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Abstract
The aim of this research was to investigate the performance of simulated traffic data for real-time crash prediction when loop
detector stations are distant from the actual crash location. Nearly all contemporary real-time crash prediction models use
traffic data from physical detector stations; however, the distance between a crash location and its nearest detector station
can vary considerably from site to site, creating inconsistency in detector data retrieval and subsequent crash prediction.
Moreover, large distances between crash locations and detector stations imply that traffic data from these stations may not
truly reflect crash-prone conditions. Crash and noncrash events were identified for a freeway section on I-94 EB in
Wisconsin. The cell transmission model (CTM), a macroscopic simulation model, was applied in this study to instrument seg-
ments with virtual detector stations when physical stations were not available near the crash location. Traffic data produced
from the virtual stations were used to develop crash prediction models. A comparison revealed that the predictive accuracy
of models developed with virtual station data was comparable to those developed with physical station data. The finding
demonstrates that simulated traffic data are a viable option for real-time crash prediction given distant detector stations. The
proposed approach can be used in the real-time crash detection system or in a connected vehicle environment with different
settings.

A driver must constantly respond to changes in traffic
and other roadway conditions by changing speed, switch-
ing lanes, or even changing directions. The inevitable and
frequent changes in driving conditions can result in
driver errors. The early detection of crash-prone traffic
conditions can alert the driver to make necessary evasive
maneuvers, and it can also lead to appropriate traffic
control strategies to mitigate imminent crash risk. The
factors contributing to a crash are directly related to or
result from the prevailing traffic conditions before the
event. The wide deployment of Advanced Traveler
Information Systems (ATIS) has made the collection,
storage, and processing of real-time traffic data readily
available. Researchers can now gather real-time informa-
tion related to crash occurrence. Among different types
of traffic sensors, inductive loop detectors have been a
popular data source for real-time crash prediction.
Numerous studies have investigated the relationship
between crash risk and prevailing traffic conditions using
real-time traffic information collected from loop detec-
tors; therefore, it would be beneficial to develop a real-
time crash prediction model that can detect crash-prone
traffic patterns.

The lead time before a crash has been thoroughly
studied in cases in which freeway crashes were predicted

using loop detector data at different time slices (1).
However, studies regarding how the space between
detector stations and crash locations affects crash predic-
tion accuracy are rare. It is expected that the traffic con-
ditions near a crash location would better reflect the
hazardous conditions leading to the crash. In nearly all
previous studies, crash prediction models were developed
using the traffic data from immediate upstream and
downstream loop detector stations; however, crashes
may take place anywhere between two detector stations,
and the distance between a crash location and the nearest
detector station can vary considerably from site to site.
The variation creates inconsistency in detector data
retrieval and subsequent crash prediction, and also casts
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doubt on how well the traffic data from these stations
reflects crash-prone conditions.

The goal of this study was to examine the performance
of simulated traffic data in detecting crash-prone traffic
patterns given large distances between loop detector sta-
tions. The cell transmission model (CTM) was applied to
simulate traffic conditions close to a crash location to
accommodate the challenges of spatial disparities in loop
detectors and discrepancies in crash prediction.

Literature Review

Ideally, traffic conditions at the location and time of a
crash should be used in capturing and recording what
exactly happened before the crash. The reality, however,
is that traffic data often are observed from physical
detectors which are not likely to be installed anywhere
near the crash. Alternatively, virtual detectors may be
exploited at any location through the development of
traffic simulation models. CTM is a representative
macroscopic traffic flow simulation model proposed by
Daganzo (2). In a CTM, a highway is partitioned into a
series of cells, and the cell length can be user-defined.
The traffic density and other characteristics in each cell
can be calculated following the traffic flow–density rela-
tionship defined by the fundamental diagram (FD). The
methodology is detailed in the next section. CTM is very
compatible with traffic flow data collected from loop
detectors, which is a clear advantage for real-time crash
prediction. CTM and its extensions, including switching-
mode model (SMM) and stochastic CTM, have shown
promising results in accurately predicting traffic flow
characteristics using loop detector data as inputs (3–5).
Studies show that simulated traffic densities and flow
rates may achieve an error rate as low as 7.9% (5) and
4% (4).

Although CTM is a powerful model for simulating
traffic flow characteristics, the existence of an underlying
relationship between traffic flow and crash risk warrants
the validity of a real-time crash prediction model. Many
efforts have been made to define and quantify such a
relationship. Some studies used data mining techniques
including the Kohonen clustering algorithm, neural net-
works, and the Bayesian network (6–8). Although data
mining methods are capable of accounting for correla-
tion within speed, flow, and occupancy (6), they cannot
identify explicit relationships between crash risk and traf-
fic flow variables. Other studies have used statistical
regression models because they provide a clear connec-
tion between crash probability and traffic flow variables.
Among all methods, the case-control design has been the
most popular in real-time crash prediction studies (1, 6–
13) because the design controls for exogenous factors
such as locations and roadway geometries, and provides

more accurate estimates by using both crash and non-
crash traffic information (1). However, the case-control
method assumes that each stratum of a crash event and
its matched noncrash events have different constant
terms, meaning that only the odds ratio of crash prob-
ability is predicted. In other words, the crash probability
cannot be directly predicted given the explanatory vari-
ables. An alternative method is the binary logistic regres-
sion. The binary logistic model is used to estimate the
probability of a binary response, such as a crash event
based on one or more predictors, meaning the crash
probability can be directly predicted given the explana-
tory variables (14–16).

The relationship between crash probability and traffic
flow variables (e.g., mean, standard deviation, and coef-
ficient of variation of traffic flow, speed, and occupancy)
is under intense scrutiny (1, 8, 9, 17–19). Roshandel et al.
conducted a comprehensive review of the relationship
between real-time traffic conditions and freeway crashes
using the meta-analysis of past literature (20). The
authors identified some statistically significant crash-
contributing factors such as average speed and speed
variation which have been consistently reported in past
studies. The authors also pointed out a limitation of
using loop detector data, which is that researchers must
use data from loop detectors that could be far from crash
locations (20). The spacings between loop detector sta-
tions vary significantly within and across studies, render-
ing findings that are unreliable within the same study
and inconsistent between studies.

Methodology

This section covers the methodology for simulating spa-
tial and temporal traffic during the period before a crash,
and also details the regression method for predicting
crash occurrence. The traffic variables are simulated with
CTM, and the binary logistic regression model is used to
estimate the probability of a crash based on simulated
traffic conditions.

Cell Transmission Model (CTM)

CTM is a macroscopic traffic simulation model that pre-
dicts macroscopic traffic behavior such as flow and den-
sity at a finite number of cells at different time steps on a
given highway corridor (2). It is a powerful simulation
tool that can capture many important traffic phenomena
such as queue formation and dissipation as well as shock-
wave propagation (2). Compared with microscopic simu-
lation models, CTM is computationally efficient and
easier to configure and calibrate. CTM also operates suf-
ficiently with aggregated traffic flow data from detector
stations. The core component of CTM is the FD that
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defines the flow–density relationship and governs how
the traffic state in each cell evolves over time. Figure 1
shows a triangular FD for developing CTM.

In CTM, a highway segment is divided into a series of
cells. The density of each cell evolves following the con-
servation law of vehicles. Assume that Cell i is character-
ized by the triangular FD in Figure 1, where QC is the
capacity flow, rC is the critical density, rJ is the jam den-
sity, v is the free-flow speed, and w is the shockwave
speed. The density for Cell i without on- or off-ramps is
determined by

ri k + 1ð Þ= ri kð Þ+ T

li

qi k + 1ð Þ � qi kð Þð Þ ð1Þ

where
k is the time step index,
ri kð Þ is the density of Cell i during the kth time step,
T is the length of the time step,
li is the length of Cell i, and
qi kð Þ is the flow rate into Cell i during the kth time

step. The flow rate is determined by the sending and
receiving functions. For Cell i, the sending function
Si kð Þ represents the maximum flow that may be supplied
during the kth time step, and the receiving function Ri kð Þ
represents the maximum flow that may be received. The
two functions are determined in Equations 2 and 3,
respectively, as

Si kð Þ=min viri kð Þ,QC, ið Þ ð2Þ

Ri kð Þ=min QC, i,wi rJ , i � ri kð Þ
� �� �

ð3Þ

The flow rate, qi kð Þ, is determined by

qi kð Þ=min Si�1 kð Þ,Ri kð Þð Þ ð4Þ

Binary Logistic Regression Model

In a binary logistic regression model, the probability of a
crash event can be formulated as

p Xið Þ=
1

1+ e�g Xið Þ
ð5Þ

where p Xið Þ represents the crash probability given
Xi = xi, 1, xi, 2, . . . , xi, kð Þ, a set of k explanatory variables
for sample i, and g Xið Þ is a linear combination of the fol-
lowing variable set

g Xið Þ=b0 +b1*xi, 1 +b2*xi, 2 + . . . +bk*xi, k ð6Þ

where (b0,b1,b2, . . . ,bk) are the corresponding coeffi-
cients for xi, 1, xi, 2, . . . , xi, kð Þ.

The parameters b= b0,b1,b2, . . . ,bkð Þ can be esti-
mated by maximizing the following log-likelihood
function:

lnL b,Xið Þ=
Xn

i= 1

h
b0 +b1*xi, 1 + . . . +bk*xi, kð Þ

� ln 1+ e� b0 +b1*xi, 1 + ...+bk*xi, kð Þ
� �i

ð7Þ

Data Description

The dataset used in this study consists of 3 years (2012–
2014) of crash data, roadway characteristics, and traffic
data for a 4.15-mi I-94 EB corridor in Wisconsin. The
corridor has three lanes with one on-ramp and one off-
ramp. There are seven mainline loop detector stations
and one off-ramp loop detector station on the EB and
WB corridor, and there is no detector station on the on-
ramp. The layout of the corridor and detector stations is
shown in Figure 2.

The 3rd and 6th detector stations were assumed to be
absent and were not used in this study in order to test the
concept of using simulated traffic data for crash predic-
tion in the setting of large detector spacing. The remain-
ing stations were named as S1, S2, S3, S4, and S5 as
shown in Figure 2. The CTM model would provide inac-
curate simulated traffic data given missing on-ramp flow,
so one segment between S1 and S3 and one segment
between S4 and S5 were included in place of the missing
on-ramp detector station between stations S3 and S4.

Spacings between S1 and S2, S2 and S3, and S4 and
S5 are 1.00mi, 1.06mi, and 1.38mi, respectively.
Segments of interest include one 2.06 mi-long segment
between S1 and S3, and a 1.38mi-long segment between
S4 and S5. The two segments are divided into 13 cells for
CTM simulation. Cells have a uniform length of 0.25 mi
with a few exceptions that range from 0.26mi to 0.29mi.

Figure 1. Triangular fundamental diagram.
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In Figure 2, the default cell length is 0.25 mi if no other
length is specified. The average cell length is 0.264mi
with a standard deviation of 0.016mi.

Crash data were retrieved from the web-based query
and retrieval facility for Wisconsin Department of
Transportation (DOT) crash data as well as from reports
archived in the WisTransPortal data management sys-
tem. Crashes occurring at the study site from 2012 to
2014 were included in the study. Any other crash that
happened within 2 h after a crash occurrence and within
2 mi of the crash location was considered a secondary
crash and was subsequently removed (21). Crash time is
required to build up the stratum, so crashes with missing
times were excluded. Weather information such as snow
or rain was collected from the Wisconsin DOT’s Road
Weather Information System (RWIS), and traffic infor-
mation in a 1-min time interval was extracted from the
V-SPOC (Volume, Speed, and Occupancy) application
suite (22). All inaccurate data were eliminated from the
raw 1-min data based on the following criteria: 1) occu-
pancy \ 0 or . 100; 2) speed \ 0 or . 100; 3) volume
\ 0 or . 50 in 1 min; 4) volume . 0 with speed = 0 or
speed . 0 with volume = 0 (23).

For each crash in the dataset, 1-min traffic data from
the 0–5 min or 5–10 min intervals before the crash
occurred were collected from immediately upstream and
downstream physical loop detector stations. For exam-
ple, if a crash occurred at 10:00 a.m., the traffic data were
extracted from 9:55 to 10:00 a.m. if the 0–5 min interval
was of interest, or from 9:50 to 9:55 a.m. if the 5–10min
interval was of interest. Each crash has a geolocation,
which determines the cell in which the crash occurred.

Traffic data that are not affected by or associated with
crash occurrence, also called ‘‘noncrash events,’’ are also
required to develop the crash prediction model. Ten non-
crash events were selected for each crash by randomly
selecting a time among 1,578,240 1-min intervals in
2012–2014 (60min 3 24h 3 1096 days in 2012–2014)
and a cell among 13 cells. Noncrash events were selected
in a way that ensured none of the times was within 2 h of
any crash. The 5-min traffic data consisting of data from
five 1-min intervals was retrieved from physical detector
stations for noncrash events in the same way it was for
crash events.

CTM Setup and Calibration

An FD is required to operate the CTM simulation.
Differences in roadway characteristics such as distances
to on-/off-ramps could lead to cells having different traf-
fic patterns and therefore different FDs. The calibration
algorithm proposed by Zhong et al. (24) was applied for
calibrating FDs. The algorithm found the optimal FD
parameters to minimize the discrepancy between CTM
simulated traffic data and observed traffic data. That
study can be referenced for more details.

Traffic data must be collected from detector stations
in order to calibrate FDs. Traffic data from five detector
stations were collected between 4:00 a.m. and 12:00 p.m.
on May 6, 2013. Free flow, which is the onset and offset
of congestion, was observed at all five stations during
this time,, which is ideal for FD calibration. It is not
computer-efficient to solve for optimal FDs for each cell
when the cell number is relatively large and the station

Figure 2. Layout of physical loop detector stations and CTM cells.
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number is small. Therefore, it was determined that several
adjacent cells might share one FD. Table 1 presents the
FD parameters for different cells. The first column shows
the cells with the same FD. For example, Cell 1 and 2
have the same FD. Note that Cell 7 has its own FD as it
has an off-ramp and could have a very different FD.

The validity of proposed FD parameters was exam-
ined by comparing simulated traffic variables with
observed traffic variables at the two physical stations
that were not used for calibrating CTM. Traffic data
from physical detector stations in Cells 7 and 12 were
collected from 4:00 a.m. to 12:00 p.m. on May 6, 2013.
During the same time period, traffic data were simulated
from virtual stations by CTM in the same cells. The
mean absolute percentage error (MAPE) is used to mea-
sure the difference:

MAPE=
1

N

XN

i= 1

�y ið Þ � y ið Þj j
y ið Þ ð8Þ

where N is the count of 1-min traffic records, �y ið Þ is the
ith simulated traffic volume or density, and y ið Þ is the ith
observed traffic flow rate or traffic density. In Cell 7,
MAPEs are 5.76% and 7.03% for the flow rate and den-
sity at the first physical station. In Cell 12, MAPEs are
5.95% and 11.46% for the flow and density at the sec-
ond physical station. The small MAPE values show that
CTM with proposed FD parameters can provide reliable
measurements of traffic flow behavior at these virtual
stations.

CTM Simulation

In the simulation, the Courant–Friedrichs–Lewy (CFL)
condition (25) needs to be fulfilled to guarantee a feasible
CTM. . The CFL condition occurs when a vehicle cannot
travel across more than one cell during one simulation
step, that is, vi*T � li where vi is the free-flow speed, T is
the simulation time step, and li is the cell length. The
CFL constraint prohibits the use of a time step as large

as 1min based on the constructed cell length. Therefore,
5 s was used as the time step (T =5 s) to guarantee the
feasibility of the CTM.

The cell and segment within which the crash occurred,
as well as its upstream and downstream detector stations,
were identified to simulate crash location traffic data. S1
and S3 are considered as the upstream and downstream
stations for the first segment, and S4 and S5 are the two
stations for the second segment. The flow data from both
stations during the 0–5min or 5–10min period before a
crash were used as the in-flow and out-flow of the seg-
ment consisting of the cells in between. A 0th-order inter-
polation was applied to generate the in-flow/out-flow
data in 5 s. A CTM was then run to simulate how traffic
data in those cells evolve at each time step within the
5-min time interval.

Virtual detector stations were set up at the beginning
of each cell for the CTM simulation. The spacing
between virtual stations was equal to the cell length, and
was therefore consistent in distance. The virtual stations
were expected to capture traffic conditions at locations
closer to the crash site where traffic conditions should be
more related to the crash than those collected from more
distant physical detector stations. Similar to physical
detector stations, virtual stations were set up to measure
flow, speed, and density. Because the time step was set to
be 5 s for the CTM simulation, virtual stations would
detect 5-s traffic data. To be comparable to the 1-min
traffic data from physical stations, 5-s simulated traffic
data were aggregated to 1-min traffic data.

A virtual station k is located at the beginning of Cell
k, and measures flow, qk , density, rk and speed, sk : The
model developed with traffic data from the two virtual
upstream and two virtual downstream stations is called a
two-station setting. The model developed with traffic
data from one virtual upstream and one virtual down-
stream station is called a one-station setting.

Figure 3 shows that for crashes occurring in Cell k,
the two-station setting would include virtual station k21
and k as two virtual upstream stations, and virtual

Table 1. FD Parameters

Cell* v rC rJ QC w

1, 2 58.74 108.04 398.65 6347 21.84
3, 4 58.22 112.96 545.34 6577 15.21
5, 6 66.38 100.16 409 6649 21.53
7 60.52 107.76 569.44 6522 14.13
8 56.5 99.26 544.03 5608 12.61
9 63.42 92.6 370.42 5873 21.14
10, 11, 12 73.32 79.77 644.5 5848 10.36
13 67.64 86.6 359.95 5858 21.43

Note: * denotes the cells sharing the same FD.
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station k+ 1 and k+ 2 as two virtual downstream sta-
tions; the one-station setting would only include virtual
station k as one virtual upstream station, and virtual sta-
tion k+ 1 as one virtual downstream station. For each
crash/noncrash that occurred in the remaining cells, the
virtual upstream and downstream detector stations were
identified and traffic data were collected from these vir-
tual detector stations for developing crash prediction
models.

Analysis and Discussion

The traffic variables such as mean, standard deviation,
and coefficient of variation of flow, density, and speed
were calculated for physical or virtual detector stations
for each event. Traffic data from one immediate
upstream and one immediate downstream station were
used to generate variables for physical stations.

Several studies have considered the impact of various
traffic states on safety. Abdel-Aty et al. assessed crash
risk at two different traffic states categorized by speed
(15). The authors discovered different crash-contributing
traffic parameters in the high- and low-speed regimes.
Li et al. (10) found that different sets of statistically sig-
nificant traffic variables affect crash probability in dis-
tinct traffic states when expanding from two to four
traffic states based on the speed from upstream and
downstream detector stations (26). Traffic state was
added to this study to improve model performance per
the previous study’s findings. The average density was
used to measure the level of traffic congestion (26); traf-
fic is congested only if the average density is greater than
the critical density. Traffic state was determined based
on the combination of the upstream and downstream
traffic conditions:

� Free Flow (FF): when both upstream state and
downstream state are free flow;

� Bottleneck front (BN): when upstream is con-
gested and downstream is free flow;

� Back of queue (BQ): when upstream is free flow
and downstream is congested; and

� Congested traffic (CT): when both upstream and
downstream are congested.

Table 2 displays the candidate variables including traf-
fic flow variables, weather condition and ramp presence.
Three models were developed using different data sources
to generate traffic variables: physical stations, virtual sta-
tions in a one-station setting, and virtual stations in a
two-station setting. The three models are referred to as
Model P, V1, and V2. Two time intervals were tested for
all three models: 0–5min before a crash and 5–10min
before a crash. A crash/noncrash dataset suitable for all
models was identified so that all six models could be
compared; Events with missing physical detector data
were removed, and the final dataset consists of 531
events, including 66 crashes and 465 noncrashes.

Crash prediction models were developed using the binary
logistic regression model to identify the relationship between
crash risk and explanatory variables. The stepwise variable
selection method was applied to identify the significant vari-
ables providing the best goodness-of-fit. Estimation results
were obtained by fitting the model with those selected vari-
ables. The prediction accuracy of models was checked by
conducting the leave-one-out cross-validation (LOOCV)
with selected significant variables from each model. The
LOOCV method uses one observation as the validation
dataset and all the remaining observations as the training
dataset. A model was fitted, given the training dataset, and
was then used to predict the crash probability of that single
observation in the validation dataset. This procedure was
then repeated for all observations in the dataset. Based on
the LOOCV results, ROC (receiver operating characteristic)
curves for all six models are plotted in Figure 4 and the
AUC (area under curve) values are presented in Table 3.

Figure 3. Layout of virtual loop detector stations.
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ROC curves in Figure 4 do not show evident differ-
ences between three models at two time intervals as dif-
ferences in AUC values are marginal. A larger AUC
indicates better accuracy. Model P provides the best
accuracy for the 0–5 min interval, but Model V1 provides

almost the same accuracy rate. For the 5–10min interval,
Model V2 outperformed Model P and V1. Generally, vir-
tual station data provides comparable accuracy to the
physical station data. The satisfactory performance of
virtual station data indicates that the CTM with well-

Table 2. Candidate Variables for Model Development

Variable Description

UFA Average flow at the upstream station(s) (vph)
UFS SD of flow at the upstream station(s) (vph)
UFCVS Coefficient of variation of flow at the upstream station(s) (vph)
UDA Average density at the upstream station(s) (vpm)
UDS SD of density at the upstream station(s) (vpm)
UDCVS Coefficient of variation of density at the upstream station(s) (vpm)
USA Average speed at the upstream station(s) (mph)
USS SD of speed at the upstream station(s) (mph)
USCVS Coefficient of variation of speed at the upstream station(s) (mph)
DFA Average flow at the downstream station(s) (vph)
DFS SD of flow at the downstream station(s) (vph)
DFCVS Coefficient of variation of flow at the downstream station(s) (vph)
DDA Average density at the downstream station(s) (vpm)
DDS SD of density at the downstream station(s) (vpm)
DDCVS Coefficient of variation of density at the downstream station(s) (vpm)
DSA Average speed at the downstream station(s) (mph)
DSS SD of speed at the downstream station(s) (mph)
DSCVS Coefficient of variation of speed at the downstream station(s) (mph)
Diff_FA Average absolute difference in flow between upstream and downstream stations
Diff_DA Average absolute difference in density between upstream and downstream stations
Diff_SA Average absolute difference in speed between upstream and downstream stations
Diff_FS SD of absolute difference in flow between upstream and downstream stations
Diff_DS SD of absolute difference in density between upstream and downstream stations
Diff_SS SD of absolute difference in speed between upstream and downstream stations
State Traffic state including four types: FF, BN, BQ, CTa

Ramp 1 = if there is a ramp between upstream and downstream stations; 0 = otherwise
Weather Weather condition including three types: Normal, Rain, Snow

Note: vph = vehicles per hour; SD = standard deviation; vpm = vehicles per mile.
aBQ state was not observed in the dataset.

Figure 4. ROC curves for three models with different data sources from two time intervals: (a) 0–5 min before the crash occurrence
and (b) 5–10 min before the crash occurrence.
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calibrated FDs can sufficiently capture the traffic condi-
tions within a long segment. The comparison between
AUCs also revealed that the accuracy of the 0–5min
interval is always better than that of the 5–10min inter-
val. It is expected that the crash occurrence should be
more related to the traffic conditions as they become
closer in time to the crash occurrence.

At the current stage, traffic agencies may need buffer
time to detect crash risk, disseminate warnings, and
implement traffic control strategies. Therefore, it is
worthwhile to investigate the models for the 5–10min
interval. Because Model V2 provides the best perfor-
mance in this interval, it was compared with Model P.
Table 4 shows that the two models have very different
sets of statistically significant variables. It should be
noted that the two models were developed from different
data sources. Both models include DFA as a significant
variable, and both show consistent signs on the estimate
coefficients. The results from Model P suggest that crash
risk increases with an increase in the average flow and
speed variation at the downstream station. However,
crash risk decreases with an increase in the absolute flow
difference between two stations. Model V2 suggests that
crash risk increases with an increase in the average flow
at the downstream station and the density variation at
the upstream station. However, crash risk decreases with
an increase in the average flow at the upstream station.
Model V2 also identifies the impact of traffic states: the
BQ and CT states are more crash-prone than the FF
state. The small size of cells means that CTM may

capture local state transitions which cannot be captured
by physical stations located far away. The negative sign
of the ramp presence is counterintuitive, as it suggests
that the presence of off-ramp would reduce crash risk. It
is possible that the actual impact of the ramp is con-
founded by the traffic state.

Conclusion

Many real-time crash prediction studies have used traffic
data collected from detector stations. The traffic data
from these stations may not represent the actual traffic
conditions contributing to crashes if the stations are
located far from the actual crash location. Moreover, the
spacing between stations could vary considerably from
site to site, which compromises crash prediction accuracy
when multiple sites are considered. This critical issue
may render unreliable findings based on the traffic data
collected directly from detector stations.

This paper attempted to exploit simulated traffic data
and predict crash occurrence in a real-time fashion given
distant stations. A macroscopic simulation model CTM
was applied to instrument the freeway corridor with vir-
tual detector stations that can be placed anywhere. It is
expected that this simulated traffic data from virtual
detector stations would yield more accurate prediction
results than the traffic data from distant physical detector
stations. Two time intervals were tested—0–5min and 5–
10min before a crash occurrence—and both a one-station
and a two-station setting were applied to determine which
setting is more suitable in two different time interval
choices. Models developed with physical station data
were compared with those developed with virtual station
data, leading to the conclusion that models developed
with virtual station data provided a prediction accuracy
rate similar to those developed with physical station data.
The results suggest that simulated traffic data can be used
when the spacing between detectors is large.

The proposed CTM approach can be applied in a
real-time crash detection system. The application can
vary according to the constraints and accuracy between
one-station and two-station settings. The one-station set-
ting can be used when a buffer time is needed for agen-
cies to detect crash risk, take corresponding actions, and
inform drivers. The two-station setting can be used when
a buffer time is not necessary, such as in a connected and
autonomous driving environment in which vehicles have
the ability to make immediate maneuvers.

Future research should be directed toward furthering
the development of the CTM approach. More impor-
tantly, the methodological advancement should be mea-
sured by improved flexibility to model traffic dynamics
that correlate to crash risk, higher crash prediction accu-
racy, and reliability. One potential improvement could

Table 4. Model Comparison for 5–10 min Interval

Physical (P) Virtual: two-station (V2)

Variable Estimate Variable Estimate

Constant 23.887 Constant 22.765
DFA 0.000525 DFA 0.00235
Diff_FA 20.000771 UFA 20.00231
Diff_DA 0.0266 UDS 0.0716
DSCVS 4.869 Ramp 21.129

State: FFa –
State: BQ 2.946
State: CT 1.666

aFF state is the base level.

Table 3. AUC for Three Models at Two Time Intervals

Time
interval Physical (P)

Virtual:
one-station (V1)

Virtual:
two-station (V2)

0–5 min 0.8068 0.8017 0.7798
5–10 min 0.7751 0.7643 0.7778
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be calibrating separate FDs under some safety-related
circumstances such as inclement weather, low light con-
ditions, or work zones. Another direction for future
research is establishing the relationship between macro-
scopic traffic characteristics correlated with crash occur-
rence and microscopic traffic characteristics that
correspond to safety surrogate measures (e.g. traffic con-
flicts). The empirical relationship may be explored and
measured via simulation models, but theoretical develop-
ment will require in-depth knowledge of traffic flow the-
ory and its application in highway safety.

Author Contributions

The authors confirm contribution to the paper as follows: study
conception and design: Xiao Qin, Zhi Chen; data collection:
Zhi Chen, Yang Cheng; analysis and interpretation of results:
Zhi Chen, Xiao Qin, Renxin Zhong; draft manuscript prepara-
tion: Zhi Chen, Xiao Qin, Renxin Zhong, Pan Liu. All authors
reviewed the results and approved the final version of the
manuscript.

References

1. Abdel-Aty, M., N. Uddin, A. Pande, F. Abdalla, and L.

Hsia. Predicting Freeway Crashes from Loop Detector

Data by Matched Case-Control Logistic Regression.

Transportation Research Record: Journal of the Transporta-

tion Research Board, 2004. 1897: 88–95.
2. Daganzo, C. F. The Cell Transmission Model: Network

Traffic. Transportation Research Part B: Methodological,

Vol. 29, No. 2, 1994, pp. 79–93.
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