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Abstract
Approximately 35,000 fatalities are attributed to accidents on U.S. highways each year and more than half of them
occurred in rural areas. With such a high percentage of fatalities, rural areas are in critical need of timely and reliable
Emergency Medical Services (EMS). EMS provide important prehospital care to victims before they are transferred to a
hospital. After an accident occurs, the time it takes for victims to receive care from EMS is crucial to their survival.
Compared with urban EMS, rural EMS face multiple challenges. One of them is how to properly site EMS stations to pro-
vide cost-effective services in rural areas. The goals of this paper include analyzing the spatial patterns of EMS station and
incident locations, and optimizing rural EMS station locations. The data were collected from South Dakota, a rural state.
This dataset was used to perform spatial analysis and to develop and evaluate an EMS location optimization model. The
location optimization model aims to maximize the rural EMS coverage while taking service equity into consideration. The
model was solved by a genetic algorithm toolbox in R. The proposed model provides an important and practical tool for
rural EMS officials to select new EMS stations or relocate existing stations to improve service performance under budget
and resource constraints.

In 2015 alone, more than 35,000 people lost their lives
on U.S. highways. More than half of these fatalities
occurred in rural areas. The fatality rate, defined as the
rate of crash-related deaths per 100 million miles tra-
veled, in rural areas is 2.6 times higher than in urban
areas (1). Much of the difference in the fatality rate
between urban and rural areas can be attributed to the
increased travel time needed to reach a victim in rural
areas (1). Because rural areas have a sparsely distributed
population and road network, and a limited number of
Emergency Medical Services (EMS) stations, long travel
distances are often expected for most EMS service trips.
Obviously, a major challenge here is how to provide
timely service in these time-sensitive situations. It is
important to develop methods to decrease the travel time
needed for EMS to reach a victim as this time reduction
may significantly increase the victim’s chances of sur-
vival. The National Cooperative Highway Research
Program (NCHRP) 500 report entitled Volume 15: A
Guide for Enhancing Rural Emergency Medical Services
puts special emphasis on reducing ‘‘the time from injury
to appropriate definitive care’’ to improve rural EMS
(2). In addition, this report identifies some challenges
related to rural EMS, including geographic barriers, lack

of professionals/paraprofessionals, aging or inadequate
equipment, the absence of specialized EMS care, and
local medical facilities (3).

With the objective of improving rural EMS perfor-
mance, this study focuses on the locations of EMS sta-
tions. The goals of this study are to analyze the spatial
patterns of EMS station and incident locations, and to
optimize rural EMS station locations. Based on the spa-
tial pattern analysis using EMS data from South Dakota,
recommendations are provided to optimally locate EMS
sites to obtain improved service performance. In addi-
tion, an EMS location optimization model is proposed.
A case study using this proposed model and the South
Dakota data is presented.
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Literature Review

The National Highway Traffic Safety Administration
(NHTSA) developed 35 performance measures for local
EMS systems, including time-based variables (e.g., Mean
Emergency Patient Response Interval) and outcome-
based variables (e.g., EMS Cardiac Arrest Survival Rate
to Emergency Department Discharge) (2). To evaluate
EMS performance, other metrics were also proposed,
such as time-related, distance-related, and outcome-
based variables. Among these performance indicators,
response time is considered as a major performance
index and has been extensively used to evaluate EMS
performance (2, 4, 5). Although a patient’s treatment
outcome depends on many factors such as the injury
severity and pre-existing conditions, the time needed for
an EMS unit to arrive at the scene (response time) plays
a significant role in the survival rate (4). This conclusion
is also supported by a study done by Yasmin et al. using
the Fatality Analysis Reporting System (FARS) dataset
(6). To date, a clear relationship has not been fully estab-
lished between clinically significant improvements in
patients’ outcomes and reductions in EMS time to defini-
tive care (4). However, the consensus is that shorter time
to definitive care is associated with improved outcomes
for those who need emergency care.

Other than identifying key EMS performance mea-
sures, quite a few researchers have made efforts to
explore ways to model EMS performance. Do et al. con-
ducted a quantile regression analysis to identify signifi-
cant factors related to response time. In their analysis,
potential impact factors were first divided into patient
and system levels (7). Meng et al. introduced a mixed
logistic regression model to predict the fatality risk in
work zones. In their model, the uncertainty involved in
accident notification and response times was considered
(8).

Besides the above regression models, several studies
have focused on developing models to identify optimal
locations for EMS stations. Maximizing the ambulance
coverage and minimizing the en-route time/distance are
considered as two primary objectives for EMS station
location optimization (9). The first objective is referred
to as the maximal covering location problem (MCLP),
which maximizes the demand that may be served (i.e.,
within a required time or distance) by properly choosing
EMS locations (9). The second one is referred to as p-
median or p-center problem (9). The p-median problem
tries to minimize demand-weighted total travel distance
whereas the p-center problem aims to minimize the maxi-
mum distance between demand zones and their nearest
ambulance station (9).

Given the importance of service uncertainty, such as
availability of an ambulance, Daskin et al. proposed a
maximal expected covering location problem (MEXCLP)

model (10). By treating the probability of ambulance
availability as a station-specific variable, Hogan and
ReVelle modified the MCLP model and introduced a
‘‘backup-coverage’’ term in the objective function (11).
‘‘Backup-coverage’’ means that another ambulance may
cover the unserved demand points left by the initially
assigned ambulance. The modified model aims to maximize
both the first and the second coverages to improve EMS
robustness. Building on this ‘‘backup-coverage’’ concept,
Liu et al. proposed a double standard model, which incor-
porates two service coverage standards (12). Additionally,
an adjusted MEXCLP was proposed by Batta et al. to fur-
ther take into consideration the unavailability probabilities
associated with each facility location (13).

Several other studies investigated ambulance location
problems from a multi-objective perspective (14, 15). For
example, Daskin et al. proposed a multi-objective model
that can balance between the number of facilities and the
extra coverage (14). Furthermore, Chanta et al. proposed
a bi-objective facility location model for rural EMS sta-
tions, with service coverage and service equity as the two
objectives (15). In their model, service equity represents
the fairness of the locations of EMS stations relative to
patients. McLay and Mayorga concluded from their
research that ‘‘longer response travel time results in more
equitable patterns of survival: patient lives were saved in
rural areas at the expense of losing patient lives in the
urban areas’’ (16). The aforementioned EMS location
studies mostly are focused on issues related to urban
EMS, and few of them address the unique characteristics
(e.g., low population and volunteer stations) and needs
(e.g., long travel distance) of rural EMS.

Data Collection

For the purpose of this study, EMS incidents, EMS sta-
tions, and highway network data were collected. A subset
of the National EMS Information System (NEMSIS) data
bank consisting of South Dakota EMS incident records
was obtained from the Eastern South Dakota EMS Data
office. The obtained dataset covers the period between 1/1/
2013 and 12/31/2013. Figure 1 shows an example of how
the EMS incident records are organized in the NEMSIS
dataset and how EMS calls are processed.

Each EMS incident record mainly includes time points
(such as ‘‘Dispatch’’), time intervals (such as ‘‘ERTime’’),
odometers, and incident location. ‘‘RespTime’’ in the
NEMSIS dataset is referred to as chute time in many
other EMS documents, and is the time period from the
notification of the EMS dispatcher to the time the ambu-
lance/responding unit starts moving. Thus, the sum of
chute time (or RespTime) and en-route time in this study
is equivalent to response time. As this study focuses on
911 calls (e.g., traffic crash, cardiac arrest, chest pain,
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animal bite, fall victim, ingestion/poisoning), the original
dataset was processed and resulted in 36,198 qualified
records in 2013. Google Map API was used to convert
the addresses of these 911 incidents into coordinates.

The EMS ambulance station data were obtained from
the South Dakota Emergency Medical Services website.
This dataset contains information such as name, loca-
tion, professional status, and vehicle counts for each
EMS station. Figure 2 shows the locations for the 36,198
911 incidents and 109 EMS stations in 2013.

The Non-State Trunk Road Inventory (NSTRI) data-
set provided by South Dakota Department of
Transportation (DOT) was used to derive the highway
data. NSTRI includes both interstate highways and local
roads in South Dakota. The speed limit information in
this dataset was used to perform the network-based anal-
ysis. A calculated average en-route speed of 35 mph was
used as the travel speed for roads with missing speed
limit information.

Spatial Assessment of Statewide EMS
Stations

As shown in Figure 2, it seems that 911 incidents cluster
around EMS stations. A statistical technique called
cross-K function was applied to analyze the 911 incident
and EMS location data to confirm the visual assessment.
The cross-K function is well suited to analyzing the
co-location pattern between two kinds of points. For

example, given two sets of locations A (a1, a2, . . . , ai)
and B (b1, b2, . . . , bj), the cross-K can be used to answer
whether the two sets of points are clustered, dispersed, or
randomly distributed (17). The null hypothesis is that all
the points in A are randomly distributed following a
binomial point process regardless of the locations in B
(17). The cross-K function and the corresponding L func-
tion are formally defined as

Kba rð Þ= la
�1E

number of points A within distance r of a point in Bð Þ
ð1Þ

Lba rð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kba rð Þ=p

q
ð2Þ

where
p is a mathematical constant
la = Density (number per unit area) of points in A;
E( ) = expected value of A following binomial point

process for each point in B;
Kba rð Þ = K function of A relative to B, for the bino-

mial point process; and
Lba rð Þ = L function of A relative to B, for the bino-

mial point process.
The expected value �L(r) 2r can be plotted with upper

and lower 5% boundaries, which indicate a 90% confi-
dence interval using the Monte Carlo simulation. If
Lobs(r) 2r is greater than the upper boundary, the co-
location pattern can be considered to be significantly

Figure 1. Timeline of EMS process.
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clustered. If Lobs(r) 2r is below the lower boundary, the
pattern can be interpreted as significantly dispersed. If
Lobs(r) 2r is between the upper and lower boundaries,
the points in A and B can be considered to be randomly
distributed.

The cross-K function was applied to examine the co-
location pattern between 911 incidents (location A) and
EMS stations (location B) by using the R software. The
results are shown in Figure 3, where Lobs(r) 2r (repre-
sented by the solid black curve) is located above the 5%
upper boundary when the distance r is shorter than 25
mi. This suggests that there is a strong co-location pat-
tern (i.e., significant clustering) between EMS stations
and 911 incidents if one considers a distance range of 25
mi or less. When the chosen distance is greater than 25
mi, the spatial association between EMS stations and 911
calls becomes statistically insignificant. As most 911 calls
are with 25 miles of an EMS station as shown in Figure
2, the current EMS stations overall seem to be well posi-
tioned and are in line with where the 911 calls may occur.

Location Optimization of EMS Stations

Facts for Rural EMS

Before formulating the optimization model, the following
important facts of rural EMS are analyzed.

Volunteer EMS. Lack of professional staff has long been a
major issue affecting EMS service performance in rural
areas. Studies indicate that approximately 75% of EMS
providers in rural areas are volunteers whereas only 30%
are in urban areas (18). In South Dakota, less than 20%
of the EMS stations have professional personnel (19).
Not surprisingly, the EMS data show that chute time
(‘‘RespTime’’) was significantly shorter for stations with
professional staff than for those staffed by volunteers
(2.76 min versus 4.53 min). This longer chute time for
volunteers is mainly caused by their need for additional
time to go to EMS stations for ambulances and neces-
sary equipment. In the proposed optimization model, the
extra time needed for volunteers to go to EMS stations
was considered when calculating the chute time.

Low and Sparsely Distributed Service Demand. When optimiz-
ing the locations of EMS stations for urban areas, one
important consideration is the availability of ambulances
because of the high EMS demand. However, for rural
EMS, ambulances are available for most of the time.
Unit hour utilization (UHU) is defined as the percentage
of time an ambulance unit is occupied. It indicates how
busy an EMS station is. Based on the 2013 data, most
stations in South Dakota had a UHU less than 2%, and
the highest UHU was around 10%. This suggests that
most EMS stations were not busy and many stations did

Figure 2. Incidents and EMS stations in South Dakota in 2013.
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not have any dispatch request for several days. Even dur-
ing the busiest days, the service demand was relatively
low. Thus, the service/ambulance availability was not
considered in the model development in this study.

Long Travel Distance. Besides volunteer EMS, and low and
sparsely distributed EMS demand, long travel distance is
another major challenge for rural EMS. Unlike populous
urban areas, disparities exist in the access to rural EMS
stations. In addition, uncovered areas present another
challenge as they increase the likelihood that a patient
may not be served within the response time standard.
This issue is of paramount importance because the
patient survival rate is directly related to response time.
To account for this factor in the optimization model,
two objectives were considered. One is to maximize the
size of the covered areas that can provide timely EMS
service, and the other is to minimize the response time
for remote incident scenes to improve service equity.

Formulation of Optimization Model

To account for both the EMS coverage (Objective 1) and
the service equity (Objective 2), a bi-objective location
model is shown in Equations 3 and 4, where Z1 and Z2

represent the two aforementioned objectives. Specifically,
Z1 maximizes the number of 911 calls that can be covered

within a prespecified response time and Z2 minimizes the
average response time for uncovered 911 calls that are
outside the prespecified response time zone. xj is a deci-
sion variable, which indicates whether a station should be
built at candidate location j. Equations 5 and 6 define yi,
which equals 1 only if demand node i is covered by one
or more available EMS facilities. p in Equation 7 denotes
the total number of available facilities that can be built.
Equations 8 and 9 restrict xj and yi to being binary vari-
ables. Based on the requirement for South Dakota EMS
(20), a 15-min threshold value was used for response time
to determine whether a demand point is covered or not.

Objective : MaxZ1 =

P
ieI DiyiP
i2I Di

Objective 1ð Þ ð3Þ

and MinZ2 =

P
ieI Di 1� yið Þmin tij

� �
P

i2I Di 1� yið Þ Objective 2ð Þ ð4Þ

subject to

yi�
X

j2Ni

xj, i 2 I ð5Þ

yi � xj, i 2 I , j 2 Ni ð6Þ
X

j2J
xj = p ð7Þ

xj 2 0, 1f g, j 2 J ð8Þ

Figure 3. Cross-K function and L function for 911 incidents and EMS stations.
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yi 2 0, 1f g, i 2 I ð9Þ

where
i, I are the index and set of demand points,
j, J are the index and set of candidate facility

locations,
Di is the 911 demand at point i,
tj is the estimated chute time for each candidate facility

j,
t
0
ij is the shortest en-route time from demand point i to

facility at point j,
tij is the response time required for demand i to facility

j, tij = tj + t
0
ij,

T is the time standard within which coverage is
expected (T = 15),

Nifjjtij�Tg is a set of points j that is within a time of
T for point i,

p is the number of facilities to be built,
xj is a binary variable that equals 1 when a facility is

built at point j and 0 otherwise, and
yi is a binary variable which equals 1 if the node i is

covered by one or more facilities and 0 otherwise.

Solution to Optimization Model: Genetic Algorithm

Metaheuristics are one of the most effective methods
for solving the proposed EMS location optimization
problem. Among the popular metaheuristic solutions
(e.g., genetic algorithm, simulated annealing, ant
colony optimization, tabu search), the genetic algorithm
has been proven to be very effective (19). Thus, the
genetic algorithm was chosen for this study.

The genetic algorithm adopts natural evolution from
Darwin’s theory of evolution for the optimization algo-
rithm and has been used in many optimization problems
including facility location (19). Similar to natural evolu-
tion, the essence of this algorithm is to improve the off-
spring using reproduction mechanisms such as crossover
and mutations, resulting in offspring with higher fitness
functions (19).

The basic procedures for the genetic algorithm are
shown in Figure 4 (21).

� Phase 1: Create initial population for the solutions
(G set of individuals)

The G set of initial solutions will be created to activate
the process.

� Phase 2: Evaluate the fitness function of each solu-
tion in the population

The fitness function will be calculated for each solu-
tion. This will generate a set of fitness function values.

The optimal solution will have the highest fitness func-
tion value.

� Phase 3: Repeat (generate offspring)

Offspring will be generated in four steps, which are 1)
selecting parents from individuals in the population, 2)
performing genetic operators (crossover and mutation)
to produce new individuals, 3) adding new individuals
into the population, and 4) removing individuals with
small fitness function values. These steps will be repeated
until termination criteria are satisfied.

The genetic algorithm toolbox in the R software was
used to solve the proposed multi-objective optimization
model. A multicriteria evaluation technique called the
weighted sum method was adopted to convert the multi-
objective problem into a single-objective one by assigning
a weight to each objective (22). In practice, the weights
can be determined by experts to reflect the relative impor-
tance of each objective. In this study, the same weight is
used for both objectives, namely w1 =w2 = 0:5.
Equations 10 and 11 show the fitness functions for objec-
tives 1 and 2, respectively.

F1 = Z1 =

P
ieI DiyiP
i2I Di

ð10Þ

F2 =
1

Z2

=

P
i2I Di 1� yið ÞP

ieI Di 1� yið Þmin tij
� � ð11Þ

These two functions are combined into a single func-
tion to normalize the different measurement scales. The
combined fitness function is shown in Equation 12.

Figure 4. Flowchart for genetic algorithm.
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F1max, F1min, F2max, and F2min can be obtained by using
the genetic algorithm to maximize fitness functions F1,
1

F1
, F2, and

1
F2
, respectively.

F3 =w1*
F1 � F1min

F1max � F1min
+w2*

F2 � F2min

F2max � F2min
ð12Þ

Case Study

Data Preparation

Minnehaha County in South Dakota was chosen to
demonstrate how to optimize the locations of EMS sta-
tions. The data used in this demonstration were obtained
using ArcGIS by the following three steps.

1) Create Demand Zone. The ‘‘Create Fishnet’’ spatial
tool in ArcGIS was used to create grid cells (demand
zones). Here 1-mi by 1-mi cells were chosen to represent
the demand zones for 911 calls. The total number of 911
calls inside a cell was counted and assigned to that cell as
its attribute (Figure 5).

2) Select Candidate Stations. According to the National
EMS Assessment, about 40% of EMS agencies are fire
departments (23). Alternatively, EMS may be stationed
at a hospital, a police department, an independent gov-
ernment agency, or a nonprofit/profit corporation. In
this study, candidate station locations were selected from
1) the existing stations (Station 1, Station 2, Station 3,
and Station 4); 2) hospitals (Station 5, Station 6, and
Station 7); 3) a police station (Station 8); and 4) ran-
domly selected sites (Station 9 and Station 10). The

randomly selected locations were identified empirically
based on the demand zone locations and the road net-
work to increase EMS coverage. This random selection
process could be improved by discussing the sites with
county EMS officials. The identified candidate stations
as well as the demand zones in Minnehaha County are
shown in Figure 5. The existing stations are labeled as
Station 1 to Station 4 with their volunteer status. Except
for the existing stations, it is assumed that all others are
volunteer stations.

3) Create Time Matrix. Once the candidate stations were
determined, the en-route time matrix was calculated
using the network analyst toolbox in ArcGIS. The en-
route time matrix is the time needed to travel from the
candidate stations to the demand points. It should be
noted that chute time differs between volunteer stations
and professional stations. For volunteer stations, chute
time includes the time required for volunteers to get to a
station and the preparation time at the station; for pro-
fessional stations, on the other hand, chute time is equiv-
alent to the preparation time.

To estimate the average time required for volunteers
to get to a station, the authors assumed that the prob-
ability of a volunteer staying in one population block
equals the percentage of that block’s population. The
block population data (shown in Figure 6) is obtained
from the census website (https://www.census.gov/geo/
maps-data/data/tiger-data.html). The estimated travel
time for volunteers to get to each station equals the
population-weighted average travel time from all popula-
tion blocks to that station.

Figure 5. Minnehaha County with candidate stations and demand zones.
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Table 1 shows the estimated travel times for each can-
didate station. The United States National Fire
Protection Association (NFPA) 1720 has a 1-min chute
time requirement for professional EMS stations.
Therefore, 1 min is used as the preparation time for all
candidate sites as shown in Table 1 (24). The final
response time matrix is prepared by adding the chute
time to the en-route time.

Model Results and Analysis

Based on the time matrix and the call volume in each
demand zone, a genetic algorithm tool in R is used to

obtain the optimal solution for siting EMS facilities. To
provide a comparison benchmark, a single-objective loca-
tion model is included, which only considers the EMS
coverage (Objective 1). The case study analyzes both
single-objective and multi-objective models for a different
number of station facilities, which equal 4, 5, 6, and 7,
respectively. The results of the optimal locations are
shown in Figure 7. As an example, when there are five
stations and EMS is made available at candidate Stations
5, 6, 8, 9, and 10, the maximum coverage rate is achieved.
When EMS is available at Stations 5, 6, 7, 9, and 10, both
service coverage and equity are maximized. By compar-
ing the existing stations (Stations 1, 2, 3, and 4) with the

Figure 6. Census block map.

Table 1. Estimated Chute Time for Candidate Stations

Candidate station 1 2 3 4 5 6 7 8 9 10

Volunteer or not (1/0) 1 0 1 1 1 1 1 1 1 1
Estimated time to station (min) 4.17 na 6.25 4.44 3.48 4.01 3.70 5.39 4.61 3.10
Estimated preparation time in station (min) 1 1 1 1 1 1 1 1 1 1
Estimated chute time (min) 5.17 1.00 7.25 5.44 4.48 5.01 4.70 6.39 5.61 4.10

Note: na = not applicable.
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optimized stations, significant improvement is observed
in both coverage rate and service equity, suggesting the
current EMS stations are not optimally located. Figure 7
also displays the trend of the fitness function for different
numbers of facilities. It suggests that the fitness functions
for both single- and multi-objective models increase as
the number of facilities increases. In the single-objective
optimization model, service coverage is the EMS service
performance measure, which is the fitness function as for-
mulated in Equation 10. In Figure 7, the fitness function

value of 0.84 for the single-objective model indicates the
coverage rate is 0.84 for the four optimized locations. In
the multi-objective optimization model, service coverage
and average response time for the uncovered areas are
the two service performance measures. The fitness func-
tion is now a combination of the two objectives as formu-
lated in Equation 12.

Figure 8 shows the effect of adding service equity as
an objective on the service coverage rate for different
numbers of facilities. The results from the single-objective

Figure 7. Optimized location EMS stations and the fitness functions.

Figure 8. Coverage rate under optimized locations of EMS stations.
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model are also included here for comparison. After add-
ing the equity objective, an adverse effect on the coverage
rate was observed. For the four EMS stations case, the
added equity objective decreases the coverage rate by 1%.
When the number of facilities increases from four to six,
the negative effect becomes more significant with an
increase from 21.00% to 24.34%. For the seven facilities
case, the negative effect on service coverage, however, is
minimal, which may be because there are already enough
stations to cover the study area. This observation here
suggests that the proposed model is particularly impor-
tant and useful for rural areas, which usually have fewer
EMS stations than urban areas. Before running the
model, careful decisions should be made about the respec-
tive weights given to service coverage and equity. In this
case, each objective was weighted equally. The results
could be different if the weights were not the same.

Table 2 shows the average response times calculated
based on the optimized location plans. When the number
of facilities equals four, the average response time for the
multi-objective model is lower than that of the single-
objective model.

Conclusions and Future Work

This study sought to propose methods to increase EMS
coverage ratio and service equity in rural areas. This was
accomplished through the geospatial evaluation of 911
calls and EMS station locations and the optimization of
EMS station locations. The spatial associations of 911
calls and EMS stations were confirmed visually as well as
using the cross-K function. In the proposed EMS station
location optimization model, essential characteristics of
rural EMS, such as volunteer stations and long travel
distances, were carefully considered. Finally, optimal
EMS location solutions were obtained by solving the
proposed optimization model using the genetic algorithm
toolbox in the R software and the data from South
Dakota. The results suggest that the optimization model
provides a powerful and practical tool for EMS agencies
to strategically plan new stations or relocate existing ones
to improve EMS in rural areas.

Although some practical factors related to rural EMS
have been carefully modeled in the study, there are still

assumptions made that may not accurately reflect real-
world rural EMS operations. For example, this study
used historical incident location data to represent the 911
demand. In practice, EMS demand may vary by time of
day, although this variation is expected to be less signifi-
cant in rural areas given the overall low traffic demand
than in urban areas. To take into consideration the
potential EMS demand variation, future work could
include the prediction of incident locations and service
availability. Furthermore, assumptions have been made
to estimate the chute time for volunteer EMS agencies.
Future research should thoroughly analyze the chute
time for EMS volunteers and simulation models could be
used to analyze their dynamics with respect to location,
scheduling, and availability.
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