

Transportation Research Part C: Emerging Technologies

Volume 19, Issue 3, June 2011, Pages 469-484

An approximate Bernoulli process for information propagation along two parallel roads

Bruce X. Wanga, ≜, Mai Yina, Xiao Qinb

- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, United States
- b Department of Civil and Environmental Engineering, South Dakota State University, Brookings, SD 57007, United States

Received 23 May 2009. Revised 20 July 2010. Accepted 22 July 2010. Available online 17 August 2010.

http://dx.doi.org/10.1016/j.trc.2010.07.006, How to Cite or Link Using DOI

Permissions & Reprints

View full text

Abstract

This research studies information propagation via inter-vehicle communication along two parallel roads. By identifying an inherent Bernoulli process, we are able to derive the mean and variance of propagation distance. A road separation distance of $\frac{\sqrt{3}}{2}$ times the transmission range distinguishes two cases for approximating the success probability in the Bernoulli process. In addition, our results take the single road as a special case. The numerical test shows that the developed formulas are highly accurate. We also explore the idea of approximating the probability distribution of propagation distance with the Gamma distribution.

Keywords

Network inter-vehicle communication; Stochastic process; Bernoulli process

Figures and tables from this article: