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A challenge in modeling crash frequency is an excess of sites with no 
crashes, few sites with a large number of crashes, or both. When there 
are excess zeros in the data or when the variance of the response is 
greater than the mean, the data are overdispersed. Recently, a few 
promising modeling techniques, such as the negative binomial–Lindley 
(NB-L) and negative binomial–generalized exponential (NB-GE) mixed 
distribution generalized linear models (GLMs), have been developed 
to handle count data overdispersion while keeping the core strength of 
the NB model. This study expanded the discussion on NB-L and NB-GE 
GLMs by focusing on their capability for modeling crash data as well as 
quantifying the safety impact of crash contributing factors. The mixed 
distribution models along with the conventional NB model were applied 
to a rural two-lane, two-way highway data set. The results showed that 
both NB-L and NB-GE GLMs could yield results similar to those of the 
NB model in addition to having mixed distribution probabilities to 
account for overdispersion. All modeling approaches successfully esti-
mated the combined effects of lane width and shoulder width and identi-
fied the same combination with the optimal safety benefits. Both NB-L 
and NB-GE can be considered viable alternatives for the NB model if 
better goodness of fit is desired.

Modeling of crash data is important to highway safety. Crash modeling 
can be used to identify the contributing factors in crash occurrence, to 
predict future crashes, or to rank crash hot spots for safety treatments. 
Crash data are often characterized by extra variance in crash occur-
rence, which can be attributed to the unaccounted variation across 
sites (1). In statistical terms, when the sample variance is significantly 
greater than the sample mean, it is called data overdispersion. Fail-
ing to account for data overdispersion can lead to biased parameter 
estimates. Many sites with zero crashes along with a long crash tail 
can create highly dispersed data. A “long crash tail” refers to a right-
skewed crash distribution in which a series of sites with very high 
crash counts exists in a crash data set with very small probabilities. It 
was noted in the literature that the traditional models, such as Poisson, 
negative binomial (NB), and Poisson lognormal, cannot effectively 
handle highly dispersed data sets because of inherit limitations (1–3).

Considering the characteristics of crash count data, researchers 
have proposed novel statistical methods to address data issues, such 

as outliers, data heterogeneity, multicollinearity, interactions between 
variables, and excessive zeros. Lord and Mannering documented 
many of the issues arising in the crash data set and summarized the 
regression models proposed by researchers in previous literature (3). 
Mannering and Bhat updated the list of methodologies for analyzing 
crash data afterward (2). Of these methodologies, researchers proposed 
the zero-inflated Poisson (ZIP) and zero-inflated NB (ZINB) 
models to overcome data overdispersion with excess zeros (4–6). 
But this kind of modeling assumes that data belong to two states: the  
zero or safe state and the nonzero state. The zero state is desirable 
but practically impossible because no site is absolutely crash free. 
This is an important methodological limitation, although the model 
provides a better fit for the crash data (7, 8). To address some of the 
criticism associated with zero-inflated models, Malyshkina and Man-
nering proposed the zero-state Markov switching count model (9). 
This methodology allows individual roadway segments to switch 
between zero and normal-count states over time. One of the impor-
tant advantages of this Markov switching approach is that it allows 
for direct statistical estimation of the specific roadway segment state, 
whereas traditional zero-inflated models do not. When crash data are 
characterized by excess zeros with a long tail, the mixed modeling 
approaches such as the NB-Lindley (NB-L), NB-generalized expo-
nential (NB-GE), and Sichel generalized additive models for location, 
scale, and shape (GAMLSS) generalized linear regression models 
(GLMs) usually perform better than traditional NB, ZIP, and ZINB 
models (10–12; Zou et al., unpublished work, 2012). The Sichel 
GAMLSS is formulated with the Sichel distribution, also known as 
the Poisson generalized inverse Gaussian distribution, with a four-
parameter GAMLSS framework. The main benefit of both NB-L and 
NB-GE GLM approaches is that they maintain the traditional NB 
characteristics while handling excess data dispersion.

Recent development of mixed GLMs such as NB-L and NB-GE 
has encouraged researchers to apply novel and sophisticated statisti-
cal methods to model nonnormality in the crash data. The study pre-
sented in this paper expanded the discussion of NB-L and NB-GE 
GLMs as viable modeling alternatives for crash data from the theo-
retical perspective as well as their ability to quantify the impact 
of crash contributing factors by applying them for rural two-lane, 
two-way highways.

Methodology

Two mixed GLMs, NB-L and NB-GE, are introduced with their imple-
mentation procedures because neither modeling technique is readily 
available in any of the commercial statistical software packages.
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NB-l gl Model

Lindley introduced the probability density function for the Lindley 
distribution (13). Because of the popularity of exponential family 
distributions, the Lindley distribution was overlooked in the previ-
ous literature (14). The Lindley distribution is a mixture of exponen-
tial and gamma distribution. The NB-L distribution is a mixture of 
NB and Lindley distributions. This mixed distribution works well 
when the data set contains many zeros or with highly dispersed data. 
Ghitany et al. showed that Lindley is a better distribution than expo-
nential distribution (14). The probability mass function and maxi-
mum likelihood estimation equations are referred to in the study 
conducted by Zamani and Ismail (15).

Geedipally et al. applied NB-L distribution in the GLM con-
text, where the NB-L distribution can also be reparameterized as 
follows (11):

∫( ) ( ) ( )= µ Φ θ = Φ εµ ε θ εP Y y y d, , , NB ; , Lindley ; (1)

Equation 1 illustrates that εµ is the mean of variable Y following 
the NB distribution, and ε follows the Lindley distribution.

For modeling crash count data, the NB or Poisson-gamma mix-
ture model (NBGLM) is the most representative statistical method 
used in previous studies. For modeling the mean response for crash 
count, the most commonly used functional form of NBGLM is the 
log-link function. Now, if it is assumed that the crash count follows 
an NB-L (Φ, p) distribution, the mean response function can be 
structured as follows:
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Replacing the value of µ and E(ε), the mean response function 
can be written as follows:
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In the literature, researchers presented the NB-L distribution by 
using a stochastic representation (12, 15). The Lindley distribution 
is not a standard distribution. It is a mixed distribution of gamma 
and exponential distribution, which can be written in the following 
structure (15):
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The exponential distribution (θ) can also be written as gamma 
distribution (r, θ). If r = 1, then the gamma distribution can be equal 
to exponential distribution. Rewriting Equation 4 will look like
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The Lindley distribution needs to be reparameterized for easy 
interpretability in the NB-L GLM. The mixture of two gamma dis-
tributions can be derived to be rewritten with Bernoulli distribution. 
Assume a random variable z that follows a Bernoulli distribution. 
Then the special mixed structure can be written as follows:
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With the newly developed structure for Lindley distribution, 
the NB-L distribution can be written as following a multilevel 
hierarchical structure:
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In previous studies, researchers used Bayesian interface to imple-
ment this model due to the hierarchical structure of NB-L GLM 
(11, 16). In the presented structure, the crash count follows an NB 
distribution which is conditional on a site-specific frailty term. The 
site-specific frailty term, ε, was assumed to accommodate additional 
data heterogeneity in crash data. It is necessary to specify prior dis-
tribution for the parameters to obtain the Bayesian estimate. Prior 
distributions are meant to reflect prior knowledge about the param-
eters of interest. The site-specific frailty term follows an uninforma-
tive prior of gamma distribution. The shape parameter in the gamma 
distribution also follows a Bernoulli distribution that depends on 
z = 1/1 + θ. In previous work, Geedipally et al. used a beta prior 
to define z in Bayesian interface (11). But in a study conducted by 
Hallmark et al., rather than specifying the priors for z, the authors 
directly specified the prior for θ with a weakly informed prior that 
follows gamma distribution (16). It could be difficult for a user to 
choose between the two approaches to implement an NB-L model.

To build a generalized model, the NB-L model structure must be 
developed so that it can perform better than or similar to the NB 
model with or without preponderant zero crashes or with or without 
a long crash tail. From the hierarchical structure, the formulation can 
be seen as adding a site-specific offset term in the log-transformed 
domain of the mean response of NB distribution. Use of a weakly 
informative prior may yield a model output in which the parameter 
estimate for Lindley distribution may have a greater contribution to 
crash prediction than NB distribution. Markov chain Monte Carlo 
(MCMC) can also suffer from poor mixing because of a correlation 
between the intercept and the Lindley term (Equation 3). It has been 
noted in the literature that if prior information is available, it should 
be used to formulate the informative priors (17, 18). To limit the 
contribution of the mixed effect from Lindley distribution, a prior 
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should be used to ensure E(ε) = 1. That is, the first moment of Lindley 
distribution, θ + 2/θ(θ + 1) = 1, which yields to an estimate of θ, is 
equal to 1.41. For limiting the θ value, Geedipally et al. suggested 
to use a prior for 1/1 + θ that follows a beta distribution, and the 
reasonable choice for prior distribution is Beta (n/3, n/2), where n is 
the total observations.

generalized exponential distribution

The generalized exponential distribution was introduced by Gupta 
and Kundu as an alternative to three-parameter Weibull distribution 
and three-parameter gamma distribution (19). The generalized expo-
nential distribution can coincide with the exponential distribution 
when α = 1. The probability mass function and the moment generating 
equation for generalized exponential distribution are given in stud-
ies conducted by Gupta and Kundu and Aryuyuen and Bodhisuwan  
(19, 20). By differentiating the logarithm of moment function, the 
mean and variance for generalized exponential distribution can be 
obtained. The mean and variance can be written as follows:
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where Ψ(.) is the digamma function and Ψ′ is the derivative of the 
digamma function.

Introduced by Aryuyuen and Bodhisuwan, the NB-GE distribution 
is a mixture of NB and GE distributions (20). In the GLM context, 
the NB-GE distribution can also be reparameterized as a mixture of 
NB and generalized exponential distribution (10) and formulated in 
the following structure:

P X x x z z dz∫( ) ( ) ( )= µ Φ θ = Φ µ α β, , , NB ; , GE ; , (10)

Similar to the NB-L GLM, Equation 1 illustrates that zµ is the mean 
of variable Y following the NB distribution, and z follows the gener-
alized exponential distribution. Now, assuming that the crash count 
follows an NB-L (Φ, p) distribution, the mean response function can 
be structured as follows:
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The NB-GE GLM works similarly to NB-L distribution. The 
site-specific frailty term was assumed to accommodate data hetero-
geneity that follows generalized exponential distribution. The imple-
mentation of the NB-GE GLM with crash count data can be found 
only in a study conducted by Vangala et al. (10). Unlike Lindley 
distribution, the generalized exponential family is already available  
in the OpenBUGS library (21). The only point of concern to apply-
ing the NB-GE model is to define informative priors for two param-
eters of generalized exponential distribution. Vangala et al. noted that 
restricting the parameters α and β between some range can improve 
the mixing in an MCMC and also elicit the expected value of general-
ized exponential distribution near 1 (10). The authors suggested limit-

ing the value of α and β to between 1 and 3. Use of a uniform prior 
from 1 to 3 can be reasonable to limit the parameters of generalized 
exponential distribution.

Both NB-L and NB-GE GLMs have additional features that can 
accommodate data heterogeneity, and both yield results similar to 
those of the NB model if data heterogeneity is not a concern. The 
NB-L and NB-GE models can be considered as random intercept 
models as the site-specific frailty term varies from site to site. Accord-
ing to the amount of data dispersion, the posterior mean of frailty 
term can adjust the mean estimate of NB distribution. The additional 
parameters in NB-L and NB-GE GLMs can provide a better fit for 
overdispersed data. From a model design perspective, these two fea-
tures give an advantage to NB-L and NB-GE GLMs in modeling 
complex crash data.

data descriptioN

A data set from the South Dakota Department of Transportation road-
way, traffic, and accident database was used to establish the objective 
of this study. The roadway geometric and traffic features were avail-
able in the roadway inventory system (RIS). Multiple event tables 
from RIS were joined to generate homogeneous segments. The 
accident data set for 2008 to 2014 was collected from South Dakota 
accident records system. The crash data were joined with roadway 
data according to their spatial distance. The focus of this study was 
rural two-lane, two-way highway segments. The whole data set was 
divided into training and validation data sets. The training data set 
consisting of crash data from 2008 to 2012 was used to develop a 
crash prediction model, and the validation data set consisting of 
crash counts from 2013 and 2014 was used to compare prediction 
accuracy between models. The final data set contained 16,828 sites 
of rural two-lane, two-way highway segments with a cumulative 
segment length of 6,361.53 mi. A total of 77.8% of the sites experi-
enced no crashes during the 5-year period in the training data set. 
Descriptive statistics of the variable used for model development 
are provided in Table 1.

thirteeN coNtrolliNg criteria

The Green Book recommends safe and efficient practices for the 
design of roadways on the basis of extensive research and study (22). 
After a technical review of the adopted minimum criteria in the Green 
Book, FHWA identified 13 criteria needing special attention, referred 
to as the 13 controlling criteria (23). The 13 criteria have substantial 
importance for operational and safety performance of any highway:

 1. Design speed,
 2. Lane width,
 3. Shoulder width,
 4. Bridge width,
 5. Horizontal alignment,
 6. Superelevation,
 7. Vertical alignment,
 8. Grade,
 9. Stopping sight distance,
10. Cross slope,
11. Lateral offset to obstruction,
12. Structural capacity, and
13. Clearance.
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AASHTO evaluated the contribution of the 13 controlling crite-
ria for geometric design (24). The safety effects for the controlling 
criteria on rural two-lane highways provided in this study were care-
fully reviewed. This study considered whether the mixed distribution 
models with complex mathematical structure can effectively identify 
the statistically significant association between crash frequency and 
any of these variables.

For choosing the statistically significant variables for model devel-
opment, the correlation matrix was investigated for the data set,  
followed by the NB model that was developed as benchmarks. 
According to the correlation matrix results and the NB model output, 
speed limit, grade percentage, horizontal curve length, and rumble 
strip variables were discarded because no statistically significant 
relationship was found between crash count and these variables. Of 
all available explanatory variables, some of the 13 controlling crite-
ria were found not to be statistically significant in the final model.  
This finding underscores the fundamental difference in the concept of 
nominal safety (whether a roadway, design alternative, or design ele-
ment meets minimum design criteria) and substantive safety (actual 
or expected safety performance of a highway, usually measured by 
crash data).

To investigate the design exceptions and their impacts on a rural 
two-lane highway, the lane width, the shoulder width, and their 
interaction were explored. Both lane width and shoulder width vari-
ables were divided into four levels as recommended in the Highway 
Capacity Manual (25), and the level designations are provided in 
Table 2.

results aNd discussioN

Table 3 summarizes the results of the final model for NB, NB-L, 
and NB-GE modeling approaches. The segment length variable was 
considered as an offset. To check statistical significance of parameter 
estimates, the 95% credible interval for each parameter estimate was 
reviewed. The 95% credible interval of each parameter estimate does 
not include zero. A total of three Markov chains were used in each 
model estimation process. For each chain, 30,000 iterations were used. 

The first 15,000 iterations were used as burn-in samples for estimat-
ing the model parameters (these were discarded). The Gelman–Rubin 
convergence statistics (G-R statistics) were reviewed to verify the 
model convergence. Mitra and Washington recommended that the 
convergence is achieved when the G-R statistic is less than 1.2 (1). 
For assessing overall model prediction accuracy of applied models 
in a Bayesian framework, Krnjajić and Draper suggested to evaluate 
the log scoring criterion (26–28). The formulation of a cross-validated 
version of log score (LSCV) is presented in the following equation:

BB ∑ ( )( ) = −
=

M y
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p y y Mj i i j

i

n

LS
1

log (12)CV
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where

 y−i = y-vector (response variable) with ith observation omitted,
 Mj = model specification, and
 B =  set of propositions (true–false statements) summarizing 

background information.

TABLE 1  Variable Summary Statistics of Training Data Set

Variable Description Mean Minimum Maximum SD

Crash Crash count 0.619 0 88 2.382

AADT Annual average daily traffic over 5 years 920.797 45 21,396 913.721

Seg_Length Segment length in miles 0.378 0.01 16.494 1.015

Lane_Wid Lane width in feet 12.956 9 30 2.109

Shoulder_Wid Average shoulder width in feet 3.052 0 15 2.564

Speed_Limi Speed limit 57.342 20 65 10.653

R_Mile Radius of curvature in miles 0.082 0.01 1.084 0.186

Hcur_Len Horizontal curve length 0.050 0.01 1.025 0.114

Grade Grade percentage 1.197 3 15 1.977

Rumble_Strip Yes (71.1%)
No (28.9%)

Curve_Flag Yes (8.0%)
No (92.0%)

Grade_Flag Yes (4.5%)
No (95.5%)

Note: Categorical variables are presented as percentage of total highway miles.

TABLE 2  Lane Width and Shoulder 
Width Level and Designations

Level
Level 
Designation Site Count

Lane Width

≤10 ft A 996

(10, 11] ft B 886

(11, 12] ft C 8,253

>12 ft D 6,693

Shoulder Width

[0, 2] ft P 7,808

(2, 4] ft Q 4,509

(4, 6] ft R 2,822

>6 ft S 1,689
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For a large sample size, LSCV can be computationally expensive 
as it requires n separate MCMC runs after each observation is omit-
ted. In the setting in which predictive distribution is not available in 
closed form, it can also be computationally expensive (28). Draper 
and Krnjajić suggested another form of log scoring that omits the 
leave-one-out idea, called the full sample log score (LSFS) (28), which 
is formulated in Equation 13. The model with the higher log score 
is considered to have better prediction accuracy and better small 
sample model discrimination ability.

B BM y
n

y y Mj i j

i

n

∑ ( )( ) =
=

LS
1

log p (13)FS

1

The coefficient estimates in Table 3 show that (a) the intercept 
is quite different among three models because a site-specific frailty 
term was considered as an additional offset in both NB-L and NB-GE 
modeling, (b) the main effect estimates have the same sign and the 
mean value are similar, and (c) the interactions have rather different 
mean values. The estimated coefficient for lane width shows that 
with the increase in lane width, the reduction in crash occurrence 

gets smaller. The same trend is observed for shoulder width. For 
considering the combined effect of lane width and shoulder width, 
the combined mean was calculated from the main and interaction 
terms, as shown in Table 4.

The results in Table 4 consider a baseline of lane width less than 
or equal to 10 ft and shoulder width of [0, 2] feet. The combined 
interaction coefficients suggest there is a reduction in crash occur-
rence with the increase in lane width from 10 ft and shoulder width 
from [0, 2] feet. To better understand the effect of the lane width–
shoulder width combination, pseudoelasticity was computed. The 
pseudoelasticity is the percent increase in the crash frequency caused 
by the change in indicator variable, which can be formulated by 
Equation 14 (29):

( )
( )

=
β −

β
λ exp 1

exp
(14)Ex

k

k
ik

i

where βk is the estimated model coefficient for indicator variable xik.
The estimated pseudoelasticity for the combination of lane width 

and shoulder width is presented in Figure 1.

TABLE 3  Final Model Results for Rural Two-Lane Highways

NB NB-L NB-GE

Variable Mean SD Mean SD Mean SD

Intercept −3.12 0.236 −2.394 0.337 −2.294 0.215

log(AADT) 0.7229 0.031 0.618 0.038 0.663 0.022

R_mile −1.578 0.144 −1.591 0.192 −1.551 0.155

Curve_Flag −0.889 0.064 −0.894 0.092 −0.879 0.07

Lane_Wid:B −0.489 0.129 −0.516 0.184 −0.517 0.141

Lane_Wid:C −0.366 0.081 −0.343 0.147 −0.358 0.102

Lane_Wid:D −0.364 0.079 −0.307 0.142 −0.357 0.098

SW:Q −1.703 0.406 −1.403 0.253 −1.361 0.481

SW:R −0.585 0.196 −0.245 0.211 −0.547 0.235

SW:S −0.512 0.781 −0.329 0.688 −0.852 0.345

LW_B:SW_Q 1.615 0.646 1.335 0.595 1.272 0.70

LW_B:SW_R 0.913 0.364 0.647 0.411 0.884 0.389

LW_B:SW_S 0.539 0.868 0.487 0.804 1.014 0.517

LW_C:SW_Q 1.587 0.407 1.311 0.26 1.244 0.485

LW_C:SW_R 0.602 0.199 0.318 0.216 0.582 0.247

LW_C:SW_S 0.495 0.787 0.404 0.678 0.892 0.34

LW_D:SW_Q 1.636 0.408 1.354 0.254 1.322 0.481

LW_D:SW_R 0.549 0.194 0.296 0.224 0.549 0.237

LW_D:SW_S 0.51 0.788 0.382 0.486 0.898 0.343

Inverse–dispersion 2.239 0.134 8.929 0.816

Dispersion 0.104 0.003

Θ 1.498 0.029

Alpha 2.888 0.097

Lambda 2.828 0.167

DIC 22,090 21,090 21,550

Dbar 22,070 19,010 20,060

pD 19.8 2,080 1,488

LSFS −1.85 −1.79 −1.82

Note: Dispersion and inverse–dispersion are not directly comparable because of different  
specifications in model structure.
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In Figure 1, the pseudoelasticity estimates are shown with a bar 
chart for each modeling approach. The pseudoelasticity estimates 
of the interaction effect suggest that a combination of a lane width 
of (10, 11] feet and shoulder width of (2, 4] feet has the maximum 
reduction in crash occurrence. Another important point is that with 
the same lane width, an increase in shoulder width to the next level 
of (4, 6] feet has the lowest reduction in crash occurrence within all 
interactions. Increasing lane width and shoulder width for a rural 
two-lane highway may not add safety benefits. In this study, the 
results suggest that a roadway with 11-ft lane width and 4-ft shoulder 
width has optimal safety benefits. Despite different coefficient trends 
between models, all three modeling approaches can identify the same 
lane width–shoulder width combination for optimal benefits.

A comparison of the findings with previous literature showed 
that the results conform with the study conducted by Lee et al. that 
found that the logarithm of crash rate was the highest for 12-ft lanes 
and lower for lane width less than or greater than 12 ft (30). Qin 
et al. found that there is an increase in single-vehicle crash occur-
rence with the increase in lane width on Michigan rural two-lane 
highways (5). In previous studies, the authors found that crash fre-
quency usually drops with an increase in lane width (31–33), plau-
sibly because of a larger separation between vehicles in adjacent 
lanes. However, the larger separation resulting from wider lanes 
may make drivers feel safe and thus increase their speed. Hauer 
suggested that a larger separation between vehicles tends to increase 

TABLE 4  Combined Lane Width–Shoulder Width  
Interaction Coefficients

Lane Width

Shoulder Width B: (10, 11] ft C: (11, 12] ft D: >12 ft

NB

Q: (2, 4] ft −0.578 −0.482 −0.431

R: (4, 6] ft −0.162 −0.349 −0.400

S: >6 ft −0.463 −0.383 −0.366

NB-L

Q: (2, 4] ft −0.584 −0.435 −0.356

R: (4, 6] ft −0.114 −0.270 −0.256

S: >6 ft −0.357 −0.267 −0.254

NB-GE

Q: (2, 4] ft −0.606 −0.475 −0.397

R: (4, 6] ft −0.181 −0.323 −0.356

S: >6 ft −0.355 −0.318 −0.312

Note: Combined interaction coefficient = coefficient for lane width 
level + coefficient for shoulder width level + interaction coefficient 
between lane width and shoulder width.

FIGURE 1  Comparison of pseudo-elasticity between models: (a) NB, (b) NB-L, and (c) NB-GE.
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speed and reduce spacing between vehicles, which may contrib-
ute to higher crash occurrences (34). Driver behavior influences,  
complicates, and sometimes compromises the safety outcome of 
the countermeasures, as reflected in an FHWA-sponsored study in 
which the safety effectiveness of a lane width and shoulder width 
combination on rural two-lane undivided roads was evaluated (35). 
The authors compared the safety effectiveness of various allocations 
of total paved width into lane width and shoulder width by comput-
ing the corresponding crash modification factor. The authors con-
cluded that there is no definitive trend in the relationship between 
crash frequency and the lane width–shoulder width combination.

The results provided in Table 3 contain a model comparison that 
uses the deviance information criterion (DIC). Geedipally et al. noted 
that the model parameterization can influence the estimation of DIC 
value, and comparisons with DIC should be done only between mod-
els that have similar parameterization (36). The authors also recom-
mended that both NB-L and NB-GE models be compared with the 
NB model for similar parameterization (10, 11, 36). The comparison 
of DIC value between models shows that the NB-L model performs 
better than the traditional NB and NB-GE models. The DIC value 
consists of two components: (a) measures of how well the model 
fits the data (Dbar) and (b) a measure of model complexity (pD). 
The Dbar estimates illustrates that NB-L has superior data fitting than 
the NB-GE and traditional NB models. The pD measure explains the 
magnitude of complexity for estimating the parameters. The mix dis-
tributions add a significant amount of effective numbers of parameters 
while implementing the model. A comparison of pD shows that the 
NB-L GLM has the maximum effective number of parameters among 
all GLMs. Comparing LSFS shows a similar trend to DIC. Krnjajić and 
Draper showed that for a fixed-effect modeling approach, DIC and log 
scores are negatively correlated and motivation of LS coincides with 
the goal of DIC (26). In comparisons of random-effects models, 
LS may have a different trend from DIC.

For the posterior mean of coefficient to predict crashes, the over-
all model prediction accuracy must be checked. The validation data 
set was used to compare prediction accuracy between models. The 
validation data set consists of crashes that occurred in 2013 and 
2014 on the rural two-lane, two-way state highway system in South 
Dakota. Figure 2 shows the cumulative sum of absolute error (SAE) 

for NB, NB-L, and NB-GE modeling approaches with the valida-
tion data set. In this plot, the x-axis represents crash count and the 
y-axis represents cumulative SAE for each crash count.

Figure 2 shows that for both NB-L and NB-GE models, the cumu-
lative SAE was smaller than NB until a certain level of crash counts. 
With high crash counts, the cumulative SAE value stabilized to the 
total SAE, which is almost similar for all three modeling approaches.

coNclusioN

Improving crash prediction accuracy is a challenge for transporta-
tion professionals. This study investigated the implementation pro-
cedure of sophisticated and complex mathematical structured NB-L 
and NB-GE GLMs with a two-lane, two-way rural highway crash 
data set. The model results were compared with the NB model. It 
was found that both NB-L and NB-GE GLMs not only maintained 
the strength of NB distribution but also accounted for data over-
dispersion with excessive number of zeros. A comparison of DIC and 
LSFS showed that both NB-L and NB-GE provide better statistical 
goodness of fit than the NB model. The cumulative SAE comparison 
also showed that both NB-L and NB-GE have a smaller SAE.

A discussion of estimated coefficients for lane width–shoulder 
width interactions among models underscored the important concept 
of substantive safety as well as its application to the design excep-
tions. The coefficient estimates suggested that increasing lane width 
or shoulder width on rural two-lane highways might not add safety 
benefits given an optimal combination of lane width and shoulder 
width. Although the NB model is adequate for modeling overdis-
persed data under many circumstances, both NB-L and NB-GE can 
be considered as viable alternatives if there are preponderant zeros 
in the data and better goodness of fit is desired.
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28. Draper, D., and M. Krnjajić. Calibration Results for Bayesian Model 
Specification. Bayesian Analysis, Vol. 1, No. 1, 2010, pp. 1–43.

29. Washington, S. P., M. G. Karlaftis, and F. L. Mannering. Statistical and 
Econometric Methods for Transportation Data Analysis. CRC Press, 
Boca Raton, Fla., 2010.

30. Lee, C., M. Abdel-Aty, J. Park, and J.-H. Wang. Development of Crash 
Modification Factors for Changing Lane Width on Roadway Segments 
Using Generalized Nonlinear Models. Accident Analysis and Prevention, 
Vol. 76, 2015, pp. 83–91.

31. Bonneson, J. A., D. Lord, K. H. Zimmerman, K. Fitzpatrick, and M. P. 
Pratt. Development of Tools for Evaluating the Safety Implications of 
Highway Design Decisions. Technical report. FHWA, U.S. Department 
of Transportation, 2007.

32. Haleem, K., A. Gan, and J. Lu. Using Multivariate Adaptive Regres-
sion Splines (MARS) to Develop Crash Modification Factors for Urban 
Freeway Interchange Influence Areas. Accident Analysis and Prevention, 
Vol. 55, 2013, pp. 12–21.

33. Park, E. S., P. J. Carlson, R. J. Porter, and C. K. Andersen. Safety Effects 
of Wider Edge Lines on Rural, Two-Lane Highways. Accident Analysis 
and Prevention, Vol. 48, 2012, pp. 317–325.

34. Hauer, E. Lane Width and Safety. 2000. http://ca.geocities.com/hauer 
@rogers.com/Pubs/Lanewidth.pdf.

35. Gross, F., P. P. Jovanis, K. A. Eccles, and K.-Y. Chen. Safety Evaluation 
of Lane and Shoulder Width Combinations on Rural, Two-Lane, Undivided 
Roads. FHWA, U.S. Department of Transportation, 2009.

36. Geedipally, S. R., D. Lord, and S. S. Dhavala. A Caution About Using 
Deviance Information Criterion While Modeling Traffic Crashes. Safety 
Science, Vol. 62, 2014, pp. 495–498.

The Standing Committee on Statistical Methods peer-reviewed this paper.


