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A B S T R A C T

The frequency and severity of traffic crashes have commonly been used as indicators of crash risk on transport
networks. Comprehensive modeling of crash risk should account for both frequency and injury sever-
ity—capturing both the extent and intensity of transport risk for designing effective safety improvement pro-
grams. Previous research has revealed that crashes are correlated across severity categories because of the
combined influence of risk factors, observed or unobserved. Moreover, crashes are the outcomes of a multitude
of factors related to roadway design, traffic operations, pavement conditions, driver behavior, human factors,
and environmental characteristics, or in more general terms: factors reflect both engineering and non-en-
gineering risk sources. Perhaps not surprisingly, engineering risk sources have dominated the list of variables in
the mainstream modeling of crashes whereas non-engineering sources, in particular, behavioral factors, are
crucially omitted. It is plausible to assume that crash contributing factors from the same risk source affect
crashes in a similar manner, but their influences vary across different risk sources. Conventional crash frequency
modeling hypothesizes that the total crash count at any roadway site is well-approximated by a single risk source
to which several explanatory variables contribute collaboratively. The conventional formulation is not capable
of accounting for variations between risk sources; therefore, is unable to discriminate distinct impacts between
engineering variables and non-engineering variables. To address this shortcoming, this study contributes to the
development of multivariate multiple risk source regression, a robust modeling technique to model crash fre-
quency and severity simultaneously.

The multivariate multiple risk source regression method applied in this study can effectively capture the
correlation between severity levels of crash counts while identifyinging the varying effects of crash contributing
factors originated from distinct sources. Using crashes on Wisconsin rural two-lane highways, two risk sources –
engineering and behavioral – were employed to develop proposed models. The modeling results were compared
with a single equation negative binomial (NB) model, and a univariate multiple risk source model. The results
show that the multivariate multiple risk source model significantly outperforms the other models in terms of
statistical fit across several measures. The study demonstrates a unique approach to explicitly incorporating
behavioral factors into crash prediction models while taking crash severity into consideration. More importantly,
the parameter estimates provide more insight into the distinct sources of crash risk, which can be used to further
inform safety practitioners and guide roadway improvement programs.

1. Introduction

The frequency and severity of traffic crashes have been largely used
in transportation safety as two indicators of crash risk (Washington
et al., 2018). These two indicators form the overall risk at transport

network locations and thus mitigating one without paying attention to
the other one is incomplete and can be wrong. While highway agencies
and departments of transportation aim to reduce the frequency and
severity of traffic crashes, highway safety improvement programs are
primarily focused on preventing severe and fatal crashes, as the cost per
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person of a fatal crash is almost 250 times higher than a non-injury
crash (Harmon et al., 2018) –not to mention the number of persons
involved in the crash and the total number of crashes across the
transport network. The importance of crash severity levels is even more
acute considering the collective social cost of crashes in the society
which is substantially higher than the individual social costs (Tay,
2002). As a result, considering crash severity in conjunction with crash
frequency is paramount in crash modeling and identification of high
crash risk sites.

Crash prediction models have been widely used to study crash fre-
quency and investigate crash contributing factors at transport network
locations. These models have been traditionally applied to the crash
frequencies aggregated over different crash severity levels. To in-
corporate crash severity into crash prediction models, numerous studies
have modeled crash frequency of a particular severity level at a specific
intersection or segment (Abdel-Aty and Radwan, 2000; Hauer et al.,
1988; Lord and Persaud, 2000; Poch and Mannering, 1996; Shankar
et al., 1995; Lyon et al., 2003; Qin et al., 2004; Abdel-Aty et al., 2005;
Tarko et al., 2008; Geedipally et al., 2010; Geedipally and Lord, 2010).
However, the independent (i.e., univariate) modeling of crash fre-
quency with various injury severities may not be accurate because crash
frequencies may be correlated across different crash severities due to
the presence of shared effects from engineering, spatial, and un-
observed factors (Wang et al., 2017). Neglecting such correlations may
lead to biased parameter estimates and inaccurate inferences about
crash contributing factors (Ma et al., 2008; Mannering and Bhat, 2014;
Serhiyenko et al., 2016). Empirical evidence has shown that multi-
variate crash frequency models (e.g., multivariate Poisson lognormal
model) can provide better predictive accuracy than its univariate
counterparts (Ma and Kockelman, 2006; Wang et al., 2017). Hence,
multivariate models have gained popularity, as they can model crash
counts of different severities simultaneously and explore the effects of
covariates in a more accurate fashion.

Research has established that traffic crashes are the results of chains
of causal events that arise from a multitude of contributing factors as-
sociated with roadway design, traffic operations, pavement conditions,
driver behavior, human factors, and environmental factors. These fac-
tors do not necessarily contribute equally to crashes at a site, though;
therefore, it may be more plausible to consider traffic crashes at every
site as the results of multiple risk sources, with each risk source playing
either a primary or supporting role. However, conventional crash fre-
quency models treat the crash count at a roadway site as the outcomes
of a single risk source by using a single predictive equation estimated
with Poisson or Negative Binomial (NB) distribution. While these single
equation models are statistically sound and practically useful, their
results may yield biased parameter estimates due to issues related with
data overdispersion1 (Shaon and Qin, 2016; Shaon et al., 2018b; Shirazi
et al., 2016; Zou et al., 2015). Furthermore, single-equation models are
incapable of assuming that crashes may have various risk sources,
which could result in data heterogeneity. Not until recently have re-
searchers developed the multiple risk source regression model to dis-
tinguish the distinct sources of crash contributing factors (Afghari et al.,
2016; Washington and Haque, 2013). Multiple risk source regression
modeling is a reasonable alternative to single equation predictive
models for predicting risk-level crashes, considering that the contribu-
tion of explanatory variables originated from distinct risk sources to the
outcome (i.e., predicted crash count at a site) may change. The feasi-
bility of using a generalized structure for modeling crashes by multiple

sources of risk has been investigated, and the models have been de-
veloped for univariate crash prediction (e.g., total crashes) (Afghari
et al., 2016; Washington and Haque, 2013; Afghari et al., 2018b).
However, these models ignored the possible correlation across crash
counts of different crash severity levels, and thus the parameter esti-
mates are prone to bias. Therefore, there is a need to incorporate crash
severity into multiple risk source modeling of crashes.

Significant amount of research has been devoted to identifying and
quantifying the effect of contributing factors on crash occurrence. Crash
risk originated from driver behavior has been recognized as major crash
contributors in highway safety literature (NHTSA, 2008; Rumar, 1985;
Sabey and Staughton, 1975; Shaon et al., 2018a). Albeit of universal
acceptance, incorporation of contributing factors originated from be-
havioral risk source into crash frequency modeling is limited due to
data unavailability. There is no established method available to collect
driver behavior related variables at crash sites. Alcohol-impaired, drug-
impaired driving, distraction and speeding behaviors are frequently
identified as contributing factors to crash occurrence (Rumar, 1985;
Sabey and Staughton, 1975). The absence of these important pieces of
behavioral information in crash data can cause unobserved hetero-
geneity and modeling result can yield biased parameter estimates
(Mannering et al., 2016).

This study extends the idea of using a multiple risk source structure
to develop a multivariate multiple risk source methodological approach
to estimate both crash counts and severity, simultaneously. Similar to
multivariate crash prediction models, it is hypothesized that the mul-
tivariate multiple risk source modeling approach will provide improved
accuracy than a univariate model because it considers the correlation
between crash counts of different severities and accommodates for
unobserved heterogeneity which could result from the omission of
multiple risk sources in modeling equations. In regard of multiple risk
sources, the two risk sources - engineering and behavioral risk source
related crash contributing factors were explored in the proposed model.
Considering data limitation related to driver behaviors, a few beha-
vioral variables that are uncorrelated with engineering factors and so-
lely originated from a different source (e.g., physical and psychological
characteristics) were incorporated as behavioral variables in this study.
Furthermore, the risk-level predicted crashes from multiple risk source
modeling could be useful in identifying sites for safety improvements
and developing targeted and effective safety countermeasures.

2. Literature review

A large number of studies in the road safety literature estimated
crash frequency by crash severity to evaluate the safety implications of
contributing factors (Abdel-Aty and Radwan, 2000; Hauer et al., 1988;
Lord and Persaud, 2000; Poch and Mannering, 1996; Shankar et al.,
1995; Lyon et al., 2003; Qin et al., 2004; Abdel-Aty et al., 2005; Tarko
et al., 2008; Geedipally et al., 2010; Geedipally and Lord, 2010; Qin
et al., 2016). In this context, several previous studies noted that crash
counts across different injury severity are likely to be correlated (Ma
et al., 2008; Wang et al., 2017). Therefore, incorporating the correla-
tion between crash counts of different injury severities is an important
practice when estimating crash counts and severities, simultaneously.
Such correlation can be effectively handled by multivariate regression
models (Chiou and Fu, 2015; Pei et al., 2011; Wang et al., 2011; Ye
et al., 2009; Zeng et al., 2016). Please refer to Mannering and Bhat
(2014) and Mannering et al. (2016) for comprehensive list of literature
on crash data modeling. Both multivariate Poisson and multivariate
Poisson lognormal models are popular choices, but the latter is more
effective for overdispersed data (Chib and Winkelmann, 2001; Ma and
Kockelman, 2006; Ma et al., 2008; Park and Lord, 2007; Ye et al., 2008,
2009). The covariance structure used in the multivariate Poisson log-
normal model allows for estimating model parameters with smaller
standard errors while maintaining the core strength of the Poisson
distribution. Studies have shown that this model of crashes outperforms

1 Crash data are often characterized by the existence of a large sample var-
iance compared with the sample mean. In a statistical term, the sample data is
over-dispersed when the variance is greater than the mean. Data over-disper-
sion is often caused by unobserved data heterogeneity due to unobserved, un-
available, or unmeasurable variables that are important to explain model re-
sponses.
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the univariate models in terms of statistical fit (Chib and Winkelmann,
2001; Ma et al., 2008; Park and Lord, 2007).

Substantial effort has been devoted to identify primary risk factors
contributing to crashes at a site and quantify their effects on crash
occurrences (Bahar et al., 2004; Garber and Ehrhart, 2000; Lee and
Mannering, 2002; Miaou et al., 1992; Milton and Mannering, 1998;
Persaud, 2001; Shaon, 2015; Tarko and Kanodia, 2004). Roadway de-
sign factors and traffic operational characteristics dominate this list of
variables in the crash data modeling related literature (Abdel-Aty and
Radwan, 2000; Anastasopoulos and Mannering, 2009; Chin and
Quddus, 2003; El-Basyouny and Sayed, 2009; Fitzpatrick et al., 2010;
Geedipally et al., 2012; Islam et al., 2014a, 2014b; Mitra and
Washington, 2012; Montella and Imbriani, 2015; Oh et al., 2004; Qin
et al., 2004, 2016; Quddus et al., 2001; Shankar et al., 1995; Shaon and
Qin, 2016; Shaon et al., 2018b). The findings show that roadway geo-
metric features such as lane width, shoulder width, and horizontal and
vertical alignments are statistically significant in their correlation with
crash occurrence. In addition, traffic operational variables such as
Average Annual Daily Traffic (AADT), truck traffic and posted speed
limit have been shown to have a significant influence on safety. Since
these variables represent the engineering principles and practices in
highway design and capacity analysis, they are often referred to as
engineering variables. Understanding the safety performance of en-
gineering variables is instrumental in identifying effective engineering
solutions. Most proven safety countermeasures involve the modification
and improvement of roadway and roadside design features as well as
controlling traffic features on specific roadway sites (FHWA, 2017). The
prevalence of studying these variables is also due to the availability and
quality of data, as transportation agencies are required to collect and
maintain them for highway performance monitoring, planning and
program development, design, and operations, as well as maintenance
activities.

Driver behavior variables, however, are not readily available even
though they are considered universally as a major contributor to cra-
shes (Afghari et al., 2018b; NHTSA, 2008; Rumar, 1985; Sabey and
Staughton, 1975; Washington and Haque, 2013, Shaon et al., 2018a,
2018b). Standard procedures for collecting driver behavior data do not
exist, as highway agencies are not obligated to collect such information
for safety management systems. The behavior data collected from crash
data represent a very small portion of driver activities in traffic events.
The most relevant source for obtaining this information is perhaps the
crash report where police officers may record information regarding
driver’s condition and his or her opinion of the possible contributing
factors. This type of information, albeit extremely valuable, is often
incomplete, underreported, and inconsistent. Reports show that risky
driving behaviors such as distracted driving, impaired driving, speeding
are often identified as major contributors to crash occurrences (Box,
2009; NHTSA, 2010; Redelmeier and Tibshirani, 1997). Such in-
formation, however, is usually available only for severe crashes in
which thorough investigations are performed. One of the most ex-
haustive studies conducted so far is the National Motor Vehicle Crash
Causation Survey administered by National Highway Traffic Safety
Administration for which a group of experts reviewed a nationally re-
presentative sample of 5471 crashes during a 2.5-year period. Com-
monly used roadway or environmental conditions were found as the
primary reason for only 135 crashes from this study – a mere 2.5 per-
cent, which shows the necessity of incorporating driver behaviors into
crash prediction models.

Although site-specific driver behavior variables may not be readily
available, behavioral variables are sometimes collected at a larger
geographic scale (e.g., county) to analyze the physical and psycholo-
gical status of a community. Driver behavior is determined by drivers’
commitment to the values and beliefs in safety, which is influenced by
attitudes, social norms, and perceived risk. Social norms play an im-
portant role in driving behavior and risk perception (Carter et al.,
2014). For example, some drivers may follow the behaviors of others in

their community, regardless of roadway design or site characteristics
(Schneider et al., 2018). Societal expectations of acceptable transpor-
tation risk can also influence risk-taking behavior (Moeckli and Lee,
2007). Proxy variables can be used to substitute driver risk factors in
crash count modeling for measuring the effect of behavioral risk on
crash occurrence, including total number of speeding offenses (Afghari
et al., 2018a, b), operating while intoxicated citation count (Smith,
2000; Nagle, 2012), drug arrest count (Asbridge et al., 2012; Compton
et al., 2009; Walsh et al., 2008), violent crime rate (Ando et al., 2018;
Carter and Piza, 2017; Weiss, 2013), and liquor license rate (Lascala
et al., 2000). For example, alcohol-impaired driving related fatalities
are almost one-third of all fatalities that occur in the USA. Owusu-
Ababio and Feng (2006) found liquor license related and liquor arrest
related variables are significant in predicting alcohol-related crashes in
Wisconsin. Drug use also affects the driver decision making capabilities.
According to a meta-analysis of nine roadway safety studies conducted
by Asbridge et al. (2012), the authors noted driving under the influence
of cannabis was associated with a significantly increased risk of motor
vehicle collisions compared with unimpaired driving with an odds ratio
of 1.92. Authors also found that collision risk estimates are higher for
fatal crashes for drugged driving. Although community safety and
crashes are usually discussed separately, crime and crashes can interact
with each other due to common factors. Ando et al. (2018) noted a
positive relation between urban violence and crash count in Toyota
city.

Understanding the effects of crash data generating mechanisms
provides useful information about the sources of variance in crash data.
Peng et al. (2014) used a generalized waring model to differentiate
between different distinct sources of crash heterogeneity using different
variance terms. The authors separated the observed variability into
random errors; the proneness, which refers to the internal differences
between observations, and the liability, which refers to the variance
caused by unobserved exogenous variables. This new modeling struc-
ture has a better performance compared to the NB model and showed
that a crash may originate from different sources through different
processes, which contributes to additional variances. Explicitly in-
corporating the heterogeneous sources into crash modeling can be
challenging, but one logical approach is to group contributing factors
by risk source (e.g., environmental factors, roadway geometric design
features, driver behavior) and assume that variables within the same
risk source affect crash occurrence in a similar manner, but that sources
contribute to crashes to different extents. This assumption resonates
with what Lord, Washington, and Ivan have noted in their seminal work
that concludes that over-dispersion arises from the actual nature of the
crash process (Lord et al., 2005). In addition, crash risk generated from
multiple risk source may have endogenous relation. For example,
sometimes driver behaviors may be endogenous with roadway design
elements. Several studies in the literature have discussed that the lo-
cation-specific engineering factors such as roadway geometry promotes
driver behavior (Afghari et al., 2018a; Chapman and Noyce, 2014).
Afghari et al. (2018a) noted that less curved road segments or location
specific rural environment result in more severe speeding among dri-
vers. The NB distribution is therefore limited in that it assumes that
only one underlying process affects the likelihood of crash frequency
(Shankar et al., 1997).

Recently, researchers introduced a multiple risk generating process
regression model in which crashes at a given site are assumed to have
originated from distinct sources of risk, and their relationships are re-
presented by multiple equations (Afghari et al., 2016; Afghari et al.,
2018b; Washington and Haque, 2013). The authors argued that the
single risk source assumption in traditional crash prediction models is
statistically sound but cannot sufficiently address unobserved hetero-
geneity. The application of single risk source traditional models in
blackspot identification centers on the assumption that operational
causal factors such as roadway geometry or traffic factors operate in a
single chain to form the total crash count. The result is that other risk
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sources such as driver behavioral factors, which are the cause of more
than 50% of crashes, are neglected (NHTSA, 2008; Washington and
Haque, 2013, Shaon et al., 2018a, b). A single risk source may attribute
behavioral factors to operational factors, resulting in biased parameter
estimates and erroneous model prediction. A multiple risk source re-
gression model can add flexibility to estimate crashes based on their
originating risk sources and provide meaningful parameter estimates.
The empirical evidence shows that assumption of multiple risk sources
in modeling equation provide improved model fit and can account for
unobserved heterogeneity that results from ignoring risk sources
(Afghari et al., 2016, 2018b).

3. Research hypothesis

To estimate crash counts and injury severity, simultaneously, a
multivariate framework in regression modeling is needed to accom-
modate the correlation between crash counts of different injury seve-
rities. Equally important part in crash data modeling is to distinguish
between the sources of crash risk. In spite of the importance of beha-
vioral factors, a limited amount of research has directly incorporated
these risks into crash prediction modeling because of the lack of site-
specific driver behavior-related factors. Alternatively, the effect of site-
specific variables, in combination with the influence of a broader safety
culture represented by driver behavior, would provide many helpful
insights.

The hypothesis of the methodological approach in this study is de-
scribed below, and includes the theoretical support for this type of crash
modeling:

• This study hypothesizes that a single risk source model (e.g.,
Poisson, NB) cannot sufficiently account for unobserved hetero-
geneity in crash data. Considering multiple underlying risk sources
in crash data modeling may allow researchers to account for un-
observed heterogeneity at each risk-generating source.
• This study hypothesizes that risk sources can be categorized based
on distinct sources of data and their physical meaning. Two distinct
risk sources, engineering, and behavioral risk sources are considered
which simultaneously contribute to the crash occurrence on a
roadway segment.
• Crash counts of different severities are correlated. Considering the
correlation of crash severities in the modeling structure allows for
the simultaneous estimation of crash frequency and severity and
thus, reduces bias in the estimated model parameters. The multi-
variate structure is considered for two injury severities in this study:
injury crashes and non-injury crashes.

Based on the above-mentioned hypothesis, the unstructured covar-
iance matrix is used to define the correlation between injury severity
levels, which contributes to the estimation of more precise model
parameters. Multiple risk sources are considered to have varying con-
tributions to crashes of all severities at each site and across sites. Site-
specific risk-level weights (also vary between injury severity) are used
to generate multiple proportions of total crashes. A bivariate (e.g., two
risk sources) random error term at each risk level is used to account for
unobserved heterogeneity and define the correlation between risk
sources.

4. Methodology

Assuming observed crash count Yi at location i, summed across
underlying risk sources j, it can be hypothesized that each risk source is
responsible for contributing to a proportion of the total observed cra-
shes which are unobserved or latent at the crash location. To determine
the latent probabilities of unobserved crash counts from different risk
sources, let’s assume the total observed crash count follows a Poisson
distribution with a total predicted mean µi:

Y Poisson µ( )i i (1)

A latent mixture modeling approach can be used to link multiple
risk-generating sources with the mean of Poisson distribution. The la-
tent mixture approach requires the decomposition of the mean function
of the Poisson distribution (µ )i into multiple mixture components
(Afghari et al., 2016; Afghari et al., 2018a, 2018b):

= =
=

µ µ and µ w µi
j

J

ji ji ji i
1 (2)

Where, == w 1j
J

ji1 and wji is the proportion (or weight) of the pre-
dicted crash count at site i attributed from latent risk source j and j is
the total number of underlying risk sources. Assuming exponential
functions for the decomposed means of the Poisson distribution, each of
the above-mentioned predicted means is a function of a variety of
contributing factors associated with unique risk sources:

= +µ F exp X( )ji j i j ji ji0 1 (3)

Where,
Fi = measure of exposure (shared between risk sources),
Xji = explanatory variables for risk source j at site i,

,j j = estimated regression parameters,
ji = model errors independent of all explanatory variables.
To account for unobserved heterogeneity arising from over-

dispersion, error terms ( ji) are allowed to vary across observations. In
addition, to account for the correlation between the underlying risk
sources, the error terms are defined to follow a Multivariate Normal
distribution which can be constructed as follows:

Multivariate Normal ( 0 , )i R (4)
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= …[ ]i i Jii 1 2
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Please note that these error terms at the risk source level can also
account for unobserved and/or unavailable factors that may have
contributed to crash occurrence. The univariate risk source regression
model, however, does not distinguish injury crashes from non-injury
crashes. Thus, a multivariate modeling approach is needed for such a
distinction where crashes by injury severity are modeled simulta-
neously. In a set of crash data at n roadway segments, let assume cra-
shes are classified into K categories which represent K crash severities.
Let = ………Y y y y( . , )ki i i Ki1 , 2 , be a K-dimensional vector that denotes the
total crash count at i-th = …i n( 1, 2, ., ) roadway segment that belongs
to k-th (k=1, 2,….,K) injury severity. Assuming crash counts by crash
severity follows the Poisson distribution with mean µki for k= 1, 2, ….,
K and following a similar crash generating mechanism, crashes in each
severity category are generated from multiple risk sources which are
summed to obtain the total crash count at a location. The regression
equation can be constructed as follows:

= +

=

=
=

ln µ µ

µ µ

µ w µ

( ) ln ( )ki ki ki

ki
j

J

jki

jki jki ki

*

*

1

(5)

Where, wjki is the proportion (or weight) of the total predicted crash
counts for crash severity k at site i attributed from latent risk source j,
and == w 1j

J
jki1 . The new error term ki denotes the random effect

which is uncorrelated with the explanatory variables and accounts for
the unobserved heterogeneity arising from different crash severity le-
vels. This new error term is also assumed to be multivariate normally
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distributed across crash counts of different severity levels. Let’s assume
= ( , , . , )i i Kiki 1 2 represents a vector of random effects at each location

i and it follows a K-dimensional normal distribution:

Multivariate Normal (0, )Mki

Where, 0 is a K-dimensional zero vector and M is a J× J variance-
covariance matrix. Following the above specification of the error term,
it is equivalent to Lognormalexp( ) (0, )Mki . The variance-covar-
iance matrix M accounts for unstructured error and unobserved het-
erogeneous effects and can be formulated as follows:

=

… …
… …

… … … … …
… …

M

K

K K KK

11
2

12
2

1
2

21
2

22
2

21
2

1
2

2
2 2 (6)

The diagonal elements kk
2 of the variance-covariance matrix re-

presents the heterogeneous variance of ki, and the off-diagonal ele-
ments rs

2 represents the heterogeneous covariance between ri and si
where r s.

Following a similar concept of univariate modeling, the mean re-
sponse from each risk source jti can be expressed as follows:

= +µ F exp X( )jki jk i jk ji jki0 t1 (7)

Where, jki is another error term used to account for unobserved het-
erogeneity and correlated between underlying risk-generating sources
within each crash severity. This indicates the incorporation of addi-
tional K number of errors into the modeling structure. For example, let’s
assume we have crash data from 2 crash severity types (e.g., injury and
non-injury) and there are 2 underlying risk sources (e.g., engineering
and behavioral). Under multivariate multiple risk source modeling,

= [ , ]i i i1 11 12 and = [ , ]i i i2 21 22 will account for unobserved hetero-
geneity and correlations between underlying risk-generating sources for
crash severity 1 and crash severity 2, respectively. Because of multi-
variate modeling, there will be another error term = [ , ]i i i1 2 to ac-
count for unstructured errors and unobserved heterogeneous effects for
each crash severity. The expected mean, variance, and covariance for
multivariate multiple risk source regression model can be expressed as
follows:

= ×E Y µ exp[ ] (
2

)ki ki
jj*

(8)

= + ×Var Y E Y E Y[ ] [ ] ( [ ]) [exp ( ) 1]ki ki ti ii
2 (9)

= × ×Cov Y Y E Y E Y[ , ] [ ] [exp ( ) 1] [ ]ri si ri rs si (10)

The multivariate crash data modeling using Poisson-lognormal
mixture can accommodate overdispersion in the data. From Eqs. (8) and
(9), it can be noted that >Var Y E Y[ ] [ ]ki ki since the diagonal elements of

>e g, . . 0kk
2 . Additionally, the multivariate structure can in-

corporate the correlation among the components in a response vector as
described in Eq. (10).

The proposed multivariate and univariate multiple risk source re-
gression models are formulated and estimated in the Bayesian frame-
work using OpenBUGS (Spiegelhalter et al., 2007). In the Bayesian
framework, the regression parameters are estimated by maximizing the
posterior which is a combination of the likelihood function and the
defined prior information. It is necessary to specify a prior distribution
for the parameters to obtain the Bayesian estimate. Prior distributions
are meant to reflect prior knowledge about the parameters of interest.
In the absence of solid prior information, uninformative priors can be
assumed to estimate both univariate and multivariate multiple risk
source models in the Bayesian framework:

Normal˜ (0,100)jk

w Uniform a b˜ ( , )jki

Wishart I J˜ ( , )R J
1

Wishart I K˜ ( , )M K
1

Where, IJ and IK represents J× J and K×K dimensional identity ma-
trix, respectively. Defining the value for lower limit a and upper limit b
for the prior information of a risk-level weight should be approached
with caution. Prior knowledge, if available, can be used to define these
values (Afghari et al., 2016). The Markov chain Monte Carlo (MCMC)
can also suffer from poor mixing, and the effective number of para-
meters of estimated models can be negative (it is guaranteed to be
positive for properly defined and converged models) if there is a con-
flict between data and prior information. Several preliminary models
were developed with different prior values for a and b to obtain good
mixing between Monte Carlo chains and model convergence. The model
performance of preliminary models was also compared to choose the
optimal value. The final model is estimated with a=0.45 and
b=0.95.

In addition, marginal effects are used to determine the impact of
each covariate on the expected mean value of the dependent variable.
The marginal effect represents the effect of a unit change in the in-
dependent variable on the expected mean of the dependent variable.
For a multiple risk source model, the marginal effect for each ex-
planatory variable can be estimated using the following equation
(Washington et al., 2010):
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In Eq. (11), the risk-level weights (wj) will influence the estimated
marginal effect of an explanatory variable in j-th risk source.

5. Data description

To empirically test the proposed methodology, the multivariate
multiple risk source model is applied to traffic crashes along rural two-
lane highway segments in Wisconsin, United States. Crash data for this
network is available in “KABCO” scale containing a total count of cra-
shes that occurred on Wisconsin state highways between 2011 and
2015. The KABCO injury codes presented in the dataset were con-
solidated into two levels in this study – injury crashes (K, A, B, and C)
and non-injury crashes (O) to ensure that a sufficient number of ob-
servations was available in each crash severity level. A similar approach
has been used by other researchers to ensure sufficient sample size for
model estimation (Milton et al., 2008; Islam et al., 2014a, b; Uddin and
Huynh, 2018):

Crash contributing factors were collected for two distinct risk
sources (J= 2) including engineering and behavioral factors. The fac-
tors within engineering risk source include typical roadway geometric
factors and traffic features for rural two-lane highways which were
collected from MetaManager, a data management system developed
and maintained by the Wisconsin Department of Transportation (St
Clair, 2001). Typical roadway geometry related variables such as seg-
ment length, lane width, and shoulder width variables were collected
from roadway inventory data table. The percent passing and posted
speed limit variables were collected from the mobility data table. Please
note that the segmentation of Wisconsin two-lane highways does not
involve horizontal and vertical curves. This means the highway is not
segmented at the starting or ending of a horizontal or vertical curve. To
provide information on curves, no passing zone is generated from
MARKINGview, an asset management tool used to capture and main-
tain traffic marking information and location of no passing zones. No
passing zones are usually marked with a solid yellow line placed on hills
or curves where you cannot see far enough ahead to pass safely. In the
mobility data table, no passing zones are expressed in percentage of
segment length. AADT and percent of truck on each segment were
collected as traffic-related features for model development in this study.
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To conform to the study hypothesis of multiple risk sources, the
behavioral factors used in this study are solely generated from a dif-
ferent risk source than engineering risk factors. The behavioral factors
used in this study were collected from the Uniform Crime Reporting
(UCR) program in Wisconsin. The UCR program provides crime and
arrest data from local law enforcement agencies to the Federal Bureau
of Investigation and Bureau of Justice Information and Analysis (FBI,
2019). The collected behavioral factors include the operating a motor
vehicle while intoxicated (OWI) rate, drug related arrest rate, and
violent crime rates for each county between 2013 and 2014. In this
context, the rate is defined as the total count per 10,000 people within a
defined geographic area (e.g., county). Collected variables were aver-
aged for each county over a two-year period to represent the behavior
risk source. Community-level factors that heighten the risk of experi-
encing problems with alcohol include the per capita number of alcohol
outlets in a community. The liquor license rate, which can be defined as
the number of liquor outlet licenses per 500 people, was collected from
the Wisconsin Department of Revenue for 2013 and 2014, and the
average value was used (Wisconsin Department of Revenu, 2019).

Alcohol impairment of driving skill has been identified as a major
traffic safety problem since early 20th century (Blomberg et al., 2005).
National Survey on Drug Use and Health’s (NSDUH) “State Estimates of
Drunk and Drugged Driving” report released in 2012 indicates the
prevalence of alcohol-impaired driving in Wisconsin are among the
highest in the nation (Substance Abuse and Mental Health Services
Administration, 2012). Besides alcohol impairment, drug-impaired
driving has recently started raising government and public concerns in
the USA as well as other countries (Asbridge et al., 2012; Walsh et al.,
2008). In Wisconsin, the drug law violations are defined as the violation
of laws prohibiting the production, distribution, and/or use of certain
controlled substances and the equipment or devices utilized in their
preparation and/or use. This includes the unlawful cultivation, manu-
facture, distribution, sale, purchase, use, possession, transportation, or
importation of any controlled drug or narcotic substance. Based on
above definition and observed consequences of impaired driving, both
OWI and drug arrest rate can be considered as direct measures of crash
risks the transportation network is exposed to in a community (e.g.,
county). Violent crimes used in this study includes murder and non-
negligent manslaughter, rape, robbery, and aggravated assault.

The collected behavior variables were then linked to the roadway
database using the spatial join tool in ArcMap, a geographic informa-
tion system software package. The behavior variables were evenly as-
signed to the roadway segments within counties using their spatial
coordinates. This means any roadway segment within a same county
has same driver behavior related attribute. This approach has been used
by multiple studies in literature to link aggregated level spatial vari-
ables such as weather conditions to roadway elements (Chang and
Chen, 2005; Yu et al., 2015). Please note that although the driver be-
havior related variables collected in this study may change from one
segment to another, it was hypothesized that use of aggregated level
driver-behavior information may provide valuable inference about the
impact of risky driving behavior on crash occurrence. The complete
rural two-lane highway dataset contains 9605 segments extended over
8669 miles after cleaning for missed observations for target variables
and very short segments. A sample of 6000 segments extended over
5400 miles from the complete dataset was used to evaluate the pro-
posed methodology in this study. Table 1 provides the summary sta-
tistics of the variables used for this study.

6. Results and discussion

This section of the paper explains the application of the multivariate
multiple risk source regression model to estimate crash count and injury
severity simultaneously. The models developed for this study were
designed to estimate injury and non-injury crashes (K=2). The per-
formance of the multivariate multiple risk source model was compared

with the NB model, a univariate multiple risk source model, for both
severity levels to determine whether the multivariate approach of
multiple risk source model was theoretically sound and offered im-
proved model performance. A total of two (2) MCMC chains were used
to implement all models in the Bayesian framework. Model con-
vergence was obtained through 130,000 iterations, and 30,000 samples
were used as burn-in period. The Gelman–Rubin convergence statistics
(G–R statistics) were reviewed to verify the model convergence (i.e.,
when the G–R statistic is less than 1.2) (Mitra and Washington, 2007).

Table 2 summarizes the modeling results for both injury and non-
injury crashes in the study dataset. Table 2 shows that for the NB
model, the estimated 95 percent posterior credible intervals for all
coefficients in both injury and non-injury crashes did not include zero;
hence, all coefficients are statistically significant at a 5 percent sig-
nificance level. Though the drug arrest rate variable was statistically
significant in predicting no injury crashes for the NB model, the vari-
able was not statistically significant at 5 percent with both univariate
and multivariate multiple risk source models. Afghari et al. (2016)
found similar results when comparing the NB and multiple risk source
model. It is found that six out of nine explanatory variables were not
statistically significant in the multiple risk source model, but they were
statistically significant in the single source NB model. The drug arrest
rate was statistically significant in predicting injury crashes in all
models, indicating driving under the influence of drug results in more
injury crashes. All other posterior mean estimates of explanatory vari-
ables were statistically significant at a 5 percent significance level in
both univariate and multivariate multiple risk source models.

Note that the posterior mean of the estimated parameters of ex-
planatory variables cannot be directly compared between single risk
and multiple risk source models, except for the exposure measure, be-
cause of the associated risk level weights of each variable. In non-injury
crashes, the posterior mean of the estimated parameters for AADT
ranges from 0.813 to 0.817 across three modeling approaches, in-
dicating the multiple risk source modeling technique can maintain
enough strength to estimate the Poisson mean while considering mul-
tiple risk sources. The posterior mean of the estimated parameter for
AADT is positive for both severity levels implying that this variable has
increasing effect on the number of injury and non-injury crashes.

In multiple risk source models, factors contributing to crashes are
separated into two distinct sources: engineering and behavioral factors.
The mean of posterior parameter estimate of risk-level weights in-
dicates that on average, 70% of both injury and no injury crashes occur
due to the engineering risk source, whereas behavioral risks contribute
to 30% of the injury and no injury crashes in both univariate and
multivariate multiple risk source models. The statistically significant
covariates are similar across all models with regard to the engineering
risk source for both injury and non-injury crashes. All parameter-mean
estimates for explanatory variables in the engineering risk source have
similar signs, indicating similar positive or negative effects on crash risk
across modeling alternatives. The parameter-mean estimates for the
engineering risk variable are similar when comparing between uni-
variate and multivariate modeling approaches; this indicates that ex-
panding the multiple risk source methodology to a multivariate struc-
ture can provide stable parameter estimates. The estimated standard
deviation of most mean posterior parameter estimates in the multi-
variate multiple risk source model is smaller than the estimates for the
univariate model; this indicates that more accurate parameters can be
estimated using the multivariate structure, as noted in the literature
(Park and Lord, 2007).

The posterior parameter estimates for the behavioral risk source
variables paint a similar picture as the variables in the engineering risk
source. The estimated parameter-mean values are mostly similar in
both univariate and multivariate multiple risk source models. For in-
stance, the mean of the posterior parameter estimates for OWI rate
yielded a negative impact on crash risk, indicating that both injury and
non-injury crash rates tend to decrease with an increase in OWI rate.
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The mean of the posterior parameters estimated for the liquor license
variable for both injury and non-injury crashes suggests a negative
impact on crash risk. Both estimates from the data seem counter-
intuitive if the OWI rate or the number of liquor licenses is regarded as
the positive effect of liquor consumption on driving. OWI rate can be
further regarded as a proxy of the number of drunk drivers who are
more likely to be involved in a crash than sober ones. Unfortunately,
such findings do not necessarily lead to a conclusive explanation as high
OWI arrests may suggest intensive enforcement activities or more

effective enforcement strategies. A meta-analysis shows that drink-
driving checkpoints reduce alcohol-related crashes by 17% at a
minimum and all crashes by 10–15% (Erke et al., 2009). In spite of an
endeavor to collect information on enforcement, the data were in-
complete and inconsistent and not helpful for this study. Another caveat
in the UCR dataset is that liquor licenses are not separated by bar,
restaurant, and off-premise liquor outlets, as several studies noted that
crash risk increases with bar and off-premise liquor outlets but de-
creases for restaurants with a liquor license (Gruenewald and Johnson,

Table 1
Summary Statistics of Wisconsin Dataset.

Variables Description Mean Standard Deviation Minimum Maximum

Crash Data
"K+A" Crashes Serious Injury Crashes 0.353 0.685 0 8
"B+C" Crashes Minor Injury Crashes 1.511 2.786 0 67
"K+A+B+C" Crashes Total Injury Crashes 1.864 3.067 0 70
"O" Crashes Non-Injury Crashes 3.414 5.422 0 116
Exposure
AADT Annual Average Daily Traffic 3916.855 3106.853 80 66712
Engineering Risk Source
Length Segment Length in miles 0.900 0.423 0.050 2.600
LW Lane Width in feet 12.020 0.875 9 20
SW Shoulder Width in feet 6.771 2.797 0 15.500
Truck Percentage of Heavy Truck 10.797 4.334 0 34.700
Speed Posted Speed Limit in miles per hour 52.667 6.398 30 70
Passing Percent Passing 0.464 0.270 0 1
Behavioral Risk Source
OWI Operating While Intoxicated citation rate per 10,000 population 46.864 24.653 6.100 335.850
Drug Arrest Drug Arrest rate per 10,000 population 37.052 20.745 3.750 195.750
Violent Crime Violent Crime rate per 10,000 population 13.715 11.922 0.700 95.100
Liquor License Liquor license rate per 500 population 2.220 1.256 0.900 8.300

Table 2
Non-Injury and Injury Crash Modeling Results.

Parameters Non-Injury Injury
NB Model Univariate Multiple Risk

Source Model
Multivariate Multiple Risk
Source Model

NB Model Univariate Multiple Risk
Source Model

Multivariate Multiple Risk
Source Model

Exposure: AADT 0.814 (0.021) 0.813 (0.022) 0.817 (0.021) 0.780 (0.025) 0.778 (0.025) 0.780 (0.024)
Inverse-Dispersion 0.460 (0.016) 0.490 (0.022)
Engineering Variables
Constant −4.162

(0.058)
−3.680 (0.339) −3.578 (0.224) −4.408

(0.195)
−3.901 (0.745) −3.956 (0.532)

Length 0.930 (0.033) 1.219 (0.082) 1.252 (0.056) 1.010 (0.038) 1.146 (0.049) 1.184 (0.046)
Lane Width −0.034

(0.014)
−0.045 (0.022) −0.046 (0.021) −0.074

(0.017)
−0.103 (0.027) −0.095 (0.024)

Shoulder Width −0.042
(0.005)

−0.041 (0.008) −0.047 (0.007) −0.040
(0.006)

−0.033 (0.008) −0.035 (0.007)

Truck Percentage −0.016
(0.003)

−0.020 (0.004) −0.021 (0.004) −0.015
(0.004)

−0.015 (0.004) −0.016 (0.004)

Speed Limit −0.023
(0.002)

−0.023 (0.004) −0.025 (0.003) −0.017
(0.003)

−0.010 (0.004) −0.011 (0.004)

Percent Passing 0.215 (0.046) 0.432 (0.073) 0.402 (0.063) 0.154 (0.054) 0.305 (0.067) 0.280 (0.064)
Behavioral Variables
Constant −6.716 (1.110) −6.355 (0.690) −7.501 (1.294) −7.010 (0.906)
OWI Rate −0.004

(0.001)
−0.014 (0.004) −0.015 (0.004) −0.004

(0.001)
−0.016 (0.005) −0.025 (0.005)

Drug Arrest Rate 0.002 (0.001) 0.006 (0.003) 0.005 (0.004) 0.003 (0.001) 0.017 (0.007) 0.022 (0.007)
Violent Crime Rate 0.007 (0.001) 0.017 (0.003) 0.022 (0.005) 0.009 (0.001) 0.018 (0.003) 0.023 (0.003)
Liquor License Rate −0.136

(0.117)
−0.773 (0.206) −0.726 (0.162) −0.125

(0.014)
−0.985 (0.316) −1.293 (0.29)

Risk-level Weights
Engineering Risk 0.700 (0.116) 0.700 (0.132) 0.700 (0.121) 0.700 (0.138)
Behavioral Risk 0.300 (0.116) 0.300 (0.132) 0.300 (0.121) 0.300 (0.138)
Correlation between Risk

Sources
11 0.539 (0.159) 0.214 (0.101) 0.524 (0.162) 0.198 (0.091)
22 1.133 (0.497) 0.411 (0.240) 1.295 (0.610) 0.456 (0.304)

=12 21 0.652 (0.226) −0.154 (0.134) 0.697 (0.303) −0.066 (0.135)

Note: 1) Parameter estimates presented in bold and italic font is not significant at 5 percent significance level; 2) The estimated standard error of mean parameter
estimate is presented in parenthesis.
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2010; Treno et al., 2007). Hence, the effects of these behavioral vari-
ables on crashes can be revealed and estimated via crash modeling but
defining a cause-effect relationship requires additional information.

The mean posterior parameter estimates for the covariance matrix
in the univariate multiple risk source model were found statistically
significant at 5% significance level. This indicates that the two risk
sources considered in the model are distinct and related. With the
multivariate modeling approach, the posterior mean estimates of the
covariance term between risk sources (mean: -0.154, std. dev.= 0.134)
indicate that they are no longer statistically interrelated at a 5% sig-
nificance level. Based on the posterior density of M , statistically sig-
nificant positive correlations ( = = 0.629)12 21 exist between crash
counts at different levels of severity within a segment. The univariate
risk source model is a special case of the multivariate multiple risk
source model, with off-diagonal elements of M equal to zero. By in-
corporating a statistically significant correlation in the modeling
structure, the correlation in injury severity counts was incorporated
into the model framework.

Based on the above discussion on modeling results, it can be noted
that a significant correlation exists between crash counts for different
injury severity level. As described in the methodology section, this
correlation influences the estimation of model parameters (Park and
Lord, 2007). However, the posterior mean of the covariance matrix for
the risk-level error term is no longer significant when the correlation
between crash counts for different injury severity level is considered.
The variance estimates indicate that the risk sources are indeed distinct
for both injury and non-injury crashes; this suggests that the statisti-
cally significant correlation between engineering and behavioral risk
sources can be a statistical artifact resulting from the absence of injury
severity in the model. Hence, the multivariate multiple risk source re-
gression model can provide informative parameter inferences with the
existence of M and uncorrelated risk sources. A modified model was
estimated with an uncorrelated error structure between risk sources.
Modeling results show that parameter estimates for all covariates in
both the engineering and behavioral risk sources yielded similar coef-
ficients; thus, the results without correlation structure between risk
sources were not presented here.

For the convenience of comparing the effect of individual factors
from both engineering risk source and behavior risk source, marginal
effects are estimated. The marginal effects of explanatory variables for
both PDO and injury crashes are presented in Table 3.

According to Table 3, single risk models usually overestimate the
contribution of a specific variable if this factor originates from a
dominating source. For majority of the engineering risk factors, the
estimated marginal effect is higher with a single risk source NB model

than with a multiple risk source model. The estimated marginal effects
of behavioral risk variables indicate that the single risk source NB
model underestimates the effect of some variables related to the be-
havioral risk source; this may be why the effects of some variables re-
lated to the engineering risk source are overestimated. For example, the
estimated marginal effect for OWI citation rate using single source NB
model indicates that injury crash counts can decrease by 0.187 unit
with a unit increase in OWI citation rate, whereas the multiple risk
source model yielded a 0.525 and 0.722 unit increase in injury crash
counts with an increase in OWI citation rate for the univariate and
multivariate modeling approach, respectively. For injury crashes, the
effect of shoulder width and speed limit may be overestimated in single
risk models. Moreover, the marginal effect estimates indicate that single
risk source models may underestimate the effect of OWI citation rate
and liquor license rate. Comparing both posterior mean of parameter
estimates and marginal effects, it can be noted that all variables have
similar direction (positive or negative) in both single source and mul-
tiple source regression models. But the estimated marginal effects are
significantly different for variables originated from supporting risk
source such as behavioral risk variables in this study. Thus, a caution
should be used while interpreting the parameter estimated from single
source model if variables used for model development are generated
from different risk sources.

7. Prediction accuracy

Table 4 provides the performance comparison for all models based
on the Deviance Information Criterion (DIC). The DIC is a widely used
GOF statistic for comparing models in a Bayesian framework
(Spiegelhalter et al., 2002). The DIC consists of two components: (a) a
measure of how well the model fits the data, Dbar D( ( )¯ ) and (b) a
measure of model complexity (pD). Thus, DIC can provide a better
comparison between models that are characterized by different com-
plexities. The likelihood of a Bayesian model can be represented by
Dbar D( ( )¯ ) and Dhat D( ( )ˆ ). Dbar is the posterior mean of the de-
viance, whereas Dhat is a point estimate of the deviance. Mean Absolute
Deviance (MAD) was estimated for each model to compare predictive
accuracy. MAD can be calculated as follows:

=MAD
N

y y1 | ˆ |it it (13)

Where, N indicates the number of observations in the dataset.
A comparison of the DIC values between models illustrates that the

multivariate multiple risk source regression model with uncorrelated
error structure between risk sources performed better than other
models. It is evident that excluding the correlation structure will result

Table 3
Average Marginal Effects for Non-Injury and Injury Crashes.

Variables Non-Injury Injury

Single Source NB
Model

Univariate Multiple Risk
Source Model

Multivariate Multiple Risk
Source Model

Single Source NB
Model

Univariate Multiple Risk
Source Model

Multivariate Multiple Risk
Source Model

Exposure: AADT 6.489 6.481 6.513 6.218 6.202 6.242
Engineering Risk
Length 0.837 0.768 0.789 0.909 0.722 0.746
Lane Width −0.408 −0.379 −0.387 −0.889 −0.866 −0.799
Shoulder Width −0.284 −0.194 −0.223 −0.271 −0.156 −0.166
Truck Percentage −0.173 −0.151 −0.159 −0.162 −0.113 −0.121
Speed Limit −1.211 −0.848 −0.922 −0.895 −0.369 −0.405
Percent Passing 0.100 0.140 0.130 0.071 0.099 0.091
Behavioral Risk
OWI Rate −0.187 −0.197 −0.211 −0.187 −0.525 −0.722
Drug Arrest Rate 0.074 0.067 0.056 0.111 0.189 0.245
Violent Crime Rate 0.096 0.070 0.091 0.123 0.074 0.095
Liquor License Rate −0.302 −0.515 −0.483 −0.277 −0.656 −0.861
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in a smaller effective number of parameter (pD) which will influence
the estimation of the DIC value. The Dbar estimate indicates that the
posterior mean of deviance is the smallest for the multivariate multiple
risk source model without a correlated error structure compared with
all other models. There is a significant improvement in DIC value with
the multivariate modeling approach compared with the univariate
multiple risk source model. The MAD estimates also indicate that
multivariate risk source regression models can better predict both PDO
and injury crashes compared with other models in this study.

8. Practical implications

One major benefit of the multiple risk source model over a single
risk model is that risk-level predicted crash counts can be obtained from
the former model which is not possible with the latter model. In the
literature, driver error and engineering risk factors are identified as two
major sources for crash occurrences (Shaon et al., 2018a, b). In Wis-
consin, detailed crash report for each crash occurred on state trunk
network is documented in Wisconsin Motor Vehicle Accident Reporting
Form 4000 (MV4000) by investigating police officer(s) (WisDOT, 2019;
Parker and Tao, 2006). The crash report for each crash includes four-
teen specific driver-related factors and thirteen specific highway factors
(e.g., geometry and pavement condition) that contribute to the occur-
rence of each crash. Table 5 describes the list of crash contributing
circumstances listed in the MV4000 database.

A crash can be linked to behavior or engineering risk related crashes
using these specific contributing factors noted in the MV4000 crash
report. Using crash dataset from Wisconsin, Shaon and Qin found that
79% of total crashes are related to driver error (Shaon et al., 2018a, b).
Please note that the engineering risk source variables used in this study
were collected for each segment whereas the behavior variables are
collected for each county and used as a proxy variable for behavioral

risk in crash occurrence. Although the modeling results indicate that
30% of total crashes are generated due to behavioral risk source, this
statement does not validate with the information listed by investigating
police officer(s) for each crash. This may be because of the unavail-
ability of important behavioral risk source variables that has a sig-
nificant contribution to crash occurrence such as speeding behavior,
fatigue or distracting driving, etc. Considering above-mentioned lim-
itations, a comparison of predicted crashes between single and multiple
risk source modeling was conducted to illustrate the strength of mul-
tiple risk source modeling. Table 6 described the predicted crash
comparison for five rural two-lane sites based on observed non-injury
crashes related to different risk sources.

In Table 6, the comparison sites were selected where at least one
behavior crash was observed. From the overall comparison between
single and multiple risk source models in Table 6, it can be noted that
the latter model predicted more crashes compared to single source
model. Afghari et al. also found similar information while identifying
crash blackspots using multiple risk source model (Afghari et al., 2016).

The single risk source NB model can only predict total crash counts
for a specific site. The decomposition of observed crashes described in
Table 6 indicates that crashes may come from different risk sources. For
example, For Site “A”, there were a total of 6 crashes observed on that
segment which includes 1 and 5 crashes occurred due to behavior and
engineering risk source, respectively. The predicted value from the
single source model was 4 which indicates both engineering and be-
havior risk variables contributes to all 4 crashes. On the other hand,
multiple risk source model predicts there are 4 crashes occurred due to
engineering risk source and 1 crashes occurred due to behavioral risk
source. The proposed model can also indicate limitation of important
information by risk source. For Site “E”, 13 crashes were observed
which include 7 and 6 crashes due to behavior and engineering risk,
respectively. The predicted value from the single risk model was 5 in-
dicating underestimation of crashes for that site. The multiple risk
source model predicted 1 and 5 crashes occurred due to behavior and
engineering risk, respectively. While multiple risk source model pre-
dicted engineering crashes near observed value (predicted 5 crashes out
of 6 observed crashes), the behavior-related crashes were under-
estimated. This indicates important behavior information is needed to
explain observed crashes. Considering the data limitation in this study,
it can be noted that multiple risk source model is capable of predicting
risk-level crashes which can help safety professionals to identify crash
black-spots by risk source and design effective crash countermeasures.

9. Conclusions

Previous studies have explored many factors that could contribute
to crash occurrence. Understanding crash-generating mechanisms,
adopting appropriate hypotheses, and producing reliable parameter
estimates from modeling crash data are challenging for researchers and
traffic safety professionals. This study explored the influence of factors

Table 4
Comparison of Model Performance.

Methodology Crash
Type

D̄ D̂ DIC pD MAD

Single Source NB model PDO 25040 25030 25060 14.13 2.325
Injury 19880 19860 19890 13.08 1.413
Total 44920 44890 44950 27.21 1.869

Univariate Multiple Risk
Source model

PDO 20640 18900 22370 1734 2.286
Injury 16910 15440 18370 1464 1.371
Total 37550 34340 40740 3198 1.829

Multivariate Multiple Risk
Source model w/
Correlated Error
Structure

PDO 20360 18960 21750 1398 2.280
Injury 16460 14910 18020 1308 1.353
Total 36820 33870 39770 2706 1.817

Multivariate Multiple Risk
Source model w/o
Correlated Error
Structure

PDO 20106 19554 20660 552.4 2.271
Injury 16142 15057 16862 718.8 1.322
Total 36108 34766 37382 1271.2 1.797

Table 5
Possible Crash Contributing Circumstances listed in the MV4000 Database.

Driver-related Factors Highway-related Factors

• Driver condition• Physically disabled• Disregard traffic control

• Following too close• Failure to yield• Failure to keep vehicle under control• In conflict• Inattentive driving

• Improper overtake• Improper turn• Left of center• Exceeding speed limit• Too fast for conditions• Unsafe braking• Others

• Snow/ Ice/ Wet• Narrow shoulder

• Soft shoulder• Loose gravel• Rough pavement• Debris prior to accident

• Other debris• Sign obscured/ missed• Narrow bridge

• Construction zone• Visibility obscured• Others
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from distinct risk sources on crash occurrences while estimating crash
frequency and injury severity simultaneously. While engineering risk
factors were extensively utilized in crash modeling literature, use of
behavioral risk factors are limited due to data unavailability. This study
explored behavioral variables collected at larger geographic scale re-
presenting existing social norms that can influence driving behavior
within a community. In association with engineering risk factors, these
behavioral variables are considered to reflect crash risk which origi-
nates from a distinct source. The underlying hypothesis of the proposed
modeling approach is that crash counts of different injury severities are
correlated, and unobserved heterogeneity cannot be sufficiently cap-
tured using a single equation crash frequency model. While a large
number of studies explored multivariate models to account for the
correlation between injury severities, they did not distinguish between
sources of crash risk. The complicated crash generation process can be
addressed by considering multiple risk sources through the proposed
method. Expanding univariate multiple risk source regression modeling
to a multivariate framework enabled the incorporation of both injury
count correlation and distinguish between crash risk from different
sources.

The proposed models were applied to a crash count dataset from
Wisconsin rural two-lane highways. Two distinct risk-generating
sources – engineering and behavioral – were considered. The modeling
results were compared with a single equation NB model and univariate
multiple risk source model. The results showed that the multivariate
multiple risk source regression model has the best prediction perfor-
mance among all developed models, whilst also capturing more of the
complexity in contributing crash sources. The model parameter esti-
mates indicated that the multiple risk source modeling technique can
maintain enough strength to estimate the Poisson mean while con-
sidering multiple risk sources in multivariate settings. The parameter
estimates for behavioral risk source variables indicates both positive
and negative effect of behavioral variables on crash occurrences.
Parameter estimates of violent crime rate and drug arrest rate indicates
high crime and arrest rates can be used to identify crash prone com-
munities. The negative posterior mean for both OWI citation rate and
liquor license rate may help in developing strategies to enforce loca-
tions with high liquor license rate in order to reduce crashes. A sample
crash count comparison for five sites indicated that the proposed model
can predict crashes from each risk source separately which cannot be
obtained from single equation modeling. The study not only demon-
strates a unique approach to explicitly incorporating behavioral factors
into crash prediction models but also provides more insight into the
sources of crash risk, which can be used to better inform safety prac-
titioners and guide roadway improvement programs.

The proposed multivariate multiple risk source regression model
was developed using the Bayesian framework. Despite the potential of
the proposed methodology, the modeling framework may introduce
computational complexity and data-specific effects. The risk-level
weights used to link predicted crash risk from each risk-generating
source to total crash count is solely data dependent. Future research
should explore prior knowledge of risk distribution and use it as prior
information in model development. Unobserved heterogeneity can be a
major issue with crash datasets. It is also important to understand the

source of unobserved heterogeneity so that appropriate caution can be
taken during model development. Random parameters modeling is a
well-accepted methodology to address unobserved data heterogeneity
in crash datasets. Though there are no theoretical limitations with re-
gard to implementing random parameters into the multiple risk source
structure, the proposed multivariate models were assumed to have fixed
parameters. The random parameters structure for covariates in each
risk source can be explored in future studies to improve the accuracy of
the proposed model and better understand the sources of heterogeneity
in crash datasets. Furthermore, county-level behavior related variables
were used in this study to represent risky driving behaviors. However,
aggregated level behavior variables may not be available or usable to
local agencies. Observable behaviors reflected by traffic citations such
as speeding, operating while intoxicated, inattentive driving, etc. has
long been considered as proxy variable for risky driving behavior.
Traffic citation information can be considered to supplement behavioral
risk source in future studies. One caveat of using location specific traffic
citations is that the citation variables may be highly correlated among
each other such as high speeding citation locations may be associated
with high OWI citations. Caution should be used to account for possible
endogeneity within risk source.
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