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A B S T R A C T

A crash prediction and prevention method was proposed to detect imminent crash risk and help recommend
traffic control strategies to prevent crashes. The method consists of two modules, the crash prediction module
and the crash prevention module. The crash prediction module detects crash-prone conditions when the pre-
dicted crash probability exceeds a specified threshold. Then the crash prevention module would simulate the
safety effect of traffic control alternatives and recommend the optimal one. The proposed method was de-
monstrated in a case study with variable speed limit (VSL). Results showed that the proposed crash prediction
and prevention method could effectively detect crash-prone conditions and evaluate the safety and mobility
impacts of various safety countermeasures.

1. Introduction

The development of advanced transportation information systems
(ATIS) has made it easier to collect, store, and process traffic data in a
real-time fashion. The readily available real-time traffic data offer new
opportunities for crash prediction and prevention in terms of traffic
control and operations. Many studies have used real-time traffic data to
investigate the relationship between crash risk and prevailing traffic
conditions. Among all types of traffic sensors, inductive loop detectors
have been widely used for real-time crash prediction.

The prevailing traffic circumstances prior to and under which a
crash takes place are believed to be one of the major contributors to a
crash. Moreover, travel conditions can shift rapidly, and the traffic that
a vehicle experienced immediately prior to or at the time of a crash is
more relevant than earlier or later traffic conditions. The phenomenon
of temporal proximity has been observed and supported in a study that
predicted freeway crashes using loop detector data (Abdel-Aty et al.,
2004). However, many studies did not consider the traffic conditions
occurring right before a crash (e.g. 0–5min period), citing that pre-
ventative actions may take extra time in a real-time crash identification,
notification, and prevention system. Therefore, traffic data used in
these studies comes from earlier time periods (e.g. 5–10min before a
crash) (Abdel-Aty et al., 2004; Pande and Abdel-Aty, 2006; Hossain and
Muromachi, 2012; Sun and Sun, 2015).

The time buffer between traffic data and crash occurrence is also
related to the consistency between crash modeling and crash predic-
tion, though it has never been explicitly discussed in previous studies.

Fig. 1 illustrates such consistency by a hypothetical example. The figure
shows that one intends to predict the crash risk in the future moment,
which is 5min from now. The traffic conditions in the past 5-min period
are known, while those in the future 5-min period are not known.
However, crash modeling needs to be conducted in a consistent manner
so that resultant crash prediction models can be applied. Initially, the
historical crash time is consistent with the hypothesized crash time.
Then the 0–5-min period before the crash would be the future 5-min
period, and the 5–10-min period before the crash would be the past 5-
min period. Therefore, the data from the 5–10-min period before the
crash needs to be used for crash modeling so that the crash prediction
models can be applied to predict the crash risk in real time, or 0–5-min.

The loop detector spacing can also lead to a lack of consistency, as
spacings can vary substantially from site to site and across studies. For
example, in one study the spacing ranges from 0.2 to 1.3 mi with an
average of 0.5 mi (Xu et al., 2016); in another it ranges from 0.15 to
1.68 mi with an average of 0.5 mi (Xu et al., 2013a); and another ex-
ample has a range of 0.34 to 2.37 mi with an average of about 1.06 mi
(Zheng et al., 2010). Studies have shown that the sensor location may
affect the estimation of traffic flow by producing inconsistently biased
traffic data (Kwon et al., 2007; Liu and Danczyk, 2009; Danczyk and
Liu, 2011; Hong and Fukuda, 2012). The discrepancies in the spatial-
tempo domain mean that crash prediction models developed with
traffic data collected directly from loop detector stations may be in-
adequate. Such data issues would undermine the prediction power of
developed models. Even when a reliable crash prediction model is
available, the issue of deploying effective preventative countermeasures
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remains. A performance assessment tool is needed to evaluate the ef-
fectiveness of intervening traffic control strategies before their de-
ployment.

The objective of this study is to develop a method for real-time crash
prediction and prevention using traffic simulation. Ideally, the method
would be able to identify crash-prone conditions by accounting for the
spatial-tempo issue of loop detector data, and could efficiently evaluate
the performance of traffic control strategy (TCS) alternatives. Inspired
by virtual loops extensively applied for vehicle detection, counting, and
signal control, the cell transmission model (CTM) was employed to
instrument a corridor of highway with virtual detector stations and
measure traffic data where physical stations were not available. The
paper is organized as follows: Section 2 is the review of relevant lit-
erature; Section 3 presents the methodologies of CTM and the binary
logistic model; Section 4 describes data collection and processing, as
well as CTM calibration and simulation; Section 5 reports on the crash
modeling; Section 6 illustrates the crash prediction and prevention
method; and lastly, Section 7 presents conclusions and future research.

2. Literature review

Crashes should be more closely related to the traffic conditions
occurring during or around the same time of the crash, as opposed to
those occurring hours before. One study examined the impact of traffic
variables on crash risk using five time slices: 0–5min before the crash
(time slice 1); 5–10min before the crash (time slice 2); and up to
20–25min before the crash (time slice 5) (Abdel-Aty et al., 2004). The
regression results showed that the traffic variables in time slice 1 are
the most statistically significant among all five time slices, which sup-
ports the notion that the traffic conditions occurring right before a crash
can best model the crash probability. However, most previous studies
did not use this time period, citing that extra time was needed to take
preventive countermeasures (Abdel-Aty et al., 2004; Pande and Abdel-
Aty, 2006; Hossain and Muromachi, 2012; Sun and Sun, 2015). Fur-
thermore, the distance between crash locations and detector locations
varies from one case to another, making it impossible to obtain con-
sistent measurements. The aforementioned issues regarding time and
distance could undermine the validity and accuracy of real-time crash
prediction models.

Ideally, the traffic conditions present at the time of the crash at the
crash location should be used in studies that attempt to improve pre-
diction accuracy. Although it is unrealistic to have physical detectors
located at every crash location, the development of traffic simulation
models has made the virtual detection possible. CTM, a macroscopic
traffic flow simulation model that was first proposed by Daganzo
(Daganzo, 1994), partitions a highway into continuous cells with user-
defined lengths. Under the law of conservation, the traffic density in
each cell within the highway evolves and follows the relationships
derived from the fundamental diagram.

CTM can well accommodate traffic flow data collected from loop
detectors, as they have shown promising results in predicting traffic
flows using loop detector data as inputs (Muñoz et al., 2003, 2006,

Sumalee et al., 2011). Muñoz et al. achieved less than 13% of the mean
error when simulating density using both CTM and switching-mode
model (SMM) (Muñoz et al., 2003), as opposed to density collected
from loop detectors. Muñoz et al. improved parameter calibration
methods of CTM and SMM (Muñoz et al., 2006); calibrated CTM and
SMM produced a 13% and 14% error, respectively, in estimating den-
sity, and a 4% and 5% error in estimating flow. Sumalee et al. proposed
a stochastic CTM and achieved a 7.9% error in estimating density
(Sumalee et al., 2011). CTM is therefore a reliable simulation tool that
can generate trustworthy simulated traffic input for predicting crashes.
Moreover, well-established traffic flow theories and emerging simula-
tion algorithms provide timely support to the fast development of real-
time crash prediction and prevention methods.

The CTM has the capability of simulating traffic control strategies.
The CTM has several attractive features (Hadiuzzaman and Qiu, 2013):
1) it is trustworthy in simulating TCS, as it is founded on sound traffic
theory; 2) it is parsimonious, as it needs only a few parameters which
can be estimated both online and off-line; 3) it requires low computa-
tional effort to predict traffic conditions in real-time. Recently, the CTM
has been applied to evaluate the safety effects of variable speed limits
(VSL). Li et al. developed VSL in CTM and investigated its control
strategy to reduce rear-end crash risks near recurrent bottlenecks on a
6-mile long virtual segment (Li et al., 2014b). Later, Li et al. developed
a strategy to optimize VSLs on a 29-mile freeway corridor in California
(Li et al., 2016). In this study, VSL strategies were optimized to balance
the impact on collision risk, injury severity, and travel time.

The relationships between the relatively low number of crashes and
the massive volume of real-time traffic data can be sorted out through
specific techniques. In general, the approaches for real-time crash
prediction can be categorized as either statistical regression models or
data mining techniques such as the Kohonen clustering algorithm,
neural networks, and the Bayesian network (Pande and Abdel-Aty,
2006; Hossain and Muromachi, 2012; Sun and Sun, 2015). Although
data mining methods can accommodate correlation within independent
variables for speed, flow, and occupancy (Hossain and Muromachi,
2012), they cannot identify explicit relationships between crash prob-
ability and traffic flow variables. Therefore, it is difficult to interpret the
crash mechanism and develop effective crash prevention counter-
measures. Statistical models, however, can build clear connections be-
tween crash probability and traffic flow variables, which is crucial for
the development of proactive safety approaches. Among various sta-
tistical models used in real-time crash prediction studies, the binary
logistic regression is widely used (Abdel-Aty et al., 2005; Zheng et al.,
2010; Xu et al., 2013b) because it can easily predict the crash prob-
ability given the explanatory variables.

3. Methodology

Crash probability prediction began with using CTM to simulate
spatial and temporal traffic during the time period just prior to a crash.
The crash occurrence probability was then estimated with simulated
traffic conditions using a binary logistic regression model.

Fig. 1. Consistent time periods for crash prediction and crash modeling.
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3.1. Cell Transmission Model (CTM)

CTM is a macroscopic traffic simulation model proposed by
Daganzo (Daganzo, 1994). CTM is a powerful simulation technique
which can capture many important traffic phenomena including queue
formation and dissipation and shockwave propagation (Daganzo,
1994). CTM is more computationally efficient and easier to configure
and calibrate than microscopic simulation models. CTM also operates
sufficiently with aggregated traffic data from detector stations. Fig. 2
shows the fundamental diagram with and without a capacity drop for
developing CTM.

In CTM, a highway segment is divided into a series of cells. The
density of each cell evolves following the conservation law of vehicles.
Assuming that Cell i is characterized by the triangular fundamental
diagram in Fig. 2(a), where QC is the capacity flow, ρC is the critical
density, ρJ is the jam density, v is the free-flow speed, and w is the
shockwave speed. The density for Cell i without on- or off-ramps is
determined by Eq. (1):

+ = + + −ρ k ρ k T
l

q k q k( 1) ( ) ( ( 1) ( ))i i
i

i i (1)

where k is the time step index, ρ k( )i is the density of Cell i during the
kth time step, T is the length of the time step, li is the length of Cell i,
and q k( )i is the flow rate into Cell i during the kth time step. The flow
rate is determined by the sending and receiving functions. For Cell i, the
sending function S k( )i represents the maximum flow that can be sup-
plied during the kth time step, and the receiving function R k( )i re-
presents the maximum flow that can be received. The two functions are
determined in Eqs. (2) and (3), respectively:

=S k min v ρ k Q( ) ( ( ), )i i i C i, (2)

= −R k min Q w ρ ρ k( ) ( , ( ( )))i C i i J i i, , (3)

The flow rate, q k( )i , is determined by:

= −q k min S k R k( ) ( ( ), ( ))i i i1 (4)

The fundamental diagram changes when the VSL control is de-
ployed, as shown in Fig. 2(b). vSL is the deployed speed limit, and QVSL
and ρSL are the new capacity and critical density after activating the
VSL control. A study by Li et al. (2014b) showed that the sending and
receiving functions affected by the VSL control are determined by Eqs.
(5) and (6), respectively:

=S k min v v ρ k Q( ) min ( ( , )* ( ), )i i SL i i VSL i, , (5)

= −R k min Q w ρ ρ k( ) ( , ( ( )))i VSL i i J i i, , (6)

A phenomenon called “capacity drop” represents the discharge flow
rate dropping below capacity after the congestion forms (Hall and
Agyemang-Duah, 1991; Cassidy and Rudjanakanoknad, 2005). Ac-
counting for capacity drop helps to better simulate traffic conditions.
Capacity drop is accounted for by adopting the fundamental diagram in
Fig. 2(b) where QD is added to the triangular fundamental diagram. The
capacity drops from QC to QD at the onset of congestion. Similar to the

study by Li et al. (Li et al., 2014b), the modified sending and receiving
functions are formulated in Eqs. (7) and (8), respectively:
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3.2. Binary logistic regression model

Eq. (9) shows how the probability of a crash event is formulated in a
binary logistic regression model:

=
+

Xp
g X

e
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i
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where Xp ( )i represents the crash probability given
= …X x x x( , , , )i i i i k,1 ,2 , , a set of k explanatory variables for sample i, and

g X( )i is a linear combination of the following variable set:
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where ( …β β β β, , , , )k0 1 2 are the corresponding coefficients for
…x x x( , , , )i i i k,1 ,2 , .

The parameters = …β β β β β( , , , , )k0 1 2 can be estimated by max-
imizing the following log-likelihood function:
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4. Data description and processing

Three data sources were consulted to develop a comprehensive
approach: a) 1-min time interval traffic information from the
WisTransPortal V-SPOC (Volume, Speed, and Occupancy) application
suite (Parker and Tao, 2006); b) crash data from the web-based query
and retrieval facility for Wisconsin Department of Transportation crash
data and from reports archived in the WisTransPortal data management
system; and c) weather information (e.g. snow, rain) from the Road
Weather Information System (RWIS) in WisTransPortal.

4.1. Study site and CTM setup

A 4.15-mile corridor on I-94 East in Waukesha, WI was selected as
the study site. The site was selected based on the following criteria:
spacing of loop detector stations, traffic data quality, and crash sample
size. The selected roadway corridor, as shown in Fig. 3, has three lanes
with one on-ramp and one off-ramp. The corridor consists of three
segments, S1, S2, and S3, which are 1.77-mile, 0.79-mile and 1.59-mile
long, respectively. Segment S2 starts at the end of the off-ramp and ends
at the beginning of the on-ramp. The posted speed limit was 65 MPH in
S1, and 55 MPH in S2, and S3. Other roadway characteristics such as
lane width and shoulder width did not change along the corridor.

Fig. 2. (a) Triangular fundamental diagram; (b) Fundamental diagram with
capacity drop.

Fig. 3. Layout of physical loop detector stations.
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The corridor was instrumented with seven mainline loop detector
stations: N1, N2, …, N7. The stations are referred to as physical stations
so as to differentiate them from the virtual detectors introduce later.
The seven stations space between 0.50 and 1.00mile, with an average
of 0.69mile and a standard deviation of 0.20mile. One loop detector
station was located on the off-ramp, but no stations exist on the on-
ramp. The traffic flow of the on-ramp can be imputed based on the
conservation of vehicles using the flows from the nearest upstream and
downstream detector stations.

The corridor was divided into 41 virtual cells for CTM simulation,
and the cell length is uniform within each of the three segments.
Segment S1 has 17 cells with a length of 0.104mile; segment S2 has 8
cells with a length of 0.098mile; segment S3 has 17 cells with a length
of 0.099mile. A virtual detector station was instrumented at the
boundaries of cells, so there were 42 virtual detector stations and
spacing between consecutive virtual stations averaged 0.1mile with
negligible variation. The off-ramp was located at the end of the 17th
cell, while the on-ramp was located at the beginning of the 26th cell.

The virtual stations were set up at cell boundaries, similar to phy-
sical detector stations, to measure flow, speed, and density. Virtual
stations were expected to capture traffic conditions at locations closer
to the crash site.

Crashes that occurred at the study site from 2012 to 2014 were
included. Any crash that happened within one hour after a crash oc-
currence was considered a secondary crash and was subsequently re-
moved as indicated in (Hirunyanitiwattana and Mattingly, 2006).
Crashes with missing times were excluded, as crash time is required to
retrieve the traffic data.

A critical component of developing a crash prediction model is the
knowledge of the traffic conditions experienced by the vehicle right
before a crash; therefore, it is important to pinpoint the exact time in
which a crash occurs. Crash times are sometimes rounded to the nearest
5-minute time stamp, and are therefore not reliable (Golob and Recker,
2003; Kockelman and Ma, 2004). Crash times in this study were care-
fully reviewed, and no rounding issue was found. Crashes were then
randomly sampled and compared to the abrupt changes in traffic con-
ditions based on which crash times could be identified (Abdel-Aty et al.,
2005; Zheng et al., 2010). The validation result was positive, and the
crash times from the database were used as the actual crash occurrence
times.

4.2. CTM calibration

A fundamental diagram is required to operate the CTM simulation.
Differing roadway characteristics (e.g., horizontal curves, distances to
on-/off-ramps, posted speed limits) mean different cells could have
varying traffic patterns, which lead to different fundamental diagrams.
Thus, one fundamental diagram was calibrated using the traffic data
collected from each mainline detector station. The fundamental dia-
gram was based on the flow-density plot. The flows and speeds were
collected from the loop detector stations, while the densities were de-
termined by flow and speed.

The calibration algorithm in Dervisoglu et al. (Dervisoglu et al.,
2009) was adopted with modifications to calibrate the fundamental
diagram. The full description of the algorithm is summarized as follows:

1 Estimate the free-flow speed, v, using the least-squared method with
flow-density pairs in the free-flow conditions. Since the speed limits
of the segments are 65 MPH and 55 MPH, data points with speeds
exceeding 55 mi/h in segment S1 and 45 mi/h in segments S2, and S3
were deemed to be in free flow conditions.

2 Find the maximum measured flow rate, qmax, as the capacity, QC.
Critical density is determined by =ρC

Q
v
C . Few and unsustainable

observations with extremely high flow rates, a phenomenon of ca-
pacity overestimation, were observed. The formula to compute the

nominal capacity (in veh/h/lane) of freeways in HCM 2010 was
adopted, as opposed to using the high flow rates (Transportation
Research Board, 2010):

= ⎧
⎨⎩

≥
− × − <

Capacity
veh h lane if FFS mi h

FFS veh h lane if FFS mi h
2400 / / , 70 /
2400 10 (70 ) / / , 70 / (12)

The capacity was then determined by taking the minimum of Qc and
the nominal capacity given by Eq. (12).

3 Estimate the shockwave speed, w, and the jam density, ρJ , using the
least-squared method with flow-density pairs exceeding the critical
density. The flow rate after the capacity drop was set as the value on
the fitted flow-density line at the critical density.

Following the modified algorithm, fundamental diagram parameters
were obtained for each physical detector station as shown in Table 1.
Note that ρC, ρJ , Qc and QD are for three lanes. The magnitude of the
capacity drop is from 2.0% to 6.9% for all physical stations except N4
which has a 13.9% capacity drop rate. The set of fundamental diagram
parameters calibrated for one physical station was assigned to cells near
that station.

4.3. CTM simulation

The simulation time step in CTM needs to be chosen so that the
Courant–Friedrichs–Lewy (CFL) condition (Courant et al., 1967) is
fullfilled. A vehicle cannot travel across more than one cell during one
simulation step in the CFL condition, i.e., ≤v t l*Δi i where vi is the free-
flow speed, tΔ is the simulation time step, and li is the cell length. A 5-
sec time step was used ( =t sΔ 5 ) based on the lengths of cells.

Entering flow and exiting flow of the highway corridor are required
to run the CTM. The four flow inputs were required for the study site,
including in-flow, qin, out-flow, qout , off-ramp flow, r , and on-ramp flow
f (as shown in Fig. 3). The 1-min flow data collected from the first
physical station, N1, and the last physical station, N7, in the 0–5min
period prior to a crash/non-crash were used as the in-flow and out-flow
of the corridor. A linear interpolation method was applied to generate
the 5-s in-flow, out-flow, on-ramp flow and off-ramp flow data. A CTM
was then run to simulate how traffic in cells along the corridor evolves
at each time step within the 5-min time interval.

In addition to the flow data, initial densities of cells at the beginning
of the simulation interval are also needed for the CTM simulation. The
initial density of a cell was obtained from the station’s density data as
long as the cell had one loop detector station. Densities of cells between
two such cells were interpolated using the following approach:

1 Compute the density change rate as the ratio of the difference in
densities of two cells with two consecutive loop detector stations
and the distance between them: ∇ =

−
−ρ

ρ ρ
x x

d u

d u

,0 ,0 , where ∇ρ is the
density change rate; ρd,0 and ρu,0 are densities of cells having the
downstream and upstream detector stations, respectively; xd and xu
are the locations of the beginnings of the two cells, that is, the

Table 1
Fundamental Diagram Parameters by Physical Station.

Station v (mi/h) ρC (veh/
mi)a

ρJ (veh/
mi)a

QC (veh/
h)a

QD (veh/
h)a

w (mi/h)

N1 67.0 106.1 486.0 7111 6890 18.1
N2 68.4 104.6 588.4 7152 6816 14.1
N3 66.5 106.7 472.2 7095 6603 18.1
N4 59.8 97.0 799.0 5796 4989 7.1
N5 60.8 113.9 779.9 6924 6671 10.0
N6 58.0 118.0 460.4 6839 6703 19.6
N7 60.1 114.8 375.5 6903 6683 25.6

a Parameters are for three lanes.

Z. Chen, X. Qin Accident Analysis and Prevention 125 (2019) 320–329

323



locations of the two detector stations.
2 Determine the initial density of one cell between those two cells by
the following: = + ∇ −ρ ρ ρ x x*( )i u i u,0 ,0 , where xi is the location of
the beginning of one cell between the two cells.

5. Crash modeling

The simulated traffic data were collected from the virtual upstream
and downstream stations to the cell location of each crash/non-crash in
the prior 0-5-min period. The time period of 0–5min prior to a crash
was used in order to account for the temporal issue of physical station
data, as the simulated traffic data in the future 5-min period would be
employed for crash prediction. More details will be illustrated in
Section 6. 0.2 mi was selected as the distance from the crash cell lo-
cation to its virtual upstream and downstream stations. One virtual
upstream station and one virtual downstream station that are both 0.2
mi (i.e., two cells) away from the crash cell location were identified as
stations from which to collect the simulated traffic data.

The spacing between virtual upstream and downstream stations for
the 0.2-mi distance setting is 0.5 mi, which is not larger than the
smallest spacing between physical stations. Therefore, the 0.2-mi dis-
tance setting provides traffic data from stations with both uniform and
short distances from the crash (non-crash) location. The feasibility of
uniform and close distances can be tested by comparing the perfor-
mance of two different models: Model V, which is developed with vir-
tual station data in the 0.2-mi distance setting; and Model P, which is
developed with physical station data.

The 5-s traffic data from the two selected virtual stations were ag-
gregated into the 5-min interval for each crash and non-crash case and
converted into traffic flow variables in Table 2. Due to the inter-
correlation between the three traffic parameters of flow, density, and
speed, traffic variables related to density and speed were kept to avoid
serious correlations between candidate variables.

Three additional groups of traffic variables were considered aside
from mean and standard deviation of density and speed, roadway
characteristics, and weather factors that have been frequently used in
previous studies (Abdel-Aty et al., 2004; Abdel-Aty and Pande, 2006;
Pande and Abdel-Aty, 2006; Abdel-Aty et al., 2012; Xu et al., 2012,

2016). The first group is related to the time-series difference in density
and speed; the second group is related to the difference between
downstream and upstream density and speed; the third group is related
to the traffic state of the location.

The time-series difference is the difference between the density or
speed in the next 5-s and that in this 5-s. Variables such as AvgTsdDenu
(average time-series absolute difference in 5-s density at the upstream
station) and StdTsdDenu (standard deviation of time-series difference in
5-s density at the upstream station) were calculated by Eq. (13) and
(14), and AvgTsdSpdu (average time-series absolute difference in 5-s
speed at the upstream station) and StdTsdSpdu (standard deviation of
time-series difference in 5-s speed at the upstream station) were cal-
culated in the same way,

=
∑ −= +AvgTsdDen

Den Den
59u

t u t u t1
59

, 1 ,

(13)

∑
=

⎡

⎣
⎢ − − ⎤

⎦
⎥

−

∑
= +

−= +

StdTsdDen

Den Den( )

59 1u

t u t u t
Den Den

1

59
, 1 ,

( )

59

2
t u t u t1
59

, 1 ,

(14)

where Denu t, is the 5-s upstream density at time step t=1, 2, …, 60 (60
5-s in one 5-min interval). This variable group measures the traffic
trend over time. The average absolute time-series difference in density
or speed measures the traffic stability over time, and a large value in-
dicates that the traffic is very unstable. The standard deviation of time-
series difference in density or speed measures the consistency of traffic
changes, and a large value indicates that the traffic changes are very
fluctuant over time.

The second group is related to the difference between downstream
and upstream density and speed. Variables such as AvgDiffDend-u and
StdDiffDend-u were computed by Eqs. (15) and (16), and AvgDiffSpdd-u
and StdDiffSpdd-u were calculated in the same way,

=
∑ −

−
=AvgDiffDen

Den Den( )
60d u

t d t u t1
60

, ,

(15)

Table 2
Candidate Variables.

Variable Description

AvgDenu Average 5-s density at the upstream station (veh/mi)
AvgSpdu Average 5-s speed at the upstream station (mi/h)
StdDenu Standard deviation of 5-s density at the upstream station (veh/mi)
StdSpdu Standard deviation of 5-s speed at the upstream station (mi/h)
AvgTsdDenu Average time-series absolute difference in 5-s density at the upstream station (veh/mi)
AvgTsdSpdu Average time-series absolute difference in 5-s speed at the upstream station (mi/h)
StdTsdDenu Standard deviation of time-series difference in 5-s density at the upstream station (veh/mi)
StdTsdSpdu Standard deviation of time-series difference in 5-s speed at the upstream station (mi/h)
AvgDend Average 5-s density at the downstream station (veh/mi)
AvgSpdd Average 5-s speed at the downstream station (mi/h)
StdDend Standard deviation of 5-s density at the downstream station (veh/mi)
StdSpdd Standard deviation of 5-s speed at the downstream station (mi/h)
AvgTsdDend Average absolute time-series difference in 5-s density at the downstream station (veh/mi)
AvgTsdSpdd Average absolute time-series difference in 5-s speed at the downstream station (mi/h)
StdTsdDend Standard deviation of time-series difference in 5-s density at the downstream station (veh/mi)
StdTsdSpdd Standard deviation of time-series difference in 5-s speed at the downstream station (mi/h)
AvgDiffDend-u Average difference between 5-s downstream and upstream density (veh/mi)
AvgDiffSpdd-u Average difference between 5-s downstream and upstream speed (mi/h)
StdDiffDend-u Standard deviation of difference between 5-s downstream and upstream density (veh/mi)
StdDiffSpdd-u Standard deviation of difference between 5-s downstream and upstream speed (mi/h)
FF 1 = if the location is in the free-flow state; 0 = otherwise
BN 1 = if the location is in the bottleneck front state; 0 = otherwise
BQ 1 = if the location is in the back-of-queue state; 0 = otherwise
CT 1 = if the location is in the congestion state; 0 = otherwise
Curve 1 = Horizontal curve section; 0 = otherwise
Rain 1 = if the weather is rainy; 0 = otherwise
Snow 1 = if the weather is snowy; 0 = otherwise
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where Dend t, is the 5-s downstream density at time step t=1, 2, …, 60.
This variable group indicates the difference between traffic conditions
upstream and those downstream from the crash location. A large
average difference in density or speed implies that the upstream traffic
conditions are very different from the downstream traffic conditions. A
large standard deviation of the differences implies that the traffic dif-
ference is not very consistent. Although the average absolute difference
in upstream and downstream traffic parameters appears to have a sig-
nificant relationship with the crash occurrence in (Xu et al., 2014,
2016), the average of the regular difference rather than of the absolute
difference was considered because the sign may carry crucial in-
formation.

The third group is associated with the traffic state at the crash/non-
crash location. The average density was used to measure the level of
traffic congestion at the virtual upstream and downstream station (Yeo
et al., 2013). Traffic is congested if the average density is greater than
the critical density; otherwise, traffic is in free flow. The traffic state
was determined based on the combination of the upstream and down-
stream traffic conditions:

1 Free Flow (FF): when both upstream state and downstream state are
free flow;

2 Bottleneck front (BN): when upstream is congested and downstream
is free flow;

3 Back of queue (BQ): when upstream is free flow and downstream is
congested; and

4 Congested traffic (CT): when both upstream and downstream are
congested.

The CTM cannot run for crash cases that have missing physical
detector data, so after such crashes were removed, a total of 113 crashes
remained crash modeling. 2260 non-crash cases with a 20:1 non-crash
to crash case ratio were randomly selected from 1,578,240-min inter-
vals in 2012–2014 at one out of 41 cells. Only the non-crash cases that
are not within 2 h from any crash were selected. The 5-min traffic data
consisting of data from five 1-min intervals were retrieved from phy-
sical stations for non-crash cases in the same way that data were re-
trieved for crashes. The data were employed to generate simulated
traffic data using the CTM. Candidate variables for all non-crash cases
were obtained as well. The final dataset consists of 113 crash cases and
2260 non-crash cases.

Table 3 shows the distribution of crash and non-crash cases by
traffic state. Most crashes happened in the FF state, while the fewest
happened in the BN state. The ratio of crash cases to non-crash cases
indicates the crash probability in each state, and a larger ratio suggests
a more crash-prone state. As expected, the ratios in the BN, BQ and CT
states were considerably higher than those of the FF state.

Traffic patterns may vary in different traffic states, so the traffic
flow variables could have distinct distributions across traffic states. For
example, Xu et al. (2012) observed varying speed differences between
upstream and downstream stations for different traffic states. The hy-
pothesis was tested by dividing the whole dataset into subsets by traffic
state. The distributions of traffic flow variables across traffic states were

compared using a t-test. The comparison results show that all traffic
variables have different distributions over all four states; and most
traffic variables have different distributions in any two states, in-
dicating that it would not be appropriate to develop a single model for
all states without considering the interaction between the traffic vari-
ables and traffic states.

Crash-prone variables could vary in different traffic states. Data
subsets for different states were used to identify statistically significant
variables in each state. In each traffic state, the significance of each
candidate variable was identified by developing a binary logit model
for that variable only. A 10-fold modeling procedure was conducted to
avoid spurious significance; the dataset for one traffic state was ran-
domly split into ten subsets, and all variables’ significance was checked
for any nine out of the ten data subsets. Table 4 reports the number of
significant runs for all candidate variables based on the 10% sig-
nificance level. A variable was identified as truly significant and was
kept for further modeling if it was significant in at least eight out of ten
runs. Correlations between significant variables in each traffic state
were examined. Candidate models were developed with a maximum
number of uncorrelated significant variables for each, and the model
with the smallest AIC was selected as the optimal model.

Table 5 presents the modeling results by traffic states. The table

Table 3
Case Frequency by Traffic State.

Traffic State Crash Non-Crash Ratio

FF 62 1,978 1:31.9
BN 5 90 1:18
BQ 15 95 1:6.3
CT 31 97 1:3.1

Table 4
Number of Significant Runs for Candidate Variables.

Variable FF BN BQ CT

AvgDenu 10 0 0 10
AvgSpdu 10 0 0 0
StdDenu 10 0 0 10
StdSpdu 10 0 0 0
AvgTsdDenu 10 1 0 1
AvgTsdSpdu 10 0 1 5
StdTsdDenu 10 0 0 1
StdTsdSpdu 10 0 0 5
AvgDend 10 0 8 0
AvgSpdd 10 0 9 5
StdDend 10 0 0 0
StdSpdd 10 0 0 0
AvgTsdDend 10 1 10 2
AvgTsdSpdd 10 1 7 0
StdTsdDend 10 0 6 5
StdTsdSpdd 10 0 1 1
AvgDiffDend-u 0 0 0 10
AvgDiffSpdd-u 0 0 0 10
StdDiffDend-u 10 0 2 1
StdDiffSpdd-u 10 1 0 2
Curve 10 0 10 0
Rain 0 0 0 0
Snow 9 0 0 0

Table 5
Modeling Results of Crash Prediction Model by Traffic State.

Variable Estimate Standard Error P-value

FF
Intercept −4.586 0.246 <0.001
StdTsdDend 0.460 0.084 <0.001
StdTsdSpdd 0.942 0.256 <0.001
Snow 1.182 0.495 0.017

BN
Intercept −2.415 0.466 <0.001

BQ
Intercept −3.762 0.912 <0.001
StdTsdDend 0.425 0.168 0.011
Curve 2.710 0.842 0.001

CT
Intercept −2.642 0.865 0.002
AvgDenu 0.00824 0.00391 0.035
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shows that different traffic states have varying contributing variables.
The coefficients of StdTsdDend and StdTsdSpdd for the FF state are
positive, indicating that the crash risk increases as density and speed at
downstream stations are more fluctuant. This is a logical finding be-
cause large variations in time-series changes in density and speed re-
flect turbulent traffic conditions that could increase crash potential. The
Snow indicator has a positive sign, implying that snow contributes to
crash occurrence in free flow traffic. However, this is not significant in
the other traffic states, possibly because drivers tend to drive faster in
free flow traffic than in the other states. No variables show significance
for the BN state, possibly due to the small sample size.

The positive signs of StdTsdDend and Curve for the BQ state indicate
that the fluctuant time-series density at the downstream station near the
curve would contribute to crash occurrence. The curve indicator shows
significance only in this state; this could be because vehicles from the
upstream free-flow traffic need to slow down to accommodate slow-
moving traffic during congestion at downstream stations, and presence
of a curve may worsen the deceleration. AvgDenu is significant and has
a positive coefficient in the CT state. The finding indicates that crash
risk increases with the increase in density at the upstream station.
Upstream traffic is already congested at the upstream station in the CT
state, which would increase upstream density and make the small dis-
tance headway even smaller, leading to higher crash likelihood.

Separate models by traffic states were combined into one model,
Model V, to assess the impact of two distances on the prediction per-
formance. Model V include the indicator of BN, BQ, and CT state (FF is
the reference state), along with interaction terms of traffic states and
other variables. Interaction terms were constructed as the interaction of
one traffic state and its significant variables, as identified in Table 6. For
example, StdTsdDend is significant in the FF state, and
FF× StdTsdDend is then the interaction term in the combined model.
The modeling results show that main effects of both BN and CT states
are statistically significant, while the main effect of BQ state is not
significant. All interaction terms remain significant and their signs re-
main the same.

A crash prediction model, Model P, was developed in the same way
with observed traffic data collected from physical stations for com-
parison with Model V. The prediction accuracy of the two models was
checked by conducting the 10-fold cross-validation with significant
variables from each model. The 10-fold cross-validation method first
randomly partitions the dataset into ten equally sized subsamples. A
single subsample is used as the validation dataset, and the other nine
are used as training datasets. A model was then fitted with significant
variables given the training dataset, and was then used to predict the
crash probability of observation in the validation dataset. This proce-
dure was repeated ten times, with each of the ten subsamples used
exactly once as the validation dataset.

Based on the validation results, ROC (receiver operating char-
acteristic) curves for these two models are plotted in Fig. 4, and the
AUC (Area Under Curve) values are 0.80 for Model V and 0.78 for
Model P, respectively. The ROC curve is a plot of sensitivity against 1-
specificity for different thresholds of predicted crash risk. The

sensitivity represents the proportion of correctly predicted crash cases
among all crash cases, or the prediction accuracy of crash cases, while
specificity represents the proportion of correctly predicted non-crash
cases among all non-crash cases. 1-specificity is the proportion of in-
correctly predicted non-crash cases among all non-crash cases, which is
also called the false alarm rate. A higher sensitivity along with a lower
1-specificity is preferred. The AUC value represents the total prediction
accuracy, and a higher value is favored. Model V provides a higher AUC
than Model P. It suggests that simulated traffic data from uniformly and
closely spaced virtual stations can provide better model performance by
considering the spatial issue of physical station data.

A pre-specified crash probability threshold was determined to
classify crashes from non-crashes based on Model V. Both the sensitivity
and specificity needs to be balanced to achieve overall desirable clas-
sification performance. Equal weights were assigned to the sensitivity
and specificity, and the pre-specified crash probability threshold that
yielded the maximum weighted summation was 0.0482. The yielded
sensitivity and specificity are 0.646 and 0.839, respectively. It means
64.6% (around 73 out of 113) crashes and 83.9% (around 1896 out of
2260) non-crashes can be correctly identified by Model V. This crash
probability threshold will be applied in the next Section.

6. Crash prediction and prevention method

In this study, a crash prediction and prevention method was pro-
posed. The purpose is to identify crash-prone traffic conditions in real
time and to evaluate TCS alternatives for effectiveness in reducing crash
risk. Fig. 5 presents the working process.

The method consists of a crash prediction module and a crash pre-
vention module. The crash prediction module takes the real-time data
as the input. It first simulates the traffic in the future 5-min period using
CTM and predicts the crash risk for that period based on simulated
traffic data. If the predicted crash risk exceeds the pre-specified
threshold, the crash prevention module will be activated. Several can-
didate TCS alternatives may be considered to reduce the crash risk.
Each TCS alternative will be simulated in CTM to produce what traffic
conditions would be in the future 5-min period if that TCS is deployed.
The predicted crash risk is estimated based on the simulated traffic
data, and the safety impact of that TCS is evaluated. The optimal TCS is
chosen based on established criteria.

In the real-time crash prediction module, traffic conditions during
the future 5-min period need to first be simulated using CTM. The initial

Table 6
Results of the Combined Model, Model V.

Variable Estimate Standard Error P-value

Intercept −4.542 0.238 < 0.001
BN 2.126 0.524 < 0.001
CT 1.899 0.897 0.034
FF×StdTsdDend 0.447 0.083 < 0.001
FF×StdTsdSpdd 0.946 0.255 < 0.001
FF×Snow 1.168 0.494 0.018
BQ×StdTsdDend 0.551 0.083 < 0.001
BQ×Curve 3.196 0.657 < 0.001
CT×AvgDenu 0.00824 0.00392 0.035

Fig. 4. ROC curves for models with different data sources.
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densities of all cells were estimated with densities from the seven
physical stations at the current moment. The flow inputs, including in-
flow, qin, off-ramp flow, r , and on-ramp flow f (as shown in Fig. 2) in
the future 5-min period were required for CTM simulation and were
estimated using the k-nearest neighbor (k-NN) approach. The k-NN
approach has been applied in a number of studies to forecast traffic flow
rates and has shown promising results (Oswald et al., 2001; Smith et al.,
2002; Clark, 2003; Habtemichael and Cetin, 2016).

The past 30min was considered to be the most recent time period.
Flows in the recent time period were considered as the subject flow set.
All flow sets during the same time period from last 90 days were con-
sidered as candidate flow sets and were matched with the subject flow
set. The ten nearest matches with the ten smallest distances were se-
lected. The distance is determined by the following:
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where = …X x x( , , )m m m
1 30 is the mth candidate flow set of 30 1-min flow

points; = …Y y y( , , )1 30 represents the subject flow set. The flow in the
future 5-min period is calculated as the weighted average of flows in the
next 5-min period for those matched flow sets by the following:
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where = …Y y y( , , )F F F
1 5 represents the estimated flow set in the future 5-

min period, Dk is the kth smallest distance for kth nearest matched flow
sets among those 10 nearest matched sets, and = …X x x( , , )k F k F k F,

1
,

5
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the flow set in the next 5-min period for kth nearest matched flow sets.
After the required flows are estimated, they are used to run the CTM

to simulate traffic in the future 5-min period. Simulated traffic is then
used to predict the crash risk of each cell. Simulated traffic data for each
cell is collected from its virtual upstream and downstream stations,
both of which are 0.2 mi away, and is then converted into variables as

presented in
The predicted crash risk of Cell i is estimated as
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Crash-prone traffic conditions are detected when the predicted
crash probability exceeds an established threshold. If crash-prone
conditions are detected, the crash prevention module will be activated.
The safety impacts of various TCS are then evaluated. The optimal
traffic control strategy is then deployed to improve the safety condition.

The proposed crash prediction and prevention method was applied
to the study site for demonstration. The VSL control was chosen due to
its effectiveness in reducing crashes (Abdel-Aty et al., 2006; Lee et al.,
2006; Lee and Abdel-Aty, 2008). The method can be extended to
evaluate the safety and mobility impacts of other TCSs such as ramp
metering, HOV lane control, hard shoulder running and queue warning
whose effectiveness can be successfully simulated in CTM (Gomes and
Horowitz, 2006; Kim and Yeo, 2013; Li et al. 2017). Fig. 6 presents the
layout of VSL signs along the study corridor. Eight coordinated VSL
signs are marked from VSL 1 to VSL 8 and all spacings between adjacent
VSL signs are 0.50 mi. Each 0.50-mi spacing consists of five uniform
0.10-mi cells, so there are 35 cells between VSL 1 and VSL 8.

The VSL control strategy proposed in this study was to gradually
reduce the posted speed limits of activated VSL signs until a target
speed reduction was achieved. When the predicted crash probability of
one cell in the future 5-min interval exceeds the pre-specified threshold,
the nearest upstream VSL sign will be activated. The pre-specified crash
probability threshold was set to be 0.0482 because it provided desirable
classification performance with the maximum summation of sensitivity
and specificity.

Several parameters need to be decided to develop an effective VSL
control, including target speed drop, speed change rate, and maximum
speed difference between adjacent VSL signs. Two target speed drop
alternatives were proposed: 10 MPH and 20 MPH speed reduction. The
target speed limit would be 55 MPH after a 10 MPH speed reduction
and 45 MPH after a 20 MPH speed reduction, with an initial speed limit
of 65 MPH. The speed change rate determines how fast the VSL sign
should change the posted speed limit. A large speed change rate may
introduce significant traffic disturbances, whereas a small speed change
rate could fail to achieve the target speed limit in a reasonable time
period. VSL signs were coordinated to create smooth speed changes
between consecutive links. The maximum speed difference between
adjacent VSL signs needs to be satisfied. The speed change rate was set
to be 10 MPH per 30 s, meaning that the posted speed limit reduces by
10 MPH and stays for 30 s until the next speed change. The maximum
speed difference between consecutive VSL signs was set to be 10 MPH.
The values for these two parameters have been proven to produce a
satisfactory performance for the VSL control (Li et al., 2014a).

Once the crash prevention module is initiated, the proposed VSL

Fig. 5. Process of the crash prediction and prevention method.

Fig. 6. Layout of VSL signs along the corridor.

Z. Chen, X. Qin Accident Analysis and Prevention 125 (2019) 320–329

327



strategy with two speed drop alternatives would be simulated in the
CTM for 5min, and then simulated traffic would be used to assess the
safety effects and mobility effects. The safety effect is measured as
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where R is the crash risk of the corridor, ri is the crash risk of Cell i, pi is
the predicted crash probability of Cell i and can be estimated using Eq.
(19) given the simulated traffic flow, pthre is the threshold of predicted
crash probability for crash classification, which is 0.0482. The mobility
effect is measured by the Total Travel Time (TTT).

The proposed crash prediction and prevention method was tested on
the 113 crash cases and 2260 non-crash cases that were used for de-
veloping crash prediction models. Five minutes before each crash oc-
currence was equivalent to the “current moment”; the 0-5-min interval
before its crash time was equivalent to the “future 5-min period”; the
30-min interval before the “current moment” was equivalent to the
recent time period. The flows were estimated using the k-NN approach
and were then applied to simulate the traffic in the “future 5-min
period”. The crash risk of each cell was re-predicted using Eq. (19)
based on the simulated traffic. The crash prevention module was acti-
vated when the crash risk of any cell exceeded the threshold. One
control strategy would be deployed among three alternatives: 1) Non-
activated VSL, 2) VSL control with 10 MPH reduction, and 3) VSL
control with 20 MPH reduction. The non-activated VSL strategy would
not change the traffic conditions and therefore would not change the
crash risk. The control strategy that can provide the smallest crash risk
would be deployed.

The proposed VSL strategy consists of three VSL alternatives. The
prevention method evaluated the safety impacts of all alternatives and
recommended the best one, which is different from the method pro-
posed by Kononov et al. (2012). Kononov et al. determined the target
speed limit of VSL based on crash potential that is defined as the pro-
duct of observed traffic density and the square of observed traffic speed.
The target speed limit was determined in such a way that the resultant
crash potential would be lower than a pre-specified threshold.
However, the approach of Kononov et al. is not applicable in this study
as there is no clear relationship between the predicted crash probability
and the target speed limit in Eq. (19).

The effectiveness of the crash prevention module was evaluated
based on the relative change in R, and TTT. The relative change in the
three measures is estimated by
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where ΔM is the percentage of relative change in one measure (i.e., R,
or TTT), Mk CPS, is the measure of case k with the crash prevention
module, and Mk Non, is the measure of case k without the crash pre-
vention module.

Table 7 shows the safety and mobility effects by control strategy.
The crash prevention module was triggered 351 times, including 65
times out of 113 crash cases and 286 times out of 2260 non-crash cases.

Among the ten crash cases and 216 non-crash cases where the VSL was
activated, improved safety results were observed. The VSL with 10 MPH
reduction was activated for six crash cases and 29 non-crash cases; and
the VSL with 20 MPH reduction was activated for four crash cases and
41 non-crash cases. On average, the crash prevention module reduced
crash risk by 8.9% and increased mobility by 0.7% for all 351 cases. The
proposed crash prevention module seems promising in improving safety
without compromising mobility.

When considering only the cases where the VSL was activated, the
average decrease in the crash risk is 26.3% for 10 MPH reduction and
36.4% for 20 MPH reduction, respectively. In a field evaluation on the
VSL system implemented on Interstate 5 (I-5) in Washington, notable
safety impact of the VSL has been observed (Pu et al., 2017). The ob-
servational before-after EB study suggested that the VSL system yielded
29% reduction in total crashes with a standard deviation of 5%. The
findings from the field data support that the proposed method based on
simulated traffic data is a viable alternative to safety analysis and
evaluation.

7. Conclusions

Conventional real-time freeway crash prediction models identify
crash-prone traffic conditions based on live feeds from loop detectors. It
is common practice to use traffic data from the 5-10-min period prior to
a crash, as this ensures sufficient time for taking the proper precautions.
However, the phenomenon of time proximity suggests that traffic
conditions occurring within the 0-5-min period of a crash are more
relevant when it comes to predicting crashes. Moreover, a crash can
happen between two detector stations where traffic information is not
available, and the actual traffic conditions at the crash site may deviate
from those captured by loop detector stations. Therefore, crash patterns
derived from loop detector locations, as opposed to crash locations, are
inadequate in accounting for varying distances between crashes and
detectors. CTM-simulated traffic data were introduced in this study to
fill the spatial and temporal gaps inherent in the observed traffic data
collected from physical loop detector stations. Based on the traffic flow
theory, CTM can predict traffic conditions anywhere at any time from
its virtual detectors.

A real-time crash prediction model was developed with data from a
corridor of I-94 in Wisconsin. The corridor was divided into a series of
cells to create a uniform and close layout of virtual detector stations.
Traffic data simulated from virtual upstream and downstream stations
with consistent spacings was used for crash modeling to account for the
spatial gap in physical station data. The simulated traffic data in the 0-
5-min period prior to the crash/non-crash were used for crash mod-
eling, and the traffic in the future 5-min period were simulated for crash
prediction. In this way, the temporal issue of physical station data was
also taken into consideration.

Simulated traffic data collected from one virtual upstream station
and one virtual downstream station were used for crash modeling. The
modeling results showed that varying variables are significantly related
to the crash occurrence in different traffic states. Observed traffic data
collected from physical stations were also employed for crash modeling.
The prediction performance of the two crash prediction models was
compared, showing that the simulated traffic data would improve

Table 7
Safety and Mobility Effects by Deployed Control Strategy.

Crash Cases Non-Crash Cases Total

Control Strategy N ΔR ΔTTT N ΔR ΔTTT N ΔR ΔTTT

Non-activated VSL 55 0% 0% 216 0% 0% 271 0% 0%
VSL:10 MPH Reduction 6 −21.9% 5.2% 29 −27.3% 6.2% 35 −26.3% 6.0%
VSL:20 MPH Reduction 4 −100% 0.1% 41 −36.2% 2.2% 45 −36.4% 2.0%
Total 65 −4.3% 0.5% 286 −10.3% 0.7% 351 −8.9% 0.7%
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prediction performance by accounting for the spatial-tempo issue of
physical station data.

A crash prediction and prevention method based on simulated
traffic data was proposed to detect crash-prone conditions and help
select the desirable TCS for crash prevention. The proposed method was
tested in a case study with VSL strategies for demonstration, and results
showed that the proposed crash prediction and prevention method
could effectively detect crash-prone conditions and evaluate the safety
and mobility impacts of various TCS alternatives before their deploy-
ment.

In future studies, a lane-specific CTM can be developed to provide
simulated traffic on a lane-by-lane basis, therefore advancing the crash
prediction performance with lane-specific traffic data. Future studies
should also test other traffic control strategies, such as more flexible
VSL control strategies and ramp metering.
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