.1168, 1.02, 1.74)
−3.8647 −3.3632 −5.3865 −3.9657 −3.7111 −3.6409

−14.9228 −0.5099 12.5605
(−6.122, −1.6087) (−7.6478, −3.1403) (−5.9618, −1.4562)

Professional 55.28% of “1”
−1.6856 −4.5169 −1.8124 −4.8361 −1.6558 −4.4034

−2.9936 −0.5139 2.9376
(−2.4198, −0.9538) (−2.5376, −1.0905) (−2.387, −0.9162)

EMS demand (987, 955.8463, 13, 4785)
0.0018 9.2728 0.0018 9.2862 0.0018 9.1573

(Est., t-test) = (0.0013, 4.666)
(0.0014, 0.0022) (0.0014, 0.0023) (0.0014, 0.002)

Performance Estimate Estimate Estimate Estimate

R Square 0.15 0.16 0.15 0.31
MAD 2.41 2.39 2.41 2.23
MSPE 15 14.84 15 12.09
AIC 4902 4846 4865 4773
Moran's I 4.67 3.86 4.67 −2.22
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the model with six original variables has not been improved by aug-
menting any new variable. Therefore, the same variables were used
for spatial econometric models. Because 911 events were unevenly dis-
tributed across the state, the k- nearest neighbormethodwas chosen to
calculate the weightmatrix in which 251 of the nearest neighbor points
were selected. Both autoregressive parameters ρ were shown to be
significant, suggesting the presence of spatial correlation. The signs of
coefficient estimates in Table 2 are consistent with the linear model.

5.3. Geographically weighted regression (GWR)

The GWR model was formulated using GWR 4.0, a statistical soft-
ware package specially developed for GWR [32]. The same variables
were adopted because no new variables significantly improved model
performance. Since the choice of weight function is vital, both Gaussian
(Eq. (9)) and bi-square functions (Eq. (10)) were evaluated. GWR with
the bi-square function outperformed the Gaussian function with lower
AIC and higher R-squared values. A geographical variability test was
performed for local coefficients to test whether they varied across the
space. The results suggested several possible global variables, and
thus, a mixed GWR model was applied.

In GWR 4.0, mixed GWR was initially set as a local model in which
all the independent variables were treated as local variables. After an
iterative process, some variables became global terms, and others
remained local. An iterative golden section search of the AIC function
revealed that when the number of nearest observations was 251, the
AIC score was optimal; thus, the bandwidth was set as the 251 nearest
observations. Because the local coefficient estimate varies across
space, it is described by the range of value (minimum, median, and
maximum) rather than the mean. By comparing lower quartile and
upper quartile in Table 2, most signs of the parameters vary from nega-
tive to positive except forMean Visibility. The global variables, Response
Mode and EMS Demand, have a coefficient estimate similar to the linear
regression estimate, but Response Mode is not statistically significant in
the GWR model.

In GWR, maps can help researchers visualize the coefficient and the
statistical significancemeasured by the t-statistics for each EMS service.
The coefficient may vary in its sign, magnitude, and statistical
significance, all of which should be taken into consideration for further
analysis. Clusters on the Fig. 5map indicate similar coefficient estimates.
For the Location variable, few services located on the southeast side of
the state have a positive coefficient estimate on response time; how-
ever, the variable at these stations is not statistically significant. In
other words, Location has a negative effect on response time when it is
statistically significant. Although the effect is negative across the entire
state for the Mean Visibility, the Southwest and South-Central regions
seem to have a greater impact on response time. Some stations on the
east or west of the state show a positive effect for Highway Connectivity,
but not all effects are statistically significant. Professional seems to be
associated with reduced response time except for stations in the west
region. A look at the t value shows that the coefficients for western
stations are not statistically significant.

5.4. Discussion

Both the spatial econometrics model and GWR model can improve
model performance. The GWR model improved R-squared from 0.15
to 0.31, while spatial lag or spatial error shows marginal improvement.
GWR ranks first in prediction accuracy with the lowest MAD, MSPE
and AIC, followed by the spatial lag model and the spatial error model.
The decreased Moran's I after applying spatial models indicates that
both the GWR and spatial econometrics models can capture spatial
autocorrelation.

Response Mode has a positive impact in both the linear and spatial
econometric models, meaning increased response time is associated
with light and siren situations. The factor is no longer statistically signif-
icant in GWR. Note that GWR is a local regression analysis in which the
parameters for each location are calibrated from observations from
nearby locations, not all the observations. At the local level, the choice
of response mode is not significantly correlated with the response
time but, at the global level, a positive impact is observed. All models
show the same sign forMean Visibility and EMS Demand.Mean Visibility
has a negative impact on response time, while EMS Demand increases
the response time. Location has a negative impact on response time
for stations where the variable is statistically significant in GWR; this
result is consistent with linear regression results, suggesting that
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incidents happening in public areas are associated with shorter re-
sponse times. A negative effect is observed in the linear regression and
spatial econometric models concerningHighway Connectivity; however,
Highway Connectivity in GWR is positive for some stations and negative
for others. Similarly, the Professional coefficient is negative for the linear
regression and spatial econometric models but it varies in GWR. The
disparities among stations in terms of coefficient estimates underscore
the importance of using GWR as an analytical tool to investigate further
of the nature of local variations in relationships.
(1) Loc

(2) Mean V

Fig. 5. GWR coefficient m
The strength of GWR is its ability to offer geointelligence on the ef-
fects and statistical significance of each variable. Variablesmayhave sta-
tistically significant relationship at some services but not at others.
Therefore, GWR is helpful in exploring the following questions: Is the
relationship intrinsically different across space; perhaps, there are
spatial variations in training, service protocols, other drivers' response
to emergency vehicles and highway traffic conditions? Is the spatial
non-stationarity caused by the omission of some important variables
(e.g., local agencies' operational practices), which can prompt further
ation 

isibility 

ap for local variables.



(3) Highway Connectivity 

(4) Professional 

Fig. 5 (continued).
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investigation and inspire new research? Table 3 shows each selected
station and its corresponding significant variables that affect service
performance. For example, Brookings ambulance service has two signif-
icant variables (Location and EMS Demand) which can explain only
<10% of the variation in response time, suggesting further investigation
of unobserved factors is necessary. The revelation from the spatial
models suggests a need to review more detailed information before
attempting to reach a definitive conclusion, especially for stations with
subpar performance.
6. Conclusions

This study established two data-driven performance metrics for
EMS: the service coverage ratio index and the service timeliness index
usingNEMSIS data and identified statistically significant factors contrib-
uting to EMS response time from a list of fifteen (15) input variables, in-
cluding eight (8) case-specific and seven (7) station-specific variables.
Given the large amount of information available through NEMSIS, this
study shows one method, GWR, is useful to disaggregate the data and



Table 3
Significant contributing factors affecting response time for selected stations.

EMS station Response mode Location Mean visibility Highway connectivity Professional EMS demand LocalR2

Watertown fire dept & ambulance service – −1.5124 – – −2.5433 0.0013 0.0877
Aberdeen fire & rescue – – – – −1.5983 0.0013 0.0465
Lead-deadwood regional hospital ambulance – – – – – 0.0013 0.1181
Dell rapids community ambulance service – – – – – 0.0013 0.0900
Yankton county EMS – – – −8.4235 −2.5568 0.0013 0.0666
Brookings ambulance service – −1.1487 – – – 0.0013 0.0921
Clark county ambulance service – −1.6721 – – −2.5186 0.0013 0.0875
Hand county ambulance service – – – −6.9439 – 0.0013 0.0501
Hand county ambulance service – – – −8.9216 – 0.0013 0.0427
Dell rapids community ambulance service – −2.5354 −2.0345 7.4267 – 0.0013 0.5141
Springfield fire & ambulance service – – – −9.5200 −2.9936 0.0013 0.0945
Madison medical services – −1.1839 – – – 0.0013 0.0924
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focus on response timevariables. This in turn should help state, regional,
and local EMS leadership with strategic planning including: service
locations/re-locations and subsequent logistical/structural elements in-
volved in quality improvement efforts.

In this study, response timewas used as the performancemetric and
a 15-minute response time was adopted as the benchmark. Service
coverage and timely service performance indexes were developed to
evaluate the positioning and service quality of each EMS station. Low
service coverage measure suggests the need for more strategic estab-
lishment or relocation of service stations. Low timely service measure
suggests EMS decision makers should identify other factors besides
the distance that impacts the response time. Results show a well-
positioned station with well-trained staff should be able to respond to
more 911 calls within the 15-min time frame and should also have a
higher percentage of successes if a 911 call is located within the esti-
mated 15-min coverage area.

Several regression models were developed and compared for re-
sponse time: the linear regressionmodel, the spatial lagmodel, the spa-
tial error model, and the GWR model. Statistically, the GWR model
performed better than the linear regression and spatial econometric
models (spatial lag and spatial error). Geographically, GWRhas the abil-
ity to explore the underlying variations in relationships of a set of vari-
ables over space,whereas this information cannot be disclosed by global
models such as the linear regression model. The GWR results provide
additional insights into the location-specific spatial patterns of coeffi-
cient estimates and their statistical significance. Local practitioners
may focus on different aspects and identify newmeasures to reduce re-
sponse time. Themodel usingGWRnot only offers state EMS officials an
overview of the statistically significant factors affecting response time
across the state, but also provides a good reference for local agencies
seeking solutions for shortening response time at the station level.

Finally, the tremendous value of the EMS data through information
extraction, knowledge discovery and performance metrics develop-
ment underscores the importance of improving data quality. Inaccurate
data means a waste of time and resource. More importantly, an im-
proved dataset will provide more reliable and relevant information
that guide effective EMS planning and operations.
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