
Unobserved Component Model for
Predicting Monthly Traffic Volume

Zheyong Bian1; Zhipeng Zhang2; Xiang Liu, Ph.D.3; and Xiao Qin, Ph.D., P.E.4

Abstract: Traffic volume prediction plays a critical role in transportation system and infrastructure management. This paper develops the
first application of an unobserved component model (UCM) for monthly traffic volume forecasting. We compare the UCMmodel with simple
linear regression, autoregressive integrated moving average (ARIMA), support vector machine (SVM), and artificial neural network (ANN)
models based on monthly traffic volume data from a key corridor in New Jersey. As a general econometric method, the UCM decomposes the
time series into trend, seasonal, and irregular components, exhibiting superiority for statistically modeling traffic data with cyclic or seasonal
fluctuations. The numerical analysis shows that the UCM outperforms all of the other four models and generates reasonably accurate pre-
diction results. This research indicates that UCM can be considered as an alternative approach to modeling traffic volumes. DOI: 10.1061/
JTEPBS.0000281. © 2019 American Society of Civil Engineers.
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Introduction

Monthly traffic volume provides Departments of Transportation
(DOT) with directions to carry out more powerful transportation
system management and apply more effective control measure-
ments to maintain the freeway capacity, to weaken the traffic
congestion, and to promote efficiency of the freeway networks.
Transportation agencies (e.g. DOTs) make plans for infrastructure
management based on varying traffic volumes in different time
periods. The current practice necessitates medium-time or long-
term traffic volume forecasting. For instance, Ng et al. (2009)
and Frangopol and Liu (2007) optimized long-term infrastructure
maintenance plan based on long-term traffic volumes. Bai et al.
(2015) made an optimal pavement design and rehabilitation plan
based on long-term traffic demand (e.g. year, quarter, or month).
Hajibabai et al. (2014) optimized the freight facility location and
pavement infrastructure rehabilitation using the network-level
annual traffic data.

The focus of this research is to use a time series model [unob-
served component model (UCM)] to predict future traffic volume
based on the historical trend. Longer-term prediction focuses on
monthly or even yearly traffic information which can be used
for capital planning and transportation management (Lu 2014).
The transportation agency that provides the data typically wants

to forecast monthly traffic volume in order to make a new-year plan
for transportation infrastructure management and capital planning.
Thus, the scope of this paper is using historical data for the pre-
diction of monthly traffic volume in one year.

The forecasting models proposed in the literature can be
classified into several categories, including but not limited to
(1) machine learning methods, such as artificial neural network
(ANN), support vector machine (SVM), and deep learning models;
(2) the autoregressive integrated moving average model (ARIMA);
(3) the nonparametric regression model (e.g. kth nearest neighbor
model); (4) Bayesian networks; and (5) hybrid methods (Table 1).

Most of the prior research has focused on short-term (e.g., hourly
and daily) prediction of traffic volume, which is very important for
traffic operations and intelligent transportation systems (ITS). In
addition, traffic volumes in a longer time period (month, season,
or year) can also provide information to support transportation
planning, network design, and infrastructure management. In this
context, artificial neural network, support vector machine, autore-
gressive integrated moving average, and other models have been
used (Zhang and Qi 2005; Ma et al. 2015; Cawley and Talbot
2010).

Monthly traffic volumes could demonstrate regular, seasonal,
or cyclical patterns, which may require a special type of time
series model to account for these patterns. Many prior studies
employed time series modeling for traffic volume prediction
(e.g., Williams and Lester 2003; Min et al. 2010; Zhang et al.
2011; Kumar and Vanajakshi 2015). Along the same lines, the
goal of this research is to explore the feasibility of UCM as a
new, alternative time series approach to predicting longer-term
traffic volumes. The UCM model was originally developed by
econometricians in the 1990s (Harvey and Peters 1990) and has
emerged as a promising approach to analyzing time series data
that exhibits regular, seasonal, or cyclical trends in various appli-
cations, such as prediction of economic indicators (Kim 1993;
Cowan and Joutz 2006; Paradiso and Rao 2012) and infrastructure
management in engineering (Marquez et al. 2007; Pedregal et al.
2004). The UCM can filter, smooth, and extract signals, which
enables the observed variables to be decomposed into different
perceived features, differentiated by their spectral properties
(Young 2011). This approach decomposes time series into trend,
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seasonal, cyclical, and irregular components (Harvey and Peters
1990).

To our best knowledge, this is the first study that applies UCM
to monthly traffic volume prediction. Using empirical data from
one key corridor in New Jersey, we compare traffic volume predic-
tion results based on UCM versus the other selected alternative
methods, including the simple linear regression, ARIMA, SVM,
and ANN models. As the following sections will show, the UCM
outperforms the other four models for the data set used in this
study.

Unobserved Component Model

The unobserved component model is a type of the structural time
series model which is a multiple regression model with time-
varying parameters. The UCM decomposes time series into trend,
seasonal, and irregular components (Harvey and Peters 1990). A
general UCM model can be defined as follows:

yt ¼ μt þ γt þ εt ð1Þ
where yt = response variable (e.g., monthly traffic volume) at
time t; μt = trend component at time t; γt = seasonal component
at time t; and εt = irregular component, a Gaussian white noise
process with variance σ2

ε at time t.
In general, the trend component can be viewed as a local

approximation to a linear trend that has an upward or downward
slope (Harvey and Peters 1990) as follows:

Level∶ μt ¼ μt−1 þ βt−1 þ ηt; ηt ∼ i · i · d · Nð0;σ2
ηÞ ð2Þ

Slope∶ βt ¼ βt−1 þ ζt; ζt ∼ i · i · d · Nð0;σ2
ζÞ ð3Þ

In this model, the trend is featured by level and slope. Eq. (2)
represents the stochastic level of the trend (μt), and Eq. (3) repre-
sents the stochastic slope of the trend (βt). ηt and ζt are distributed
independently of each other and over time with mean zero and var-
iances σ2

η and σ2
ζ . The disturbance term ζt assigns to the slope a

random parameter (Jalles 2009). The stochastic nature of the level
at moment t derives from the presence of ηt.

The so-called seasonal effect at time t, represented by γt, is in-
cluded in the UCM [Eq. (1)]. The seasonal component γt is asso-
ciated with season s ¼ sðtÞ, for s ¼ 1; 2; : : : ; S, where S is the
seasonal length. This paper uses the time-varying dummy seasonal
pattern (Koopman and Ooms 2011) to formulate the seasonal
effects that are allowed to change over time. We use a stochastic
equation [Eq. (4)] to replace the summing-to-zero constraint

(
PjþS

j γj ¼ 0) in the fixed dummy seasonal pattern (Koopman and
Ooms 2011). That is

γtþ1 ¼ −γt − γt−1 − : : : − γt−Sþ2 þ ωt; ωt ∼ i · i · d · Nð0;σ2
ωÞ
ð4Þ

where ωt are identically and independently distributed variables, for
t ≥ S − 1. Note that the initial seasonal components γ1; γ2; : : : ;
γS−1 are treated as unknown coefficients and will be estimated
together with other coefficients in the model.

Model Calibration

Data set

Monthly traffic volumes of Class 1 vehicles (two-axle passenger
cars) on a key corridor in New Jersey, from January 2006
to October 2016, are provided by a transportation agency in
New Jersey. The data are used to develop and compare alternative
traffic volume prediction models. In this research, the monthly
traffic volume data in a whole year is predicted using the
UCM, based on the practical use of the model by the data pro-
vider. Therefore, 1-year worth testing data is used. The remaining
is the training data. The data from January 2006 to October 2015
is used as the training data, and the data from November 2015 to
October 2016 is used as the testing data set for blind prediction.
The empirical traffic volumes are shown in Fig. 1. The traffic
volume distribution appears to have a temporally cyclic (i.e., sea-
sonal) fluctuation. This empirical data pattern indicates that
UCM, a structural time series model, might be a promising mod-
eling technique.

Model Development and Diagnostics

For the model implementation, we use a linear Gaussian state space
model. The model can be found in Koopman and Ooms (2011) to
provide a unified representation of linear time series model consist-
ing of a transition equation and a measurement equation. Then,
Kalman filter is used to evaluate the Gaussian likelihood function
via the prediction error decomposition (Harvey 1990). The param-
eters in the UCM are obtained by the maximum likelihood estima-
tion. For the model diagnostics, we use the t-test to test the
significance of variances of all components and use the Chi-square
statistics test to determine the significances of all components. The
variances of the disturbance terms in the evolution of μt, βt, and γt
and the variance of the irregular component εt are estimated in
Table 2. These estimations and their corresponding t-values are

Table 1. Selected models for traffic volume prediction

Prediction models References

Artificial neural network Dia (2001), Ishak and Alecsandru (2004), Vlahogianni et al. (2005), Xie and Zhang (2006), Zheng et al.
(2006), Sun et al. (2012), Zhu et al. (2014), Kumar et al. (2015), and Goves et al. (2016)

Support vector machine Dibike et al. (2001), Luo et al. (2005), Xu and Yang (2005), Qing-Fang et al. (2009), Chen et al. (2012),
Guo et al. (2012), and Ahn et al. (2015)

Deep learning Lv et al. (2015)
Autoregressive integrated moving average Williams and Lester (2003), Min et al. (2010), Zhang et al. (2011), and Kumar and Vanajakshi (2015)
Nonparametric regression model
(kth nearest neighbor model)

Zhong and Ling (2015), Yuan and Wang (2012), Guo et al. (2012), Wu et al. (2014), Dell’Acqua et al. (2015),
Yu et al. (2016), and Xia et al. (2016)

Bayesian networks Sun et al. (2005), Pascale and Nicoli (2011), Zhu et al. (2016), and Ahn et al. (2015)
Hybrid methods Abdulhai et al. (2002), Hu et al. (2008), Dimitriou et al. (2008), McCrea and Moutari (2010),

Chan et al. (2012), Zhang et al. (2014), Zou et al. (2015), and Hu et al. (2016)
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used to infer whether the variances are significant (i.e., the corre-
sponding components are stochastic or deterministic in the UCM
model). Table 2 suggests that only the disturbance variance of the
irregular component is significant, indicating that the irregular
component εt is stochastic. The slope and season components ap-
pear to be deterministic (fixed) because their error variances are
highly insignificant according to the theory developed by Harvey
and Peters (1990).

Table 3 is another important output. The Chi-square statistics
test the null hypothesis that the given component is not statistically
significant. In other words, it tests whether a certain component
should be included in the final state of the Kalman filter for
UCM model calibration (Harvey 1990). If a component is deter-
ministic, this analysis is equivalent to checking whether the regres-
sion effect is significant.

In our case, the season component and the level component are
significant and should be retained in the model as deterministic
components. The slope component is not statistically significant.
Note that although the irregular term’s contribution appears not
statistically significant toward the end of the estimation span,
we cannot remove it from the model because it is a stochastic
component (Harvey 1990).

The goodness-of-fit statistics based on the raw residuals
(residual = observed–predicted) is reported after a model is fitted.
The adjusted R − square ¼ 0.90, which suggests the model fits the
empirical data reasonably well.

Fig. 2 presents the diagnostic plots based on residuals. The
residual histogram [Fig. 2(a)] and the Q-Q (quantile-quantile) plot
[Fig. 2(b)] indicate that the residuals approximately follow a nor-
mal distribution. The remaining plots check the whiteness of the
residuals. The ideal scenario for an autocorrelation function (ACF)
of residuals is that there are no significant correlations for any lag
[Lag 0 is always 1, Fig. 2(c)]. If there’s no correlation between lags,
the bars lie within the 95% confidence range. The ideal scenario is
the one in which the partial autocorrelation function (PACF) plot
[Fig. 2(d)] is the same as the ACF plot [Fig. 2(c)]. In Fig. 2, the bars
mostly lie within the 95% confidence range in the ACF and PACF
plots. It indicates that there is no significant autocorrelation in
the residuals. Therefore, the UCM model appears to well fit the
empirical data.

Results

A developed UCM has the following structure:

yt ¼ μt þ γt þ εt εt ∼ i · i · d · Nð0;σ2
ε ¼ 94130Þ ð5Þ

where yt represents the time series to be modeled (the responsive
variable, which is monthly passenger vehicle traffic volume in this
paper), μt is the trend component, γt is the seasonal component,
and random error is represented by εt. εt are approximately iden-
tically, independently, and normally distributed variables for all
times t with mean 0 and variance 94,130, using the training data
set. The trend component μt only consists of the level term because
of the insignificance of slope, and thus, μt is formulated as follows
without a particular slope trend βt:

μt ¼ μt−1 þ ηt; ηt ∼ i · i · d · Nð0; 36210Þ ð6Þ
where the level term ηt is composed of independent, identical, and
normal distribution variables for all times t with mean 0 and vari-
ance 36,210. The seasonal fluctuations (γt) can be formulated as
the following model:

γt ¼ −Xs−1

i¼0

γt−i þ ωt ωt ∼ i · i · d · Nð0; 6.943 × 10−3Þ ð7Þ

ωt are identically and independently distributed normal
distributions.

Fig. 3 shows differences between the predicted flow volumes
and the actual observed volumes. There were 118 of 130 observa-
tions used to train the UCM model. Based on the training data,
twelve months’ traffic volumes are forecasted, marked as dots in

Fig. 1. Monthly passenger car traffic volume from January 2006 to October 2016 on a key transportation corridor in New Jersey.

Table 2. Statistical test of error variances

Components Estimate
Approximate
standard error t-value

Approximate
p-value

Irregular 0.09413 0.02288 4.11 <0.0001
Level 0.03621 0.01982 1.83 0.0677
Slope 0.00005 0.00009 0.58 0.5588
Season 6.943 × 10−9 4.713 × 10−6 0.00 0.9988

Table 3. Significance analysis of UCM component

Components Chi-square values P-values

Irregular 0.06 0.8126
Level 6871.90 <0.0001
Slope 1.48 0.2236
Season 930.81 <0.0001
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the figure. Although error between predicted values and observed
values exists in each month, Table 4 shows that all the testing values
are within the 95% confidence interval. In our prediction results,
except January 2016, whose relative error is 5.597%, relative
errors of all the other months are less than 2.80%. The average
relative error is only 1.20%. The data provider indicates that they
will be satisfied with the prediction accuracy of around 5% relative
error when they are using monthly traffic volume data for capital

planning and management purposes. Moreover, compared with the
prediction accuracy in the literature [the average relative errors are
1.77% and 3.43% in Zhong and Sharma (2006) and Hou and Li
(2016), respectively], the prediction accuracy of our model appears
to be practically acceptable.

Model Comparison

We select four models, simple linear regression, ARIMA, ANN,
and SVM, which are commonly used for time series prediction
to compare with UCM. The simple linear regression for forecasting
the monthly traffic volume based on historical traffic volumes is
used to understand whether a simple growth factor model may
work. The ARIMA, ANN, and SVM models are derived from
the literature. We use the ARIMA model proposed in Williams
and Lester (2003). ANN is derived from Lisowski (2013) and
Zhang and Qi (2005), and SVM is from Thissen et al. (2003)
and Sapankevych and Sankar (2009). SVM and ANN demonstrate
some advantages over other perdition models in some cases. More
specifically, ANN does not need specific assumptions in the devel-
opment of model. It can also be used in both linear and nonlinear
models. Therefore, as a data-driven approach, ANN can solve
some complex forecasting problems (Zhang and Qi 2005). For
SVM, Sapankevych and Sankar (2009) pointed out that the major

Fig. 2. Residual diagnosis: (a) residual histogram; (b) Q-Q plot of sample data versus standard normal; (c) sample autocorrelation function; and
(d) sample partial autocorrelation function.

Fig. 3. Predicted flow volumes and the actual observed traffic volumes.
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advantage of SVM is the great improvement in computation time,
compared with other prediction methods. In this paper, we compare
these methods with UCM to examine whether the UCM is more
appropriate given certain data patterns (e.g., seasonal, cyclic) as
seen in our data set. In the development of models of ANN and
SVM using training data, we select the models with best perfor-
mance to be compared with the UCM. We use the linear regression
analysis tool in Excel to implement the linear regression, and we
use the packages of applied statistical time series analysis (ASTSA)
(ARIMA), E1071 (SVM), and fit neural networks (NNET) (ANN)
in R programming to implement the ARIMA, SVM, and ANN time
series models, respectively.

Selected Compared Models

Simple Linear Regression
We use a simple method (linear regression) to predict the monthly
traffic volume based on historical traffic volumes in the same
month to understand whether a simple growth factor model may
work. More specifically, we build 12 linear regression models
to fit the traffic volumes in the 12 corresponding months from
2006 to 2016.

yi ¼ aixþ bi þ εi ð8Þ
where yi is the observed value of ith month’s traffic volume, x is the
independent value (i.e., year), ai is the coefficient of the indepen-
dent value for month i, bi is the intercept for month i, and εi is the
random error at month i. Similar to the UCM, the data from January
2006 to October 2015 is used as the training data, and the data from
November 2015 to October 2016 is used as the testing data for
blind prediction. For each month, we use the training data to fit
a linear function of different years. Then, we use the fitted linear
function to blindly predict the testing data. The predicted traffic
volumes are compared with the observed testing data.

ARIMA
ARIMA is a regression analysis that generates short-term forecasts
by examining the differences between time series values. It is a
process that creates a transformed series that consists of differences
between lagged series observations (Williams and Lester 2003).
In the basic ARIMA model, the future value of a variable is a
linear combination of past values and past errors, which can be
formulated as

Yt ¼ ∅0 þ ∅1Yt−1 þ ∅2Yt−2þ · · · þ∅pYt−p
þ εt − θ1εt−1 − θ2εt−2 − : : : − θqεt−q ð9Þ

where Yt is the observed value, εt is the random error at time t, ∅i
and θj are coefficients of the observed values and random errors,
respectively, and integers p and q are used to represent different
times (Ariyo et al. 2014). Lags of the differenced series are autor-
egressive (AR) and lags within forecasted data are the moving aver-
age (MA). ARIMA tries to explain the movements in the form of a
function combining autoregressive and moving average terms
(Hyndman and Athanasopoulos 2014). ARIMA is stationary.
For example, ∅1 is fixed for any Lag 1 observations.

SVM
SVM is one of the most popular machine learning methods that can
be used for both classification and regression analysis. SVM is
based on the structural risk minimization criterion, and its goal
is to find the optimal separating hyperplane where the separating
margin should be maximized (Yao et al. 2013). In the field of data
mining, the SVM represents one type of supervised learning mod-
els with associated learning algorithms that analyze data used for
classification or regression. In this paper, we use SVM linear re-
gression model to predict the monthly traffic volume data. SVM
linear regression is to fit a linear function y ¼ ωxþ b by obtaining
the parameters ω and b, where x is the input data and y is the re-
sponse. The parameters ω and b are obtained by solving an opti-
mization model

min
1

2
kωk2 þ C

X

i

ðξi þ ξ�i Þ

s:t:

yi − ω · xi − b ≤ εþ ξi

ω · xi þ b − yi ≤ εþ ξ�i
ξi; ξ�i ≥ 0 ð10Þ

where ξi and ξ�i are two groups of additional decision variables, and
C is a weight factor. For the detailed explanation of the model,

Table 4. Summary of forecasted results for the testing data set (in millions)

Months
Observed
value

Forecasted
value

Gap between forecasted
and actual values (%)

95% Confidence limits of prediction

Lower limit Upper limit

November 2015 18.112 18.133 0.1159 17.261 19.006
December 2015 18.470 18.180 1.5701 17.210 19.151
January 2016 15.901 16.791 5.5971 15.729 17.853
February 2016 16.179 15.727 2.7937 14.575 16.879
March 2016 18.460 18.406 0.2925 17.167 19.645
April 2016 18.481 18.741 1.4041 18.277 18.990
May 2016 19.435 19.647 1.0927 19.191 19.905
June 2016 19.718 19.599 0.6064 19.217 19.931
July 2016 19.971 20.014 0.2145 19.609 20.323
August 2016 20.329 20.344 0.0770 19.933 20.646
September 2016 18.914 18.907 0.0362 18.473 19.187
October 2016 19.472 19.578 0.5459 19.079 19.794

Table 5. Eight SVM models

Models Model description

1 Regression with lag-1 variable
2 Regression with lag-4 variable
3 Regression with lag-12 variable
4 Regression with season variable
5 Regression with lag-1 and season variable
6 Regression with lag-12 and season variable
7 Regression with lag-1 and lag-12 variable
8 Regression with lag-1, lag-12, and season variable

© ASCE 04019052-5 J. Transp. Eng., Part A: Syst.
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please refer to Thissen et al. (2003). In this paper, eight SVM mod-
els using different groups of variables for regression are developed.
The model with the best performance is selected to compare with
the UCM. The eight models are listed in Table 5.

ANN
ANN has useful pattern classification and pattern recognition capa-
bilities for forecasting (Zhang et al. 1998). An ANN consists of a
large collection of artificial neurons, each having multiple weighted
inputs and an output. The output of the entire network, as a re-
sponse to an input vector, is generated by applying certain arith-
metic operations, determined by the neural networks, to that
vector. Using a finite number of past observations, we can use
the neural network to predict a reasonable future value. In this re-
spect, the network can be treated as a function f that involves k
inputs and one output

f∶Rk → R ð11Þ
ANN can also be used to find a proper network for forecasting in

such a way that if an observed time series Y ¼ fy1; y2; y3; : : : ; yi ∈
Rg consists of a certain number of observations, a group consisting
of an input vector and a desired output value can be defined as
(Lisowski 2013)

f∶½yn−k; : : : ; yn−3; yn−2; yn−1� → yn ð12Þ

The weight values inside the network are adjusted by an algo-
rithm that minimizes the root-mean square error between the ex-
pected output and current output. For the detailed ANN to
model the time series, please refer to Lisowski (2013) and Zhang
and Qi (2005).

Model Fitting and Prediction Results

Linear Regression
Table 6 shows the outputs of the linear regression models for
12 months. We estimate monthly traffic volume based on historical
traffic volumes in the same month. We find that, in the models
for months April, May, June, July, August, September, October,
and December, there is no evidence to demonstrate that the
traffic volumes in these months have a statistically significant
increasing or decreasing trend from the year of 2006 (p values
of the t-test > 0.05, the bold numbers) in Table 6. Moreover, the
R-squared values in most linear regression models are very small,
indicating that the simple linear regression model does not fit the

empirical data well. Thus, the simple growth factor model may not
be suitable for the data set in this study. By comparison, more
sophisticated statistical models such as ARIMA, SVM, ANN,
and UCM perform better.

ARIMA
The method for looking for the best ARIMA is to maximize the
R-squared values. First, we attempt to use the first-order model
as a preliminary autoregressive model. However, the first-order
model yields poor fit to empirical data since the R-squared values
are small. This indicates that the assumption that the current
month’s traffic volume only depends on the traffic volume in
the previous month is not satisfied in our data set. Therefore,
we develop higher-order ARIMA models which yield a better
fit. After several rounds of trial, the final ARIMA model is formu-
lated below using the original data from January 2006 through
October 2015. This model is then used to create predictions for
the following months from November 2015 to October 2016

ARIMAModel∶yt
¼ yt−1þyt−12−yt−13þðet−0.52et−1−0.80et−12þ0.42et−13Þ

ð13Þ
where yt−1, yt−12, yt−13 are actual values, and et−1, et−12, et−13 are
the random error values at time t for lag-1, lag-12, and lag-13,
respectively.

SVM
Various SVM models are developed. The mean squared errors
(MSE) of these models are shown in Table 7. Among the models,
the model with lag-1, lag-12, and a season variable (bold characters
in Table 7) has the best statistical performance because of its least

Table 7. MSE for various SVM models

Model description
Mean squared error

(MSE)

Regression with lag-1 variable 1.05
Regression with lag-4 variable 1.97
Regression with lag-12 variable 0.48
Regression with season variable 0.95
Regression with lag-1 and season variable 0.44
Regression with lag-12 and season variable 0.42
Regression with lag-1 and lag-12 variable 0.37
Regression with lag-1, lag-12, and season variable 0.27

Note: Bold characters indicate that the model with lag-1, lag-2, and a
season variable has the best statistical performance.

Table 6. Outputs of linear regression models

Months

Coefficients P-value for parameter estimates R-squared
valuesIntercept Independent variable (year) Intercept Independent variable (year)

January 625014171 −303130 3.64 × 10−11 0.000739 0.78
February 472255792 −227704 1.50 × 10−9 0.025753 0.48
March 411615023 −196234 1.51 × 10−11 0.006710 0.62
April 217703387 −99643 1.19 × 10−10 0.187508 0.21
May 181488120 −81203 1.91 × 10−10 0.319408 0.12
June 190777567 −85872 1.76 × 10−10 0.287607 0.14
July 112239491 −46625 3.62 × 10−10 0.590748 0.04
August 162238428 −71353 2.53 × 10−10 0.406023 0.09
September 156413933 −69194 2.91 × 10−10 0.391188 0.09
October 211676783 −96369 4.12 × 10−9 0.411602 0.09
November 466425910 −223654 6.43 × 10−10 0.015390 0.59
December 370581860 −175972 3.39 × 10−9 0.085502 0.36

Note: Bold numbers indicate that p-values of the t-test > 0.05.
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mean squared error. Thus, this model is chosen to predict the traffic
volume.

ANN
Four ANN models are developed. They are regressions with a lag-1
variable; with lag-1 and lag-2 variables; with lag-1, lag-2, and lag-3
variables; and with lag-1, lag-2, lag-3, and lag-4 variables, respec-
tively. After comparing these four models in terms of the residual
sum of squares, we find that regression with the lag-1, lag-2, and
lag-3 model has the best performance.

Table 8 exhibits the prediction results of the testing data ob-
tained by linear regression, ARIMA, SVM, ANN, and UCM mod-
els. We compare the prediction accuracies of the five models based
on the absolute deviation of the predicted values from observed
values. The bold numbers in Table 8 are the closest predicted values
to the observed values. Except for the months of January, April, and
May in 2016, the UCM obtains the most accurate prediction results
compared with the other four alternative models. We use the
Mann-Whitney U test to test if the model prediction differences are
statistically significant. The absolute deviations of the prediction
values from observed values are used to conduct the Mann-
Whitney U test (McKnight and Najab 2010). The p-values are
7.396 × 10−7, 0.0885, 1.558 × 10−4, and 7.658 × 10−5 for the tests
of simple linear regression versus UCM, ARIMA versus UCM,
SVM versus UCM, and ANN versus UCM, respectively. This in-
dicates that the prediction difference between ARIMA and UCM is
statistically significant given the Type I error over 8.85%. UCM
outperforms linear regression, SVM, and ANN significantly. This
paper focuses on modeling monthly traffic volume. In order to ex-
plore the potential use of UCM for shorter-term traffic prediction,
hourly traffic data on another selected route is analyzed based on
UCM, ARIMA, SVM, and ANN. The detailed comparison results
are in the Appendix.

Model Performance Evaluation and Comparison

A number of criteria are used to measure the statistical performance
of UCM versus the other four models, including mean squared
deviation (MSD), mean absolute deviation (MAD), and mean ab-
solute percentage error (MAPE) (Muttar 2008). Smaller values of
MSD, MAD, and MAPE indicate more accurate predictions of traf-
fic volumes. MSD, MAD, and MAPE are defined below in the
following.

Mean Squared Deviation
MSD is a commonly-used measurement of the accuracy of fitted
time series values. The equation is

P
n
t¼1 jyt − ŷtj2

n
ð14Þ

where yt is the actual observation at time t, ŷt is the forecast value
of yt based on a particular model, and n is the total number of
observations.

Mean Absolute Deviation
MAD expresses the accuracy in the same units, which helps
measure the amount of error. The equation is

P
n
t¼1 jyt − ŷtj

n
ð15Þ

where yt is the actual observation at time t, ŷt is the forecast value
of yt based on a particular model, and n is the total number of
observations.

Mean Absolute Percentage Error
MAPE measures the accuracy as a percentage of the error. The
equation is

P
n
t¼1 jðyt − ŷtÞ=ytj

n
× 100ðyt ≠ 0Þ ð16Þ

where yt is the actual observation at time t, ŷt is the forecasted value
of yt based on a particular model, and n is the total number of
observations.

The three indexes, MSD, MAD, and MAPE are used to measure
the performance of the five models in terms of training data and
testing data (not used for model development). The comparison re-
sults are presented in Table 9. The bold numbers are the smallest
values of three criteria. For the testing data, UCM has the smallest
MSD, MAD, and MAPE values, indicating that the UCM better fits
the empirical data than linear regression, ARIMA, ANN, and SVM.

UCM versus ARIMA

From the above comparison, UCM and ARIMA outperform ANN
and SVM based on the traffic data in this study. ANN requires a
large amount of data in practice. Furthermore, ANN could have
difficulty effectively capturing seasonal or trend variations in un-
treated raw data (Zhang and Qi 2005). For SVM, the differences in
MSD, MAD, and MAPE between testing data and training data are
substantial, indicating that SVM might be overfitting the empirical
data used. In this subsection, we focus on discussing the relation-
ship and comparison between UCM and ARIMA.

Table 8. Prediction results obtained by simple linear regression, ARIMA, SVM, ANN, and UCM (in millions)

Months Observed values

Predicted values

Simple linear regression ARIMA SVM ANN UCM

November 2015 18.112 15.762 18.003 17.331 17.553 18.133
December 2015 18.470 15.999 18.074 17.182 17.667 18.180
January 2016 15.901 13.904 16.478 16.650 17.481 16.791
February 2016 16.179 13.205 15.458 16.738 16.904 15.727
March 2016 18.460 16.007 18.137 16.650 16.526 18.406
April 2016 18.481 16.823 18.582 17.623 16.826 18.741
May 2016 19.435 17.782 19.482 18.519 17.414 19.647
June 2016 19.718 17.660 19.369 18.871 17.977 19.599
July 2016 19.971 18.244 19.792 19.053 17.148 20.014
August 2016 20.329 18.391 20.058 19.111 18.164 20.344
September 2016 18.914 16.920 18.563 18.125 17.594 18.907
October 2016 19.472 17.396 19.185 18.271 17.433 19.578

Note: Bold numbers are the closest predicted values to the observed values.

© ASCE 04019052-7 J. Transp. Eng., Part A: Syst.

 J. Transp. Eng., Part A: Systems, 2019, 145(12): 04019052 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 O

f 
W

is
co

ns
in

-M
ilw

au
ke

e 
on

 1
1/

26
/1

9.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



First, ARIMA can be viewed as a reduced form of the gener-
alized structural time series UCM model. In ARIMA, multiple dis-
turbances can be treated as a single disturbance, whereas in the
UCM, these disturbances are treated separately. One main advan-
tage of an ARIMA approach is “applying convenient differences to
the original series before performing the analysis, and thus elimi-
nating the trend or seasonal components” (Jalles 2009). In princi-
ple, the ARIMA model can be deemed as a black-box approach in
which the adopted model depends entirely on the data, without a
prior analysis of the structure underlying the system. The UCM and
other types of structural models are “more transparent because they
allow to check if each predicted component corresponds to the
expectation from the data” (Jalles 2009).

Second, UCM models are more flexible. The recursive nature of
the model and the computation techniques used for its analysis
allow the direct incorporation of known breaks in the system
structure over time. On the contrary, ARIMA models are based on
the assumption that different series are “stationary” (Harvey 1990;
Jalles 2009).

Third, it is challenging to use an ARIMA approach to handle
missing observations. By contrast, UCM is more robust against
missing values (Jalles 2009). Jalles (2009) stated that the incorpo-
ration of explanatory variables, calendar effects, and structural
breaks is not always immediate in ARIMA, in comparison with
UCM. Although we do not experience missing data problems in
this research, handling missing data might be another advantage
of UCM in other transportation applications.

Concluding Remarks

This paper develops an unobserved component model to predict
monthly traffic volume (for two-axle passenger cars) on a key cor-
ridor in New Jersey. The proposed UCM model outperforms linear
regression, ARIMA, SVM, and ANN in terms of both the training
data and testing data. UCM can be viewed as a more general form
of ARIMA. UCM decomposes time series into trends, seasonal var-
iations, and irregular components, accounts for component-specific
disturbances, and is not restrained by stationary assumptions via
direct incorporation of known breaks in the system structure.
The preliminary results show that UCM could be a promising al-
ternative statistical approach to the prediction of monthly traffic
volume. Future study is needed to better understand the adaptation
of UCM to a broader set of transportation engineering and prediction
problems. Moreover, additional contributing factors (e.g., travel
behavior and economic growth) across multiple routes and time peri-
ods will be used to more explicitly study the cause and effect when
making traffic predictions. Finally, this paper focuses on monthly
traffic volume prediction. The preliminary analysis indicates the

promising application of this approach to shorter-term traffic mod-
eling as well. In the future, more research will be conducted to
explore the use of UCM for predicting traffic volume in an hourly
or even shorter time interval.

Appendix. Hourly Traffic Volume Prediction

One-month (January 2016) hourly traffic volume on one route in
the State of Wisconsin is analyzed to compare four prediction mod-
els, namely UCM, ARIMA, SVM, and ANN. In this data set with a
total of 744 h, 672 h (28 days) are used as training data and the
remaining 72 h (3 days) are used as the testing data. Four prediction
models are developed with hourly traffic volumes. The goodness of
fit of the model is measured byMSD, MAD, andMAPE (Table 10).
According to the comparison results using this data set, UCM
appears to outperform the selected alternative methods.
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