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Abstract
Emerging data sources such as Safety Pilot Model Deployment (SPMD) provide a great opportunity to gain a better under-
standing of collision mechanisms and to develop novel safety metrics. The SPMD program was a comprehensive data collec-
tion effort under real-world conditions in Ann Arbor, Michigan, covering over 73 lane-miles and including approximately
3,000 pieces of onboard vehicle equipment and 30 pieces of roadside equipment. In-vehicle data (e.g., speed, location) col-
lected by the SPMD program can potentially be an important supplement to traditional crash data-oriented safety analysis.
The goal of this study was to assess roadway link-level surrogate safety measures using the vehicle trajectory data from
SPMD. The study’s objectives included: 1) developing a framework to process the SPMD dataset using big-data analytics; 2)
converting raw vehicle motion data from SPMD to surrogate safety measures; and 3) analyzing the statistical relationship
between crash records and the calculated safety index. The statistical models showed that modified time to collision (MTTC)
outperforms time to collision (TTC) and deceleration rate to avoid collision (DRAC) with respect to its goodness of fit. The
findings are promising in that augmenting safety analysis with surrogate measures and vehicle performance (e.g., speed and
brake duration from connected vehicles) improves the overall model performance. Such information is vital for safety analy-
sis, especially in the absence of detailed roadway and traffic data.

Traffic deaths in 2015 set the record for the largest
annual increase in the United States since 1966 (1). The
preliminary information from the National Highway
Traffic Safety Administration (NHTSA) shows that traf-
fic fatalities increased by 10.4% from 2015 to 2016 (1).
On average, more than 6 million crashes are reported
annually, resulting in more than 30 thousand fatalities
and 2 million injuries every year on the U.S. highways
and streets (1). Because of the tremendous loss caused by
traffic accidents, there is a keen interest in developing
better safety metrics and seeking solutions to reduce
crashes.

Crash history has long been considered by researchers
and safety professionals as a reliable performance mea-
sure for road safety, and possibly the most straightfor-
ward measure. However, the shortcoming of using crash
history is that sites without crashes cannot be properly
evaluated. Moreover, collecting crash data for a valid
statistical evaluation usually takes a long time, and crash
data often are biased because of issues like underreport-
ing and reporting thresholds. The predictive methods in
the Highway Safety Manual (HSM) provide scientific
approaches to calculating the expected annual average

crashes, given a series of contributing variables, but the
requirement for detailed roadway and traffic data makes
the application impractical in many local agencies.

The traffic conflict technique (TCT), which supports
surrogate safety measures for road safety, provides an
alternative to evaluate road safety. Traffic conflict is
defined as ‘‘an observable situation in which two or more
road users approach each other in time and space for
such an extent that there is a risk of collision if their
movements remain unchanged’’ (2). This type of mea-
surement is usually derived from the vehicle kinematic
characteristics before possible conflicts using the collision
theory. TCT not only offers an objective view of collision
likelihood based on a vehicle’s motion, but also considers
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driver behaviors such as speed, acceleration/deceleration,
and following distance. Traditionally, traffic microsimu-
lation models and field observations, either from observ-
ers or by fixed videos, can help to measure conflicts.
Nowadays, emerging data from initiatives such as Safety
Pilot Model Deployment (SPMD) present new opportu-
nities to test, validate, and evaluate surrogate safety mea-
sures with high-resolution vehicle trajectory data.

The main use of the surrogate measures is to evaluate
road safety in the absence of crash data or when crash
data is limited. Surrogate measures can be used to mea-
sure safety performance of a highway facility or to esti-
mate effectiveness of safety treatment. These measures
can provide rapid evaluation for innovative intersection
designs or new traffic control strategies that usually
require a longer period of time to accumulate an ade-
quate number of sites and crash history. They can mea-
sure the safety improvements for rare crash types such as
pedestrian or bicycle crashes. Moreover, surrogate safety
measures can be used to evaluate ‘‘what if’’ scenarios in
microscopic traffic simulation models.

SPMD is a research initiative that demonstrates con-
nected vehicle safety technologies in real-world imple-
mentation. Data are collected from vehicles equipped
with vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communication devices in Ann
Arbor, Michigan (3). Approximately 3,000 vehicles are
instrumented with data acquisition systems (DAS) and
V2V communication devices (3). In-vehicle data such as
speed, location, and direction are collected and commu-
nicated through basic safety messages (BSMs) by dedi-
cated short range communications (DSRC) 10 times per
second (3). The goal of this study is to retrieve proper
information from vehicle trajectory data in SPMD, con-
struct several surrogate safety measures, and assess their
performance in a safety evaluation.

Literature Review

Surrogate safety measures originate from quantifying the
kinematics of a conflict in traffic microsimulation models
(2). Broadly, surrogate safety measures can be categor-
ized as either temporal or nontemporal (2). Time to colli-
sion (TTC), ‘‘the time to collide if two vehicles continue
at their present speed and along the same path,’’ is a
commonly used temporal surrogate measure that has
been widely used to evaluate road safety in different traf-
fic conditions (4–7). TTC is usually measured for each
time stamp, and a threshold is used to determine whether
a collision will happen if the current speed and direction
are maintained (5). Dijkstra used TTC to measure traffic
conflicts with various levels of risk, identifying the rela-
tionship between conflicts and observed crashes (4).
Laureshyn used TTC to analyze conflicts between

turning movements and through movements near the
intersection (7). TTC threshold values have been pro-
posed for different conditions (8, 9), and a threshold of
4 s has been used to differentiate between safe and
uncomfortable situations (8). Hydén and Linderholm use
1.5 s as the TTC threshold to detect a severe conflict (9).
Note that the severity of a conflict or the value of a sur-
rogate measure is to estimate the crash risk rather than
the crash severity.

Time Exposed TTC (TET) and Time Integrated TTC
(TIT) are two modified TTC indicators that can be used
when TTC is below the threshold value (10). TET is the
summation of all times that a driver approaches the front
vehicle with a TTC below the threshold, and TIT is the
integration of the TTC profile when TTC is below the
threshold (10). TTC assumes a constant speed and
ignores possible conflicts caused by the change of speed;
therefore, modified time to collision (MTTC) is sug-
gested because it considers the vehicle’s acceleration or
deceleration (11). Charly and Mathew used MTTC to
identify mid-block conflicts under mixed traffic condi-
tions, and evaluated the temporal and spatial correlation
between conflicts and observed mid-block crashes (12).
Other temporal indicators include post-encroachment
time (PET), where PET is the time between the first vehi-
cle leaving a common spatial area and the second arriv-
ing at the area (13).

Distance-related and deceleration-related are two
types of nontemporal safety indicators. The proportion
of stopping distance (PSD), ‘‘the ratio of the remaining
distance to the point of collision to the minimum accep-
table stopping distance,’’ is commonly used with the
assumption of the maximum available deceleration rate
(MADR) (14). An unsafe situation is detected if PSD is
less than 1, when a collision cannot be avoided even
under MADR. The conventional deceleration-based
index is deceleration rate to avoid collision (DRAC),
which is the deceleration required to avoid a crash (15).
The Crash Potential Index (CPI) is defined as the prob-
ability that a given vehicle’s DRAC exceeds its MADR
during a given time interval (16). Evaluation should be
conducted for candidate surrogate measures, as there are
no current benchmarks (17).

Surrogate safety measures can be calculated from traf-
fic microsimulation models which assume that drivers do
not practice ‘‘unsafe’’ behaviors; however, driver error
contributes tremendously to observed conflicts (e.g.,
crash or near crash) (17). Field observations or video
data can also provide non-simulation–based safety surro-
gate measures. The latest automated video-based tech-
niques make video data processing more efficient (18,
19). Saunier and Sayed proposed an automated traffic
conflict detection method to assess road safety based on
video data with a feature-based vehicle tracking
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algorithm for intersection (18). Zangenehpour developed
a new video-based methodology to extract different road
users in traffic videos automatically, and then evaluated
the relationship between calculated PET and historical
crash data (19). Vehicle trajectory information can be
derived from video data, which help calculate surrogate
safety measures for different situations (20–22). Astarita
used observed vehicle tracking data from a fixed video to
calculate TTC and DRAC in an attempt to measure the
behavior of drivers approaching an intersection (20).
Meng and Weng explored the risk of rear-end crashes in
work zones by using the trajectory data to calculate
DRAC (21). Oh and Kim also used the vehicle trajectory
to calculate TTC for rear-end crashes (22).

Emerging data sources now offer new opportunities
and insights for traffic safety evaluation. SHRP2
Naturalistic Driving Study (NDS) provides a detailed
examination of the role of driver performance and beha-
vior in safety. The study focuses on 1) analyzing the sta-
tistical relationship between surrogate safety measures of
collisions (e.g., conflicts, critical incidents, near-colli-
sions) and actual collisions, and 2) using surrogate mea-
sures to formulate exposure-based risk measures (23–26).
By using the in-vehicle NDS data supplemented by
driver characteristics (e.g., gender, age, driver experience,
speed selection), researchers captured surrogate measures
to understand driver behavior during traffic conflicts
(25). Montgomery et al. found a statistically significant
difference in TTC at braking for different gender and
age groups by using the 100-car NDS dataset (27).
Although these studies show promising results, more
work is required to refine methodologies and validate
surrogate measures (24, 25, 27).

Another emerging data source is SPMD, which is col-
lected from vehicles equipped with vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) communication
devices under the real-world conditions in Ann Arbor,
Michigan (3). The deployment included approximately
3,000 pieces of onboard vehicle equipment and 30 pieces
of roadside equipment in an area of over 73 lane-miles.
SPMD data includes driving data (DAS data), BSM
data, roadside equipment data, weather data, and net-
work traffic volume data (3). Driving data provide vehi-
cles’ kinematic and geographic information, and BSM
data contain vehicles’ position and motion with the status
of components such as brakes, turning lights, wipers, and
so on (3). Compared with video image based data in the
NDS, the data such as DAS and BSM from SPMD are
relatively easy to process. Moreover, SPMD data can
provide real-time safety evaluation in a connected vehicle
environment.

SPMD data have been applied in studies on transpor-
tation planning, traffic volume/congestion estimation,
and extreme events identification (28–32). Deering

processed spatial aggregation of trips into origin and des-
tination zones for transportation planning by organizing
SPMD data (basic safety message and driving data) into
a trip-level dataset (28). Vasudevan et al. predicted con-
gestion states from BSMs by using big-data graph analy-
tics (31), and Zheng et al. used SPMD data to estimate
traffic volumes for signalized intersections (32). The
authors in Zheng’s study developed an approach to esti-
mate traffic volume using GPS trajectory data from con-
nected vehicle (CV) devices under low market
penetration rates (32). Liu et al. used data analytics to
extract critical information (e.g., extreme event)
embedded in BSMs, providing drivers instantaneous
feedback about dangers in surrounding roadway envir-
onments (30). Extreme events were identified if instanta-
neous acceleration (the sum of motion vectors of
longitudinal and lateral accelerations) exceeded the 95th
percentile thresholds which change with speed (30). The
identified extreme events were then connected to the
vehicle maneuvering status (e.g., brake, turn signal) and
driving context (e.g., number of objects, distance to the
closest objects) to explore their relationship (30).
Another study predicted the risky behavior of drivers
(speed) at the point of curvature (PC) for different moni-
toring periods using the BSMs (29).

The challenge of using SPMD data is its size and com-
plexity. The raw data tables are very large; even the 2-
month BSM files are more than 400GB. Deering found
that during data processing, the implementation frame-
work affected computation (28). A distributed computing
framework like Hadoop had significantly reduced com-
putation time when processing the CV data (28). Other
challenges include understanding the data format and
dealing with null values and outliers (28).

Data Collection

Because of the complexity of crash events and associated
surrogate measures, only rear-end crashes in the mid-
block were considered for this study. Road network data
and crash data for Washtenaw County were collected
from the Southeast Michigan Council of Governments
Open Data Portal (http://maps-semcog.opendata.arcgis.
com/). There were 52,386 crashes in the County from
2011 to 2015, including 17,103 rear-end crashes.
According to Michigan’s definition of intersection-
related crashes, the 75-ft radius was used to remove rear-
end crashes at the intersection (33), and the rest were
kept as mid-block crashes. Figure 1 shows the road net-
work and the crash points in Washtenaw County.

Complete speed limit information is not available for
the road network, and an estimation was therefore made
based on the road’s functional class. A primary road has
a value of 55mph, a secondary road has a value of
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35mph, and a local road or city road has a value of
25mph. Road functional class information can be
retrieved from ‘‘TIGER/Line Shapefiles’’ (https://www.
census.gov/geo/maps-data/data/tiger-line.html). Annual
average daily traffic (AADT) can be obtained from the
same Governments Open Data Portal (http://maps-sem-
cog.opendata.arcgis.com/), but only state highways are
included.

Around 2,800 vehicles participated in the SPMD pro-
gram, including 2,450 equipped with a vehicle awareness
device (VAD), 300 with aftermarket safety devices
(ASD), 19 with retrofit safety devices (RSD), and 67 with
integrated safety devices (ISD). Among the vehicles with
VAD, 2,350 are cars, 60 are trucks and 85 are transit
buses. Vehicles with VAD can only transmit BSM. ASD
can transmit and receive BSM but is only installed on
cars. Similar to ASD but designed for freight and transit,
RSD is installed on 16 trucks and three transit buses.
Compared with ASD or RSD, ISD can not only send
and receive BSM but also connect to the vehicle data
processing system. Generally, drivers who reported the
most driving within the SPMD area were selected to the
SPMD program. For the 64 cars with ISD, participants
were selected based on age and gender to ensure a similar
number of drivers in each group.

Two months of the SPMD dataset (October 2012
and April 2013) are free to download in the trans-
portation data sharing platform, or Research Data
Exchange (RDE) (https://www.its-rde.net/index.php/

rdedataenvironment/10018#). This study used the
DataWsu file (12GB) and the DataFrontTargets file
(4.34GB) in the driving dataset DAS1 collected from
around 100 equipped vehicles. DataWsu, from the wire-
less safety unit (WSU), includes mainly GPS-based data
elements (e.g., speed, longitudinal acceleration) and the
state of some components such as brake status and head-
lamp status. DataFrontTargets, which was populated
mainly with the aid of Mobileye’s vision-based
Advanced Driver Assistance Systems (http://www.mobi-
leye.com/), collects front target information such as dis-
tance to the front target and relative speed for the front
target. In this study, common data fields ‘‘Device,’’
‘‘Trip,’’ and ‘‘Time’’ were used to link the two datasets.
Table 1 contains the primary data elements in the
DataWsu file and the DataFrontTargets file, along with
a brief description of each.

Methodology

TTC, MTTC, and DRAC were chosen as the three safety
surrogate measures because of their popularity. Methods
for calculating link-based surrogate safety measures were
developed using information extracted from the real-
world SPMD data set. Vehicle kinematics from the
SPMD data set were used to calculate vehicle-level safety
surrogate measures at each timestamp, which were aggre-
gated into trip-level safety surrogate measures for each
link. The link-level indexes combine trip-level indexes for

Figure 1. Road network and crash points.
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each trip on the link. The statistical relationships between
surrogate safety measures and rear-end crashes were
developed. Additional safety information such as vehicle
maneuvering decisions (e.g., excess speed and brake time
duration) and traffic volume were also included in the
regression models.

Vehicle-Level Safety Surrogate Measures

Safety surrogate measures are usually measured at each
timestamp between vehicles that are interacting with
each other. In Figure 2, it is assumed that if the dis-
tance to the front vehicle is larger than 250m, or the

lateral difference is greater than 3m, there will be no
conflict at this time-spatial point (14). Let VF be the
front vehicle speed, and VS be the subject vehicle speed;
the relative speed equals DV and is (VS2VF). Let aF be
the front vehicle acceleration and aS be the subject
vehicle acceleration; the relative acceleration Da equals
(aS2 aF). D represents the distance between the two
vehicles. The SPMD dataset provides all of this infor-
mation except for aF, which can be calculated from the
front vehicle speed information between two consecu-
tive time stamps. Equations 1–3 detail surrogate safety
measures TTC, MTTC, and DRAC, and the
assumptions.

Table 1. Major Data Elements in the DataWsu File and DataFrontTargets File

DataWsu

Field name Type Units Description

Device Integer none A unique numeric ID assigned to each DAS. This ID also doubles as a vehicle’s ID
Trip Integer none Count of ignition cycles—each ignition cycle commences when the ignition is in

the on position and ends when it is in the off position
Time Integer centiseconds Time in centiseconds since DAS started, which (generally) starts when the

ignition is in the on position
GpsValidWsu Integer none Communicates whether a GPS data point is valid or not
GpsTimeWsu Integer ms Epoch GPS time received from the remote vehicle that has been targeted by the

host vehicle’s WSU
LatitudeWsu Float degrees Latitude from WSU receiver
LongitudeWsu Float degrees Longitude from WSU receiver
AltitudeWsu Real m Altitude from WSU receiver
GpsHeadingWsu Real degrees Heading from WSU GPS receiver
GpsSpeedWsu Real m/s Speed from WSU GPS receiver
SpeedWsu Real km/h Speed from vehicle CAN Bus via WSU
TurnSngRWsu Integer none Right turn signal from vehicle CAN Bus via WSU
TurnSngLWsu Integer none Left turn signal from vehicle CAN Bus via WSU
BrakeAbsTcsWsu Integer none Brake, ABS, and traction control from vehicle CAN Bus via WSU
AxWsu Real m/s2 Longitudinal acceleration from vehicle CAN Bus via WSU
PrndlWsu Integer none Current transmission state (Park, Reverse, Neutral, Drive, Low) from vehicle

CAN Bus via WSU
HeadlampWsu Integer none Headlamp state from vehicle CAN Bus via WSU
WiperWsu Integer none Wiper state from vehicle CAN Bus via WSU
ThrottleWsu Real none Throttle position from vehicle CAN Bus via WSU
SteerWsu Real degrees Steering angle/position from vehicle CAN Bus via WSU

DataFrontTargets

Field name Type Units Description

TargetId Integer none Numeric ID assigned by the Mobileye sensor to distinguish between the different
objects being tracked; the closest obstacle is given a TargetId value of 1

ObstacleId Integer none ID of new obstacle, as assigned by the Mobileye sensor, and its value will be the
last used free ID

Range Integer m Longitudinal position of an object, typically the closest object, relative to a
reference point on the host vehicle, according to the Mobileye sensor

RangeRate Real m/s Longitudinal velocity of an object, typically the closest object, relative to the host
vehicle, according to the Mobileye sensor

Transversal Real m The lateral position of the obstacle, as determined by the Mobileye sensor
TargetType Integer none Classification of an identified obstacle/target as a car, truck, pedestrian, and so on
Status Integer none Classification of the motion (kinematic state) of an identified obstacle/target as

stopped, moving, and so on
CIPV Integer none Field communicating whether an obstacle is the closest in a vehicle’s path
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� TTC is defined as ‘‘the time that remains until a
collision between two vehicles would have
occurred if the collision course and speed differ-
ence are maintained’’ (2):

TTC=
D

DV
ð1Þ

When DV � 0, there is no risk of collision at that
moment. Let L be the link length. The upper limit of
TTC is set to be L

Vs
, ensuring that if there is a conflict, it

is within the roadway segment link.

� MTTC considers the trajectory parameters of the
two consecutive vehicles, including their relative
distance, speed, and acceleration (11). The thresh-
old of MTTC is also assumed to be L

Vs
:

MTTC=

max t1, t2ð Þ, if Da.0

min t1, t2ð Þ, if Da \0 and DV .0

t3, if Da= 0 and DV.0

na, if Da� 0 and DV � 0

8>><
>>:

ð2Þ

where
t1 =

�DV +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DV 2 + 2DaD
p

Da

t2 =
�DV �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DV 2 + 2DaD
p

Da
t3 =

D

DV

� DRAC is ‘‘the minimum deceleration rate required
by the following vehicle to avoid a crash with the
leading vehicle if the speed of leading vehicle is
unchanged during the process’’ (15):

DRAC=
VS

2 � VF
2

2 D� VS*PRTð Þ ð3Þ

where PRT is the perception–reaction time. The default
PRT value used is 0.92 s, which is adopted from Triggs
and Harris’s study for rear-end collision (34). When
VS � VF � 0, there is no risk of collision at that moment.
When D�VS*PRT, the index can be treated as positive
infinity, meaning the collision is certain to happen.

Trip-Level Safety Surrogate Measures

A trip is defined as the time a vehicle traverses a roadway
segment link. After the vehicle-level safety surrogate mea-
sures are available, they will be aggregated into safety
surrogate measures for each vehicle trip. During a non-
stop long trip, a vehicle may traverse the same link multi-
ple times. Thus vehicle-level safety surrogate measures
with the same ‘‘Trip’’ field value can be aggregated into
multiple trip-level safety indexes. For the same vehicle, if
there are multiple front targets at the same timestamp,
the closest one (‘‘CIPV =1’’) is kept.

It is assumed that the safety surrogate measure for
each time interval equals the value for the end timestamp
of that interval. For trip i in a link, the four safety
indexes (SI) are formulated in Equations 4–7 to compute
the trip-level safety surrogate measures on a link. For
the sake of generality, TTC, MTTC, DRAC, and their
aggregations are called SI.

� Time Duration (SI1i) is the total time when the
surrogate measures exist. Note that the time dura-
tion should be less than or equal to the link travel

time
L

Vs

:

SI1i =
X

P

(ti, j � ti, j�1) ð4Þ

� Average Index (SI2i) is the weighted average of
surrogate measures over time:

Figure 2. Illustration of vehicle motion in SPMD dataset.
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SI2i =

P
P (ti, j � ti, j�1)*Indexi, jP

P (ti, j � ti, j�1)
ð5Þ

� Median Index (SI3i) is the median value of surro-
gate measures over time:

SI3i = median
P

Indexi, j

� �
ð6Þ

� Extreme Index (SI4i) is either the minimum TTC
or MTTC, or the maximum DRAC, representing
the most dangerous situation:

SI4i = min
P

Indexi, j

� �
ormax

P
Indexi, j

� �
ð7Þ

where P = {time intervals when safety surrogate mea-
sures are available}, and j is the index of time stamp.

Link-Level Safety Surrogate Measures

One link could include multiple trips: different vehicles
can travel on the same link or one vehicle can travel the
same link multiple times. Trip-level safety surrogate mea-
sures need to be aggregated to a link-level safety surro-
gate measure. The proposed link-level safety surrogate
measures for each link are presented in Equations 8–11.

� Time Duration (SI1) is the average length of time
of all trips in a link:

SI1 =

PN
1 SI1i

N
ð8Þ

� Average Index (SI2) is the average index of all trips
in a link:

SI2 =

PN
1 (SI2i*SI1i)PN

1 SI1i

ð9Þ

� Median Index (SI3) is the median index of all trips
in a link:

SI3 = median
1� i�N

SI3if g ð10Þ

� Extreme Index (SI4) is the minimum or maximum
index of all trips in a link:

SI4 = min
1� i�N

SI4if gor max
1� i�N

SI4if g ð11Þ

Data Processing

The DataWsu data and DataFrontTargets data were
used in this study to calculate SI. Figure 3 shows the
framework of data processing and safety index

calculation in this study, along with the size and volume
of the database after each process.

Initially, each dataset was examined using Python
programming language to check the data type and data
organization. The datasets were then imported into
Hadoop to conduct a query using Apache Hive, a query
language that is built on top of Apache Hadoop.
Unfortunately, because of the complicated relationship
among columns, the aggregation of two big datasets in
Hadoop was extremely slow. Moreover, current
Hadoop-GIS does not support advanced spatial analysis
such as spatial join, so the two datasets were exported
into small files to be joined in the PostgreSQL database.
The combined data were then imported into ArcGIS to
integrate link and intersection information. The com-
bined data were imported back into the PostgreSQL
database, and 75-ft buffer zones were created to remove
points around the intersections. Finally, a combined
dataset was generated for the target type of ‘‘car’’ or
‘‘truck.’’

Vehicle-level SI were calculated within the ‘‘range’’
based on the combined dataset with driving information
and front vehicle information (i.e., distance to the front
vehicle is less than 250m and the lateral distance is less
than 3m). Then, safety surrogate measures were calcu-
lated for each link. Rear-end crashes in the mid-block
and the links with safety surrogate measures, are shown
in Figure 4.

Results

The statistical relationship between the link safety surro-
gate measures and mid-block rear-end crashes was devel-
oped using the negative binomial (NB) model, of which
the mean is estimated as a log-linear function of the
explanatory variables. Only links with observed surro-
gate measures were selected. Of the 2,772 selected links,
the average link length is 352m, the median length is
213m, the minimum length is 35m, and the maximum
length is 3,635m. The surrogate safety measures and
other independent variables include vehicle maneuvering
actions such as average speed and brake duration and
segment link length. The link length is treated as an inde-
pendent variable rather than as an exposure variable to a
crash because the length is used to set the upper limit for
a safety index. Variance inflation factors (VIFs) were cal-
culated for each independent variable to examine the
possibility of multicollinearity. In this study, all VIFs are
less than 10 except for the average index and median
index. Small VIF values mean no high correlations exist
among the independent variables after excluding average
index and median index. Traffic volume such as AADT
is typically included as the traffic exposure to crashes.
However, during the variable selection process, AADT
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was not statistically significant for the selected links and,
therefore, AADT was excluded from the final NB mod-
els. The results of the models are shown in Table 2.

For TTC, the variables of time duration, extreme
index, average speed, brake duration, and link length are
statistically significant at the 1% level or lower. Time
duration and extreme index are two SI that affect crash
frequency at a statistically significant level. The positive
sign of time duration means that the longer the danger-
ous situation lasts, the more frequently a crash will
occur. The negative sign of extreme index suggests a
larger minimum TTC is associated with a smaller num-
ber of crashes. The positive impact of average speed on
crashes indicates that a faster speed results in more
crashes. The longer brake time within the link means a
worse link safety condition (higher crash frequency). The
positive effect of link length on crashes simply suggests
that more crashes may happen if the link is longer.

When compared with TTC, the differences in para-
meter estimates for MTTC include the lower time dura-
tion value and larger extreme index value. It is found
that the mean value of time duration for MTTC is larger
than for TTC (1.22 s versus 0.56 s) and the mean value of
extreme index for MTTC is lower than for TTC (1.86 s
versus 3.43 s), suggesting an MTTC-based conflict is

more easily detected compared with a TTC-based con-
flict. As an acceleration-based surrogate measure, all SI
are statistically significant for DRAC. The positive sign
of extreme index for DRAC means the increase of the
maximum DRAC leads to more crashes. Average speed
and brake duration are always statistically significant
with the similar parameter estimates, irrespective of the
SI. Excess speed, reflecting the driver’s aggressiveness in
choosing speed, was calculated and included in the
model. The excess speed equals zero when the average
speed is less than the speed limit and equals the differ-
ence between the two if the average speed is greater than
the speed limit. Model results show insignificant SI when
replacing average speed with excess speed.

The dispersion parameter was estimated in the NB
model to measure the data overdispersion. The respective
values of 0.399, 0.419, and 0.372 in the models for TTC,
MTTC, and DRAC justify the choice of the NB model.
Goodness-of-fit measures such as Akaike Information
Criterion (AIC) and pseudo R-squared were used to com-
pare the model performance. AIC uses the maximum
log-likelihood function with a penalizing term related to
the number of variables. A lower AIC value indicates a
better fit. McFadden pseudo R-squared, analogous to
the R-squared value for linear regression models, equals

Figure 3. Data processing framework.
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Figure 4. Maps with observed safety index and crash points.

Table 2. NB Models for Mid-Block Rear-End Crashes

TTC MTTC DRAC

Estimate p-value Estimate p-value Estimate p-value

(Intercept) –0.990*** \2e-16 –0.624*** \2e-16 –1.237*** \2e-16

Time duration 0.222** 0.002 0.147*** \2e-16 0.063*** \2e-16

Extreme index –0.100*** \2e-16 –0.518*** \2e-16 4 3 10–6** 0.007
Average speed 0.082*** \2e-16 0.083*** \2e-16 0.077*** \2e-16

Brake duration 1.136*** \2e-16 1.040*** \2e-16 1.390*** \2e-16

Link length 0.001*** \2e-16 0.001*** \2e-16 0.001*** \2e-16

Number of observations 2,772 2,772 2,772
Dispersion parameter 0.399 0.419 0.372
2 log-likelihood –9615.862 –9542.735 –9701.151
AIC 9629.900 9556.700 9715.200
McFadden pseudo R-squared 0.066 0.075 0.054

Note: AIC = Akaike Information Criterion.

***p= .001. **p= .01. *p= .05.
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1 minus the ratio of the log-likelihood of the full model
to the log-likelihood of the intercept-only model. The
pseudo R-squared takes a value between 0 and 1, and a
higher value indicates better model performance. The rel-
atively low R-squared values mean that if crash data are
considered as ground truth, it cannot be concluded with
confidence which surrogate measure is the best safety
metric. Among the three indexes, MTTC is considered as
the most statistically significant surrogate safety measure
for crashes because it has the highest pseudo R-squared
value and the lowest AIC value. In summary, the pro-
posed safety information can be useful for evaluating seg-
ment link safety when roadway geometric and traffic
information is limited.

Conclusion

An SPMD dataset was used to evaluate rear-end crashes
in the mid-block. Three main objectives were accom-
plished: 1) develop a framework to process the SPMD
big data; 2) construct surrogate safety measures from
SPMD data; and 3) analyze the statistical relationship
between crash records and a calculated safety index.

Unlike other studies that adopted surrogate safety
measures to identify traffic conflicts, this study attempted
to evaluate segment safety using surrogate safety mea-
sures. Aggregated surrogate measures were developed for
a trip-level and a link-level safety index, as surrogate
measures are usually taken at the vehicle level by measur-
ing the time and space between a pair of vehicles.
Surrogate measures are treated as SI, which quantify the
severity of a potential traffic conflict. For example, a
higher value of TTC means a higher safety index. In the
real world, however, a TTC of 3 s may result in a crash
whereas a TTC of 1 s may not; this is dependent on the
driver. Thus, arbitrary threshold values were not used in
the study to preserve the integrity of the information.
The logic of this study is to keep the calculated surrogate
safety measures for all the time points and then provide
indicators (e.g., time duration, average index, median, or
minimum/maximum index) to summarize these SI on the
same trip for each link.

The NB models for mid-block rear-end crashes show
the expected impact of explanatory variables on crashes.
Among the three models, MTTC has a better goodness
of fit when compared with TTC and DRAC. The find-
ings show that augmenting safety analysis with surrogate
measures and vehicle performance (i.e., speed and brake
duration from CVs) improves the overall model perfor-
mance. Such information can be vital when detailed
roadway and traffic data are absent.

Some abnormal numbers were produced and
removed, and the measurement errors in the dataset were
unknown. The study is also less comprehensive because

there is no record of the dataset in some columns (e.g.
right turn or left turn signal). The complexity of the
dataset means that some of the assumptions or data pro-
cessing approaches used in this study may not be optimal
in all situations; thus, future studies should search for
other effective approaches. Future studies can be
expanded into the comparison of other safety surrogate
measures such as PET, Delta-V, and extended Delta-V.
New and emerging safety surrogate measures can be
developed with the rich information provided through
CV safety technologies. In addition, future studies can
also take advantage of the high-resolution vehicle kine-
matics and Signal Phasing and Timing (SPaT) data in
the SPMD program to study risky driver behaviors such
as red light running.
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bec, Canada, 2016.
20. Astarita, V., G. Guido, A. Vitale, and V. Giofré. A New
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