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Abstract
Pedestrian and bicycle crashes have been increasing at an alarming pace in recent years. Between 2009 and 2016, annual U.S.
pedestrian fatalities increased 46%, and bicyclist fatalities increased 34%. Crashes involving pedestrians and bicyclists, or vul-
nerable road users (VRUs), are negatively correlated with roadway factors, and positively correlated with environmental and
socioeconomic factors. However, specific variables representing these factors are often correlated, making it difficult to accu-
rately characterize relationships between individual variables and pedestrian and bicyclist safety. This study used the structural
equation model technique to overcome this problem. Pedestrian and bicyclist crash frequency and more than 60 explanatory
variables for 200 highway corridors in Wisconsin were collected. The interrelationships between observed ‘‘manifest’’ vari-
ables and unobserved ‘‘latent’’ variables were tested. The results suggest that the most important latent variables influencing
the crash frequency of VRUs are bicycle/pedestrian-oriented roadway design (e.g., paved shoulders, sidewalks, and bike lanes),
exposure (e.g., walking and biking activity, and employment density), and low social status (e.g., educational level, and wage
percentage). The benefits of this study may help community planners, transportation researchers, and policymakers with a
better understanding of the intricate interrelationship of the influential factors contributing to VRUs road crashes.

Pedestrians and bicyclists are commonly referred to as
vulnerable road users (VRUs) because they often suffer
the most in road traffic crashes. In addition to not being
protected by the body of a vehicle, they are unable to
take advantage of many safety features integrated into
vehicles such as airbags and seat belts. According to the
Fatality Analysis Reporting System, pedestrian fatalities
involving motor vehicles increased by 46% (4,109–5,987)
and bicyclist fatalities increased by 34% (628–840)
between 2009 and 2016 (1). VRUs accounted for more
than 18% of the 37,461 total U.S. fatalities in 2016, up
from a low of 13% in 2003 (2).

Walking and bicycling are inexpensive modes of trans-
portation that provide physical activity, use space effi-
ciently, and produce little pollution. However, personal
safety is often seen as a barrier to using these sustainable
travel modes (3). To improve the safety of VRUs, it is
important to understand how the characteristics of local
environments are associated with pedestrian and bicyclist
crashes. Many researchers have explored variables that
contribute to pedestrian and bicyclist crashes (4–9).
Previous studies have identified many variables, or cate-
gories of variables, that are related to VRU injuries and

fatalities, such as roadway geometry, vehicle characteris-
tics, socioeconomic characteristics, and environmental
conditions.

The statistical methods previously used are aimed to
construct models that represent the direct relationships
between explanatory and dependent variables. However,
the causes of crashes often involve intricate relationships
among multiple variables, which may not be adequately
captured. The interrelationships among explanatory vari-
ables may be better understood by applying the struc-
tural equation modeling (SEM) technique, as SEM is
generally viewed as a combination of factor analysis and
path analysis. This highly flexible model structure is
capable of representing the complex interrelationships
among exogenous and endogenous variables through the
inclusion of ‘‘unobserved’’ or latent variables.
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Specifically, SEM can handle correlations between expla-
natory variables that represent similar concepts and have
overlapped impacts on the dependent variable(s).

This study applies SEM by integrating exploratory
factor analysis (EFA) and confirmatory factor analysis
(CFA) which is a special case of SEM to establish the
relationship between pedestrian and bicyclist crashes and
explanatory variables. Specifically, the study explores
research questions such as: What are the most important
latent variables associated with the frequency of crashes
involving VRUs? Among the key latent variables, what
combinations of measurable variables provide the most sig-
nificant representation of these key latent variables? The
analysis uses pedestrian and bicyclist crash data from a
unique, detailed dataset describing 200 1-mi corridors
along the Wisconsin State Highway System.

Literature Review

Previous studies have shed light on dominant factors
related to pedestrian and bicycle crashes. Many have
examined roadway geometric characteristics such as
number of lanes, median type, speed limits, and speed
ratio (i.e., the ratio of speed from crash data over the
posted speed limit). Morency et al. confirmed the associ-
ation between wider roads and higher pedestrian-related
crash frequency, as a wider road may encourage drivers
to speed and jeopardize pedestrians. Designated right-
turn lanes and nearby driveway crossings were associated
with higher pedestrian crash risk, whereas median cross-
ing refuges were associated with lower pedestrian crash
risk at intersections (10). Quiet streets, gentle slopes, and
absence of streetcar tracks are some design features asso-
ciated with lower bicyclist crash risk (11). Moreover,
cycle tracks (11, 12), traffic diverters, and local streets
tend to separate cyclists from the moving traffic, leading
to fewer crashes (11). Roads with more traffic signals,
street parking signs, and automobile trips are associated
with more frequent bicycle crashes. Roadways with a
speed limit of 35mph and intersection density are posi-
tively related to the likelihood of pedestrian and bicyclist
crashes (11). In addition, Cai et al. stated that traffic
analysis zones (TAZs) with longer sidewalk lengths,
more pedestrians, and more employment are more sus-
ceptible to have pedestrian crashes, whereas TAZs with
longer sidewalk lengths, more employment, and higher
population density are more likely to have bicyclist
crashes (13). Road speed limit was also found to affect
bicycle crash frequency, as Siddiqui and colleagues stated
that highways with a speed limit greater than 35mph are
more likely to have bicyclist crashes (24). Density of sig-
nalized intersections, arterial and local road proportion,
and sidewalk length, are positively correlated with pedes-
trian and/or bicyclist–motor-vehicle crashes (14). While

controlling for exposure variables, several studies have
identified specific pedestrian facilities to be negatively
associated with pedestrian crashes, including median
refuge islands and rectangular rapid flashing beacons (4).

Some studies have explored how behaviors are related
to pedestrian and bicyclist crashes. Helmet usage, travel
programs such as routes to school, wearing reflective
clothing, and education related to safety among bicyclists
have been associated with fewer bicyclist fatalities.
Pedestrians and bicyclists crossing a red-light signal or
using mobile devices, and motor-vehicle drivers turning
right on red without waiting for other road users to cross
are some of the most important safety behaviors studied
(15). Vehicle speed impact on pedestrian fatality risk
reported that car speed positively and strongly affects
fatality risk among pedestrians. Above 20mph, small
increases in speed produce relatively large increases in
pedestrian injury severity (16, 17).

Other studies have identified exposure as an important
variable associated with pedestrian and bicyclist crashes.
There are a variety of exposure measures in the literature
(i.e., using census journey to work data as an exposure
proxy variable (18)), but this concept is commonly repre-
sented using pedestrian, bicyclist, and automobile counts
(19, 20). Several studies showed the relationship between
the number of pedestrian and bicyclist crashes and pedes-
trian and bicyclist activity levels. Results confirm that
the relationship is not linear (commonly referred as
‘‘safety in numbers’’ effect): pedestrian or bicycle crash
risk (e.g., crashes per crossing or per trip) decreases with
the increase in walking or cycling (19–23). One challenge
for using this important variable in safety analyses is that
few jurisdictions have sufficient pedestrian or bicyclist
count data, resulting in the use of proxy variables to rep-
resent exposure.

Regarding economic, demographic, and social charac-
teristics, Table 1 summarizes factors stated in some previ-
ous studies.

However, new research is needed to unravel the true
underpinning for pedestrian and bicycle crashes because
these minor race groups have relatively low car owner-
ship, live in high-density low-income areas, and tend to
walk/bike more (29).

Although SEM is common in the academic literature,
a relatively small number of traffic safety studies have
applied this technique. A study used SEM to examine
motor-vehicle crash severity in relation to accessibility,
human, vehicle, and roadway-related factors (30) which
were treated as latent factors. SEM was used to study the
frequency of crashes on Korean highways in which sev-
eral exogenous latent variables were defined, such as
driver, road, and environmental factors (31). Schorr and
Hamdar used SEM to develop a safety propensity index
for both signalized and unsignalized intersection (32).
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The authors argued that this singular valued index offers
an effective method for quantifying and ranking intersec-
tion safety as compared with the use of multiple criteria
(e.g., number of vehicles involved, total injuries, total
fatalities). Wang and Qin used SEM to test single-vehicle
crash severity influenced by driver characteristics, high-
way geometry and roadway conditions, roadside objects,
and environmental factors. The authors wanted to under-
stand how the observed variables affect the crash conse-
quence in a direct or indirect manner through collision
force, vehicle operating speed before the collision, and
severity index, which are unobserved or unmeasurable in
most safety studies (33). Although the application of the
SEM approach in pedestrian and bicyclist crash model-
ing is rare, other studies have utilized it to model road
user traveling behavior and mobility.

Data

This study follows Cai and colleagues’ recommendation
to further study the common unobserved factors

affecting pedestrian and bicyclist crashes (34). In contrast
to previous studies that primarily focused on predicting
pedestrian and bicyclist crashes at specific locations (e.g.,
intersections), this study focuses on a sample of 200 1-
mi-long highway corridors in Wisconsin. Figure 1 illus-
trates the corridor selection process. The corridors are in
the areas with at least 100 residents per square mile, gen-
erally including cities, suburbs, and villages but excluding
rural areas in Wisconsin. Although the spatial diversity is
desirable, the focus was on urbanized areas as these areas
tend to have higher volumes of pedestrians and bicyclists
and more pedestrian and bicyclist crashes. Among the
200 study corridors, most are located in the Southeast
Wisconsin area; 115 had at least one reported pedestrian
crash and 67 had at least one reported bicycle crash.

The study examined the frequency of pedestrian and
bicyclist crashes reported to police between 2011 and
2015 in each study corridor. These data were gathered
from the Wisconsin Department of Transportation
(WisDOT) WisTransPortal Database and only included
crash records with latitude and longitude coordinates.
Explanatory variables were collected from multiple data-
bases including the WisDOT highway inventory, U.S.
Environmental Protection Agency’s (EPA’s) Smart
Location Database (SLD), U.S. Census Topologically
Integrated Geographic Encoding and Referencing
(TIGER/Line) dataset, and Google Maps and Google
Street View imagery. Explanatory variables included
exposure-related variables (e.g., annualized average daily
traffic (AADT)), roadway segment characteristics (e.g.,
motor-vehicle AADT, average number of through lanes,
and posted speed limit), roadway intersection character-
istics (e.g., number of residential/nonresidential drive-
ways, number of signalized/un-signalized intersections,

Figure 1. Corridor selection process.

Table 1. Summary of Economic, Demographic, and Social Characteristics Influencing Pedestrian and Bicycle Crash Frequency

Author name Economic, demographic, and social characteristics Emphasis

Siddiqui et al. (24) Total population, proportion of uneducated population, land use (presence
of restaurants and bars), and park coverage

Pedestrians

Nashad et al. (25) Number of dwelling units, population density, total employment and
percentage of households with zero or one car ownership

Pedestrians and bicyclists

Lee and Abdel-Aty (26) Vehicle-miles traveled (VMT), middle-aged (25–64) and male drivers,
neighborhoods with large retail and residential land uses, high vehicular
traffic movements, high employment and population density, low-income,
and high minority environmental justice areas and races

Pedestrians

Loukaitou-Sideris et al. (27) Hotel room density, number of people walking/biking, population density,
school enrollment density, proportion of industrial employment, low-
income, and high minority environmental justice areas and races

Pedestrians and bicyclists

Nordback et al. (28) Age \18 years old, neighborhoods with large retail and residential land
uses, high vehicular traffic movements, and high employment and
population density

Bicyclists

Schneider et al. (22) Percentage of households without access to private vehicles Pedestrians and bicyclists
Morency et al. (10) Neighborhoods with large retail and residential land uses, high vehicular

traffic movements, and high employment and population density
Pedestrians
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number of right-turn/left-turn lanes on state highway
approaches to all intersections), and socioeconomic data
from surrounding census tracts. None of the study corri-
dors had pedestrian or bicyclist counts, so proxy vari-
ables were used to represent pedestrian and bicyclist
exposure, such as the percentage of workers who regu-
larly walked or bicycled to work, population density,
and job density in the surrounding neighborhoods (based
on census block groups). Table 2 shows summary statis-
tics and description of the dataset.

Theoretical Framework of SEM

The primary interest of using SEM lies in the test of its

theoretical construct which is specified by latent vari-

ables and their relationships. As shown in Figure 2 (31),

an SEM model can be depicted in a path diagram con-

sisting of boxes and circles, which are connected by

arrows. Observed variables are usually represented by

square or rectangular boxes (e.g., Two-Way Left-Turn

Lane (TWLTL)), whereas unobserved or latent variables

Table 2. Description and Summary Statistics of the Corridor Variables (N = 200)

Notation Description Coding
Mean (standard deviation)

or percentage

Wisconsin Information System for Local Roads (WISLR)
Ped_1115 Number of pedestrian crashes (2011–2015) Continuous 1.91 (3.4)
Bike_1115 Number of Bicyclist crashes (2011–2015) Continuous 0.85 (1.69)

Google Maps and Google Street View imagery
High_Spd_Lmt Posted speed limit higher than 35 mph 1 = Yes

0 = No
1 = 46%
0 = 54%

Pav_Shoulder Percentage of corridor covered by paved
shoulders on both sides (shoulder on only one
side for full length = 0.5)

1 = Yes
0 = No

1 = 72 %
0 = 28 %

Bikelane Percentage of corridor covered by designated
bike lanes on both sides (bike lane on only one
side for full length = 0.5)

Continuous 0.09
(0.26)

Sidewalk Percentage of corridor covered by sidewalks on
both sides (sidewalk on only one side for full
length = 0.5)

Continuous 0.39
(0.44)

Sidepath Percentage of corridor covered by side paths on
both sides (sidepath on only one side for full
length = 0.5)

Continuous 0.05
(0.19)

Unsignalized Unsignalized intersections along corridor Continuous 5
(4)

Mid_Block Marked midblock crosswalks across the state
highway along the corridor

Continuous 0.04
(0.24)

TWLTL Percentage of corridor length with a two-way
left-turn lane

Continuous 0.06
(0.16)

US Census TIGER/Line dataset
log_AADT Natural log of the average of all annualized

average daily traffic (AADT) volume counts
along the corridor

Continuous 9.359
(0.66)

Walk Transportation mode used to travel to work
(walking)

Continuous 0.027
(0.030)

Bike Transportation mode used to travel to work
(biking)

Continuous 0.006
(0.012)

Employ_Density Gross employment density (jobs/acre) on
unprotected land

Continuous 2.18
(3.81)

Edu_Less_H Percentage of educational attainment for the
population 25 years and over: less than high
school

Continuous 0.09
(0.07)

EPA/SLD
Total_Veh0 Percentage of population with zero car

ownership
Continuous 0.07

(0.07)
Low_Wage Percentage of workers earning $1250/month or

less (home location), 2010 decennial census
Continuous 0.28

(0.04)
Poverty Poverty status in the past 12 months by disability

status by employment status for population 20
to 64 years for whom poverty status is
determined (percentage)

Continuous 0.12
(0.10)
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are usually represented by circles or eclipses (e.g., Low

Social Status). A directional arrow (or path) in the model

usually indicates a statistical dependence, in which the

variable at the tail of the arrow causes the variable at the

point. A double-headed arrow does not represent such a

statistical dependence, but an indication of correlation

between variables.
Through the x-measurement model for exogenous vari-

ables, a y-measurement model for endogenous variables,
and the structural model between latent variables, SEM is
able to differentiate between direct, indirect, and total
effects between variables. By combining the structural
model with measurement models, SEM expresses the
regression effects of exogenous ‘‘independent’’ variables on
the endogenous ‘‘dependent’’ ones, as well as, expressing
autocorrelation ‘‘effects between endogenous variables.’’
For more details see Schumacker and Lomax (35).

The formulation of SEM in Equation 1 suggests a
structure between the covariances between observed vari-
ables (36):

y
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� �
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The model goodness of fit can be measured by the
comparative fit index (CFI) (37) in Equation 2 and the
root mean square error of approximation (RMSEA) (38)
in Equation 3.

CFI= 1� test:model

tindep:model
ð2Þ

where,

tindep:model ¼ x2
indep:model � dfndep:model

test:model ¼ x2
est:model � dfest:model

EstimatedRMSEA=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
test:model

Ndfmodel

r
ð3Þ

where, ti: degree of misspecification of the model
x2: chi-square statistic
df: degree of freedom
N: sample size
CFI is calculated using x2 statistics for two models—

the target and the baseline models—and measures how
better the model fits with a comparison to the baseline
model. The baseline model includes means and variances
of the observed variables in addition to the covariances
of the observed exogenous variables. Both indices
(RMSEA and CFI) assume that the target model is
approximately correct, but CFI carries another assump-
tion that the baseline model is also correct. CFI is based
on the assumption that all latent variables are uncorre-
lated and performs well even when the sample size is
small (39). Values for CFI range between 0 and 1, with a
value closer to 1 indicating a better fit. RMSEA—which
is a function of a chi-square and degree of freedom—
measures the difference between the observed and

Table 3. SEM Elements

Model Variable Variable description

Measurement x q 3 1 column vector of observed exogenous variables
y p 3 1 column vector of observed endogenous variables
j n 3 1 column vector of latent exogenous variables
h m 3 1 column vector of latent endogenous variables
d q 3 1 column vector of measurement error terms for observed variables x
e p 3 1 column vector of measurement error terms for observed variables y
Ax The matrix (q 3 n) of structural coefficients for latent exogenous variables to their observed

indicator variables
Ay The matrix (q 3 n) of structural coefficients for latent endogenous variables to their observed

indicator variables
Structural G The matrix (m 3 n) of regression effects for exogenous latent variables to endogenous latent variables

b The coefficient matrix (m 3 m) of direct effects between endogenous latent variables
§ m 3 1 column vector of error terms

Figure 2. Example of a structural equation model (variable
definitions are shown in Table 3).
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predicted values (40). A value of less than 0.08 indicates
a good fit model.

SEM Model Specification, Estimation, and
Evaluation

Exploratory Factor Analysis

A hypothesized model assessed the relative factors affect-
ing pedestrian and bicyclist crash risk (Figure 3) and
indicated that exposure, roadway, and socioeconomic
should be used as latent variables that connect exogenous
and endogenous variables. The behavioral-related latent
is not included as the dataset lacks behavioral input vari-
ables. The three latent variables (oval shape) are predic-
tors of the number of crashes that involve either

pedestrians or bicyclists (square shape) taking place on
the study segments. The latent variables are allowed to
correlate. A substantive theoretical model does not exist,
so the EFA is used to obtain the empirical factor model
and explore the structural portion of SEM. EFA assumes
that every observed variable is an indication or a mea-
surement of a latent variable (Figure 3a). EFA is usually
performed as a precursor to CFA (41), which confirms
theoretically valid relationships (Figure 3b).

Researchers vary in relation to sample size recommen-
dations for factor analysis. A sample size of 200 and the
sample-to-variable ratio of 3:1 kept this study within the
acceptable ranges for applying factor analysis (39). To
test the ability to apply factor analysis using the data,
the Kaiser–Meyer–Olkin (KMO) measure of sampling
adequacy was applied. It is hypothesized that the correla-
tion matrix is an identity matrix, so Bartlett’s Test of
Sphericity was run to test this hypothesis (40). Bartlett’s
test of sphericity resulted in a P-value of 0.02 (\0.5 is
recommended), and a KMO index value of 0.8091 (.0.6
is recommended); both are considered meritorious (42).

The strength of the linear relationship between two
variables is crucial. Many variables in the study dataset
were highly correlated (i.e., the correlation between the
percentage of high wage and total vehicles of two or
more is 0.79), and these variables were not used together
in the same model. A threshold of 0.5 was accepted as a
correlation coefficient between the set of variables cho-
sen for the analysis (39, 40).

The number of latent variables can be evaluated using
the visual tool called the Scree test. The Scree test showed
a clear drop between the third and fourth components,
meaning the most suitable number of factors lies between
three and four factors. In addition, goodness of fit indices
in the three-factor EFA model show acceptable values
(RMSEA= 0.000; CFI = 1.064).

The estimation method for factor loading coefficients,
which measure the strength between observed and latent
variables, relies on data quality. The maximum likeli-
hood (ML) or principal axis factoring method is recom-
mended, depending on whether the data are normally or
significantly non-normally distributed (43). The ML esti-
mation method was chosen after variables were standar-
dized through the ‘‘scale () function’’ and the rotation
method is variance maximizing (varimax) rotation. EFA
was conducted using the first part of the sample size of
100 corridors. Table 4 shows the results of the EFA.
Despite the cross-loading that appeared in
(High_Spd_Lmt) variable, the observed variables that
are highly correlated with factors show distinctive char-
acteristics. (High_Spd_Lmt), (Bikelane), (Pav_Shoulder),
(Sidewalk), and (Unsignalized) are highly correlated with
F1 which can be called pedestrian and bicycle-oriented
roadway. (Walk), (Bike), (Employ_Density), and

Figure 3. (a) Illustration of the conceptual distinction between
EFA and (b) CFA.

Al-Mahameed et al 313



(log_AADT) are highly correlated with F2 which can
be called exposure. (Edu_Less_H), (Total_Veh0),
(Low_Wage), and (Poverty) are highly correlated with
F3 which can be called low social status. Therefore, three
factors—exposure, social status, and pedestrian and
bicycle-oriented roadway—were constructed from the
observed variables in the data collection.

Confirmatory Factor Analysis

The CFA model was analyzed using the remaining obser-
vations (N=100). CFA is often used to evaluate a prior
theory or hypothesis such as the number of factors, types
of factors, whether or not the factors are correlated, and
which observed variable are indicators of which factor.
Now, given the EFA results, CFA helps cross-validate
the structure as well as the factor loadings as EFA is
purely data driven. Prior knowledge informs that the
presence of ped/bike-friendly facilities, percentage of the
working population, AADT, walking/biking, and gross
employment density are considered to be related to
pedestrian and bicyclist exposure. However, the high
score of factor loading in the EFA suggested that high
speed limit is also a strong indicator of exposure and
thus, the high speed limit was used as an indicator for
the latent factor exposure in CFA. By contrast, EFA
indicated paved shoulder has a low correlation with
pedestrian and bicycle-oriented roadway for any of the
three factors but it was kept in CFA because of the prior
knowledge.

The EFA result suggests that a CFA is fitted based on
three latent variables in the x-measurement model

(Figure 3). The fourth latent variable was added follow-
ing the similar concepts presented in other research work
(32, 33). The fourth latent variable in the y-measurement
model (Figure 3) is the endogenous latent variable, so-
called ‘‘Crash Index,’’ which is measured by pedestrian
crashes and bicyclist crashes. Figure 4 illustrates the
resulting SEM with all latent variables. All variables were
significant at the 5% level, and non-significant variables
were removed from the final SEM (e.g., Mid_Block and
Sidepath).

The overall fit of the model and the significance of
some model parameters were evaluated. Both the
RMSEA and CFI indices are within the cut-off values of
(0.064) and (0.930), respectively. Therefore, the model
does fit despite the result of the chi-square test.

Findings and Discussion

The SEM technique enhances safety studies with its abil-
ity to build a structure among variables (e.g., pedestrian
and bicyclist safety studies at intersections). The ability
to include multiple endogenous measures (e.g., pedes-
trian crashes, bicyclist crashes) is a benefit because it
results in a more informative framework. SEM also pro-
vides guidance with safety-related data collection, and
highlights pertinent variables that can be gathered to rep-
resent important latent variables. Several models were
tested to identify a statistically significant model.

The final SEM displays standardized parameters for
all coefficients. The structural model which can be
viewed as a standard regression equation using standar-
dized parameters includes latent exogenous variables

Table 4. EFA with Varimax Rotation Factor Loadings for the Measurement Model (N = 100)

Variable

Factorsa

Pedestrian and bicycle-oriented roadway (F1) Exposure (F2) Low social status (F3)

High_Spd_Lmt –0.55 –0.64 –0.28
Bikelane 0.41 0.11 0.11
Pav_Shoulder 0.38 –0.11 –0.06
Sidewalk 0.63 0.04 0.17
Sidepath –0.06 0.01 0.01
Unsignalized –0.74 0.14 0.09
Mid_Block_ 0.03 0.02 0
TWLTL –0.25 0.2 0.22
Walk 0.10 0.69 –0.02
Bike 0.12 0.65 0.17
Employ_Density 0.14 0.54 0.26
log_AADT 0.16 0.48 0.11
Edu_Less_H –0.09 0.02 0.78
Total_Veh0 0.1 0.16 0.86
Low_Wage 0.15 0.27 0.71
Poverty 0.14 0.32 0.90

aFactor loadings in boldface are above (0.4).
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bicycle/pedestrian-oriented roadway, exposure, and low
social status, and latent endogenous variable crash index.
The regression coefficients show that the crash index is
strongly and positively influenced by exposure latent
variable (coefficient = 0.51), moderately and negatively
affected by bicycle/pedestrian-oriented roadway (coeffi-
cient = 20.35), and weakly and positively affected by
the low social status (coefficient = 0.19). Regarding the
measurement models, the x-measurement model implies
that sidewalk coverage along the corridor, bike lane, and
paved shoulder coverage are good features of a bicycle/
pedestrian-oriented roadway. Bike lanes, paved
shoulders, and sidewalks may lead to higher exposure
for pedestrians and bicyclists, but they also provide des-
ignated space for these VRUs and may decrease the like-
lihood of crashes. The y-measurement model implies
pedestrian and bicycle crash count is strong and positive
measures of the crash index.

The low social status latent variable was positively
and highly influenced by many variables (e.g., low educa-
tional level, and low wage). The results show a positive
effect between lower educational level and crash fre-
quency: well-educated residents may have had more
driver education training and may be more aware of
road safety and the consequences of crashes. People who
live in lower-income neighborhoods may travel more by
walking and bicycling because of limited resources for
automobile travel. Lower rates of car ownership may be

positively related to crash frequency through increased
pedestrian and bicyclist exposure. It is also possible that
areas with higher-income residents may have environ-
ments that are more conducive to biking and walking
(e.g., more high-quality pedestrian and bicycle
infrastructure).

Looking at the exposure latent variable, it can be seen
that walking or biking as a transportation mode, as well
as employment density and AADT, positively affect
pedestrian and bicyclist exposure to traffic, thus leading
to more crashes. The high speed variable had dual citi-
zenship, meaning that it was correlated to both the
bicycle/pedestrian-oriented roadway variable and the
exposure variable in a negative fashion. It is plausible
that the locations with a high posted speed limit often
indicate fewer pedestrian or bicycle activities, as the road-
way design is more vehicle centric. As speed increases,
pedestrian and bicycle crashes may be more likely
because drivers may not detect pedestrians and bicyclists
on the sides of the road, and longer stopping distances
are needed to avoid collisions.

These results contain similar conclusions from previ-
ous studies. Exceeding the speed limit showed an
increase in the probability of being involved in a crash
(32, 33). In fact, it was significant in bicycle/pedestrian-
oriented roadway (–0.13) and exposure latent variables
(–0.55). This underscores the value of SEM, as it is able
to clarify complex relationships between variables. A

Figure 4. The final structural equation model.
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unique conclusion is derived from the correlation
between two exogenous latent variables, showing the
high positive correlation between low social status and
exposure. Owning zero vehicles (shows a low social sta-
tus) will increase the individual’s exposure and therefore
increase his/her crash index, leading to more crash invol-
vement. In addition, the presence of paved shoulders
tends to decrease the crash index (indirectly) by improv-
ing the road design for pedestrians and bicyclists. Paved
shoulders provide additional space for pedestrians and
bicyclists outside of travel lanes, even the elevation
between the shoulder and the roadway, and reduce the
presence of gravel or sand that may contribute to bicy-
clist crashes.

Conclusion

Safety of VRUs is a critical issue affecting the efficiency
of our built highways. A reduction in crashes among this
particular group of roadway users has always been the
top priority of traffic safety researchers and policy-
makers. Several studies have addressed the issue of pedes-
trian and bicyclist crash frequency (44–46), and many
have used standard regression models (e.g., log-linear,
multinomial logistic regression, negative binomial).
Standard regression models can explain the direct impact
of the surrounding factors on pedestrian and bicyclist
crash frequencies and injury severities, but they might
not explain the underlying complex relationships between
variables.

The study applies SEM to develop a conjectured struc-
ture that provides a clear portrait between a many high-
way corridor specific variables and VRU crashes. The
structure is featured by the relationship between three
exogenous latent variables representing bicyclist and
pedestrian-oriented roadway design, exposure, and sur-
rounding social status, and one endogenous variable rep-
resenting a single value VRU safety quantification for
both pedestrian and bicyclist crashes. The relationship
between latent and observed variables can also be conve-
niently established by using the measurement model.
Combining both the structural and measurement models
in a single modeling process enables the effective distinc-
tion between direct, indirect, and synergic effects between
variables, and thus more accurately capture the physical
underpinning for VRU crashes.

The notable findings from this highway corridor-
based VRU study are as follows: the model suggests that
bicycle/pedestrian-oriented roadway, exposure, and low
social status are strongly related to VRU crash fre-
quency. SEM helps to explain the potentially conflicting
information such that an observed variable may affect
more than one latent variable in different ways (i.e.,
High_Spd_Limit), and the results show that high speed

limit negatively influences pedestrian and bicyclist expo-
sure to traffic. It is noted that some significant variables
in the models were not significant in previous research.

Several limitations existed in this study. The study was
limited by not having direct pedestrian and bicyclist vol-
ume counts; there may be other land-use variables
beyond those considered in this study that contribute to
increased pedestrian and bicycle exposure. Future studies
should try to use more refined pedestrian and bicyclist
exposure data. Pedestrian and bicyclist counts will be
helpful to improve the accuracy of latent variable expo-
sure. In addition, crashes were not analyzed if they were
not reported to police, or not geocoded in the crash data-
base. The 10-year time period provides more crash data
for analysis, but it also increases the chance that a partic-
ular corridor had different characteristics when the earli-
est crashes occurred. The database contained crashes
with motor vehicles only, as they appeared to be the most
severe, but they have been found to represent only a frac-
tion of total pedestrian and bicycle crashes. Although the
sample size of 200 corridors is adequate, more sites are
desirable to improve the model fit and significance of the
input variables. Further work should also use behavioral
data to ensure that these factors are well studied and
reduce the potential for omitted variable bias.
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