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crashes and, more importantly, the consequences of truck crashes, 
underscores the importance of the study.

Crash data are the most informative resource for finding the 
causes and contributing factors of injury. However, the cause of 
an injury is extremely complicated, often relating to a sequence of 
events (precrash, during crash, and postcrash) and a number of agents 
(driver, vehicle, and environment). Therefore, statistical methodolo-
gies have been widely popular in addressing the intriguing relation-
ship between crash severity and other data elements. Most statistical 
methods are categorized as discrete choice models, which can be 
either fixed or random parameter models according to the parameter 
assumptions. Others can be classified as nonordinal models, such as 
multinomial logit (MNL) and multinomial probit (MNP) models, or as 
ordered probabilistic models, such as ordered probit (OP) and ordered 
logistic (OL) models, if an ordinal structure for the dependent variable 
is considered. Other model variations are available if restrictions 
such as irrelevant and independent alternatives (IIA), proportional 
odds, or heterogeneity are violated. Savolainen et al. provided an 
extensive and detailed review of the application of these methods 
(4). There is no agreement regarding which model works best for 
the crash severity data, although the consensus is to use the most 
advantageous method.

The primary objectives of this study were to identify the key con-
tributing factors to the severity of crashes involving large trucks and 
to explore the relationship between the factors. The secondary objec-
tive was to offer additional insights through the comparison of three 
discrete outcome probabilistic models [i.e., MNL, partial propor-
tional odds (PPO), and mixed logistic (ML)]. It was anticipated that 
the results would be useful for evaluating the different perspectives 
of the methodologies and helpful in selecting the most appropriate 
data-driven safety strategies.

LITERATURE REVIEW

Many researchers have accepted that there is an intrinsic ordinal nature 
in crash severities [i.e., injury severity can be ranked from high to low 
as fatal injury (K), incapacitating injury (A), nonincapacitating injury 
(B), possible injury (C), and property damage only (PDO or O)]. 
To model injury severity as the ordinal response, researchers most  
frequently have used discrete choice models, including OP and 
OL models (5–9). However, these traditional ordered probabilistic 
approaches assume regression parameters to be the same across all 
levels (i.e., proportional odds). This assumption can be overly restric-
tive because it is common for one or more of the regression param-
eters to differ across levels. Peterson and Harrell addressed this issue 
by relaxing the restrictions; they used the PPO model where some of 
the coefficients can be the same for all levels, while others can differ 
(10). Several recent studies have adopted this approach and the model 
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Statistics show that crashes involving large trucks are generally more 
severe than those involving other vehicles because of the size, weight, 
and speed differential between trucks and other vehicles. Given the 
critical position of trucking in the process of economic recovery and 
growth, the improvement of truck safety and the mitigation of any nega-
tive impacts on non-truck vehicles are urgent issues. Statistical models 
have been used universally to identify the contributing factors to crash 
severities and to estimate injury probabilities. These methodologies, 
albeit addressing different issues, may provide mixed results and esti-
mates with varying degrees of accuracy. The primary objective of this 
research was to investigate the effects of key determinants of the severity 
of crashes involving large trucks and to explore the relationship between 
the determinants. The secondary objective was to provide insight on 
statistical applications by evaluating three logistic regression models:  
multinomial logistic, partial proportional odds (PPO), and mixed logistic 
(ML) models. The model results showed that the majority of the coeffi-
cient estimates were consistent across the models studied. A few exceptions 
included young drivers and the use of safety constraints; these factors were 
not statistically significant in the ML model. The goodness of fit and model 
predictive power indicated that the PPO model produced results that more 
closely resembled the observations.

Freight transportation plays a vital role in economic development and 
recovery. Measured by value, 70% of the freight in the United States is 
transported by trucks and freight trucking plays an inarguably pivotal 
role in the growth and stimulation of the economy (1). In 2002, 
the U.S. transportation system transported $36 billion of freight, 
approximately 53 million tons of freight each day (1). By 2008, 
this figure grew to 58.9 million tons. In the same year, Wisconsin’s 
transportation system moved about $1 billion in goods each day. 
By 2025, freight volumes in Wisconsin are projected to increase 
by 70% (2).

Among all the issues related to transport by truck, safety is the 
largest concern for truck industries as well as transportation agen-
cies. In 2010, approximately 276,000 large trucks were involved in 
traffic accidents; in these accidents, 3,675 people were killed and 
80,000 people were injured (3). In addition to bodily injuries and lost 
lives, the traffic disruptions and delays caused by crashes have a direct 
and immediate effect on the economy of Wisconsin, the Midwest, 
and the whole nation. The urgent need to reduce the number of truck 
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results have shown that the PPO models consistently outperformed 
conventional ordered response models (11–13).

When modeling crash severity as an ordinal dependent variable, 
some restrictions can potentially affect the estimation results (4). 
The primary concern is the manner in which the explanatory variables 
affect the probabilities of the discrete outcome, i.e., the shift in the 
cutoff thresholds is constrained to move in the same direction. By 
contrast, nonordinal probabilistic models, such as MNL and MNP 
models, allow variables to have opposite effects regardless of the order 
of the injury severities. Yamamoto et al. argued that nonordinal models 
may offer unbiased estimates of the parameters, especially in the situa-
tion of crash underreporting (14). Ye and Lord examined the influence 
of crash underreporting on the estimation of crash severities and found 
that neither the OP nor the MNL model was immune to this issue (15). 
They suggested setting fatal crashes as the baseline in the MNL model 
and ranking the crash severity from K to O in descending order in the 
OP to minimize the bias (15).

Much of the crash severity literature has applied fixed parameter 
approaches, assuming the same effects of the explanatory variables 
across crash observations. This is valid under the desirable conditions 
where the data are complete (i.e., unobserved data heterogeneity 
is not apparent). Unfortunately, this is usually not the case for crash 
data because unobserved factors that may affect the consequences 
of crashes are highly likely to exist. Data heterogeneity suggests the 
parameters may vary across different observations and disregarding 
this feature may lead to bias and inefficient statistical inferences (16). 
The ML model overcomes this limitation by allowing the parameters 
to be random. Milton et al. suggested that volume-related variables, 
such as average daily traffic per lane, average daily truck traffic, truck 
percentage, and weather effects, can best be modeled as random 
parameters, while roadway characteristics can best be modeled as 
fixed parameters (17). Chen and Chen concurred that weather char-
acteristics, such as snowy or slushy surface conditions, and a light 
traffic indictor appeared to be random coefficients (18). ML models 
offer new perspectives to the crash severity models.

Most of the literature that is pertinent to crash severities has included 
a vehicle type variable in which truck is listed as one of the values. 
Some studies have explicitly estimated the injury severities for 
crashes involving light trucks or large trucks (7, 18–20). Kockelman 
and Kweon found that both light-duty trucks and heavy-duty trucks 
seem to be better at protecting their drivers in all crash types (7). 
The results become more apparent in a two-vehicle crash involving 
a heavy-duty truck and in which more severe injury is sustained by 
the driver of the other vehicle (7). Chen and Chen identified the 
critical risk factors such as driver, vehicle, temporal, roadway, envi-
ronmental, and accident characteristics for truck crashes involving 
single and multiple vehicles (18). Chang and Mannering studied 
the occupancy (the most severe injury sustained by the occupant 
and the number of occupants) and injury severity relationship; they 
used truck-involved crashes and identified some risk factors unique 
to large trucks (19). Zhu and Srinivasan used data from the Large 
Truck Crash Causation Study and found that driver behaviors, such as 
driver distraction (truck drivers), alcohol use (car drivers), and emo-
tional factors (car drivers), were statistically significant for higher-
severity crashes (20). Milton et al. argued that trucks can slow down 
the travel speed in the traffic stream, which may decrease crash 
injury severity, but that a truck’s size and weight may increase the 
severity of a crash if the colliding partner is of lighter weight (17). 
In another study, Wang and Kockelman used the National Automotive 
Sampling System’s Crashworthiness Data System to analyze the 
effects of vehicle weight and type; they found that these values can 

simultaneously affect the injury outcome, creating a complicated 
picture (21). The factors that affect the propensity of truck crash 
severities may not be identifiable if all vehicle types were considered. 
Because of the influence that trucks pose in traffic compared with all 
vehicles, studying only truck-related crashes would provide greater 
insight in determining the factors and their effects. In this study, 
three logistic models (MNL, PPO, and ML) were developed to analyze 
the large-truck crash severity data.

METHODOLOGIES

This section presents three logistic models and their respective 
assumptions and mathematical equations. The three models are the 
MNL, the PPO, and the ML.

MNL Model

The MNL model is a discrete choice model that considers a response 
variable with three or more levels without accounting for order between 
levels. This model is known for its IIA assumption, meaning adding 
or deleting an alternative will not change the ratio between the prob-
abilities of any pair of existing alternatives. The general framework 
used to define the relationship between injury severities and contrib-
uting factors can be expressed by a linear function U (i.e., a utility 
function) that determines the preference or possible value of attaining 
the outcome i (i = 1, 2, . . . , I) for observation n as

U Xin i in in= + (1)b «

where

 Xin =  vector of independent variables for nth observation with 
ith outcome,

 bi = vector of corresponding unknown coefficients, and
 εin = disturbance term that accounts for random noise.

If ε is assumed to be distributed logistically across observations, it 
composes a MNL formulation as in Equation 2:
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where Pn(i) is the probability of nth observation falling into the 
ith outcome.

The estimated coefficients are usually presented as a log odds 
ratio between the probability of a given category and the reference 
one, resulting in (I − 1) estimates for each independent variable 
if the response variable has I levels. The odds ratio is defined as 
the ratio between the probabilities of two specific categories and 
specifies the propensity of an individual falling into one category 
compared with the other. If level I is the reference, the model can 
be rewritten as
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where ai is a vector of estimable parameters that represents the 
log odds ratio between the probabilities of two alternatives. With 
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reorganization of Equation 1, the probability of each level can be 
expressed as
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PPO Model

A latent variable U introduced into the model as a linear function for 
each observation is specified as

(5)aXU = + ε

where

 X =  vector of independent variables determining the discrete 
ordering for each observation,

 a = vector of estimable parameters, and
 ε = error term.

The observed response variable, y, for each observation is defined 
as (22)
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where the µs are estimable parameters (referred to as thresholds) 
that define y and I is the highest-integer ordered response. If the error 
term ε is assumed to be logistically distributed across observations, 
an OL model can be derived. The probability of each category can 
be expressed as
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An important restriction associated with an OL model is that the 
estimated coefficients between each pair of outcome groups are the 
same. This restriction is known as the proportional odds assumption 
or the parallel regression assumption (23). The use of the OL may be 
inappropriate if this assumption is violated. Instead, the PPO model 
formulates part of the coefficients as identical values while varying 
the other values across the different levels of the response variable 
in Equation 8:
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where the coefficients of a1 are maintained across the injury severities 
while the coefficients of a2 are changing across the injury severities. 
Whether the coefficient is the same or different depends on the 
proportion assumption.

ML Model

When unobserved factors affect injury severities and cause the param-
eters to vary across observations, the ML model defines bi as a vector 

of estimable parameters for discrete choice i with a probabilistic 
distribution. The outcome probabilities are defined as (16)
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where q(bi |w) is a density function of bi and w is a vector of param-
eters that describe the density function; all other terms are as previously 
defined. The density function can be a normal, lognormal, or uniform 
distribution, among others.

DATA COLLECTION AND ANALYSIS

Between 2004 and 2009, there were 15,393 traffic accidents involv-
ing at least one large truck in Wisconsin, accounting for 2.1% of all 
crashes (24). Large trucks include single unity trucks (two axles 
and three axles), trucks or tractors (double, semitrailer, or triple), 
buses, school buses, and other unknown heavy trucks (25). Large-
truck crashes were identified via a large-truck flag assigned by the 
Wisconsin Department of Motor Vehicles and were retrieved from 
the online Wisconsin crash database through the WisTransportal 
System (24). Among the large-truck crashes, 7,652 (49.71%) were 
PDOs; 3,076 (19.98%) were injury Type C; 2,843 (18.47%) were 
injury Type B; 1,410 (9.16%) were injury Type A; and 412 (2.68%) 
were fatal injuries. To obtain sufficient observations in each category, 
crash injury severities were aggregated into three categories: PDO; 
B + C, which combined Type B and Type C injuries, and K + A, which 
combined Type A and fatal injuries. After combining, 5,919 crashes 
were either Type B or Type C injury crashes and 1,822 were either 
Type K or Type A injury crashes.

Crash data elements were classified into four categories: human 
factors, highway and traffic conditions, accident characteristics, and 
environmental factors. The driving record of the driver who sustained 
the most severe injuries in the collision was collected and the factors 
were used in the analysis. Human factors included driver behavior 
and characteristics. Driver behavior can be an officer’s opinion of 
the possible contributing circumstances of a driver (e.g., exceeding 
the speed limit, failing to yield right of way) or an officer’s observa-
tion (e.g., driving under the influence of drugs or alcohol, the use of 
safety constraints). Driver characteristics, such as age and gender, 
were noted for the vehicle whose occupant(s) withstood the most-
severe injuries. Highway and traffic conditions included the highway 
geometric characteristics and traffic control types and were of primary 
interest. Here as well, the opinions of an officer regarding any possible 
contributing circumstances relating to a highway were considered. 
Accident characteristics consisted of objects struck and the manner of 
collision. A small number of crashes (1.7% of total crashes) involved 
a truck and vulnerable road users, such as pedestrians, bicyclists, or 
motorcyclists, and they were excluded from the data set because of 
the small sample size. Environmental factors included both weather 
and pavement conditions, although, intuitively, the roadway pave-
ment conditions were the direct result of weather conditions. Both the 
weather and pavement conditions were included because the Pearson 
product–moment coefficient showed a weak correlation between the 
two factors, indicating varying effects of weather phenomena. Table 1 
describes the selected variables, their frequency, and their percentage 
in the crash data.
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TABLE 1  Description of Selected Variables

Variable Type Description Frequency Percentage

Human Factors

Young Dummy The age of the most severely injured driver is younger than 25. 3,065 19.91

Old Dummy The age of the most severely injured driver is older than 55. 3,027 19.66

Female Binary Indicates the most severely injured driver is a female 3,986 25.89

Alcohol Binary 1 indicates an alcohol flag. 499 3.24

Drug Binary 1 indicates a drug flag. 95 0.62

Safety constraints Binary 1 indicates the most severely injured driver used safety equipment. 15,379 99.91

Speed Dummy Speed-related factors (exceeding speed limit, too fast for conditions) 5,588 36.30

Rule violation Dummy Violation of the traffic rules (failed to yield the right-of-way,  
disregarded the traffic controls, improper turning)

4,260 27.67

Reckless behavior Dummy Reckless driving behavior (improper overtake, unsafe braking,  
following too close)

5,568 36.17

Highway and Traffic Conditions

Roadhor Binary The road terrain at the point of impact is horizontal. 2,016 13.10

Roadvert Binary The road terrain at the point of impact is vertical. 2,811 18.26

Debris Dummy Presence of debris before the accident 213 1.38

Visibility Dummy Visibility obscured 364 2.36

Traffic control Categorical The type of traffic control at intersection
Signal  Traffic signal 2,009 13.05
Two way  Two-way stop 1,486 9.65
Four way  Four-way traffic stop 305 1.98
Yield–none  Yield controlled or no traffic control 135 0.88

Accident Characteristics

Guardrail Dummy The truck hit the guardrail of the highway. 221 1.44

Median barrier Dummy The truck hit the median barrier of the highway. 230 1.49

Bridge Dummy Accident caused by the circumstance of a bridge (parapet, pier, rail) 119 0.77

Ditch Dummy The truck ran into a ditch. 464 3.01

Tree Dummy The truck hit a tree. 122 0.79

Pole Dummy The truck hit a pole on the road (traffic sign or utility pole). 301 1.96

Jackknife Dummy The truck jackknifed. 256 1.66

Overturn Dummy The truck overturned. 849 5.52

Mnrcoll Categorical Manner of collision
Angle  Angle 3,994 25.95
Head  Head on 502 3.26
Rear  Rear end 3,963 25.75
SSS  Sideswipe–same direction 718 4.66
SSO  Sideswipe–opposite direction 2,724 17.70
None  No collision with other vehicles 3,492 22.68

Trk–trk Dummy Truck with truck 2,899 18.83

Trk–pc Dummy Truck with passenger cars 8,689 56.45

Environmental Factors

Weather–fog Dummy The weather was foggy. 221 1.44

Weather–rain Dummy The weather was raining. 1,034 6.72

Weather–sleet Dummy The weather was sleeting or hailing. 215 1.40

Weather–snow Dummy The weather was snowing. 2,323 15.09

Weather–wind Dummy The weather was windy. 201 1.31

Dark Dummy Nighttime without street lights 2,840 18.45

Light Dummy Nighttime with street lights 1,091 7.09

Ice Dummy Icy road surface 1,147 7.45

Snow Dummy Snow or slush road surface 2,410 15.66

Wet Dummy Wet road surface 2,037 13.23
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ANALYSIS OF RESULTS AND DISCUSSION

Tables 2 to 4 show the respective model results for MNL, PPO, 
and ML. The STATA commands mlogit, gologit2, and mixlogit 
were used to estimate the coefficients for the MNL, PPO, and ML 
models, respectively (26–28). The interpretation of each model varies 
because the methodology is different. In the MNL model (Table 2),  
each coefficient defines the log odds ratio between the probabilities  
for a specific injury type and no injuries. In the PPO model (Table 3),  
the cumulative probability was used to derive the coefficients, which 
estimate the log odds ratio between the possibilities of injury severi-
ties greater than level i and the sum of the possibilities of injury 
severities less than or equal to level i. For example, the second column 
of headers quantifies the log odds ratio between the probabilities of 
all injury levels and PDO. The presentation of coefficients for fixed 
parameters in the ML model (Table 4) is the same as for the MNL 
model except when the coefficient is a random variable, in which 
case the standard deviation of the coefficient is displayed.

Model Results

In the MNL model, the coefficient estimates are explained as the 
comparison between injury level i and the base level PDO. As 
shown in Table 2, a driver usually sustained more severe injuries if 
alcohol or drug use was involved. If the driver had been drinking, 
the probabilities of Level B or C and Level K or A were 1.21 (e0.191) 
times and 2.34 (e0.850) times, respectively, higher than that of PDO. 
Similarly, if a driver was under the influence of drugs, his or her 
chance of getting injured increased drastically, with probabilities of 
Level B or C and Level K or A being 4.57 times and 16.12 times, 
respectively, that of PDO. Other factors relating to unsafe driving 
behavior, such as exceeding the speed limit, violating the traffic 
rules, and driving recklessly, all suggest an increased probability of 
serious injuries. In contrast, good driving behavior, such as the use 
of safety constraints, can have a positive impact. The probability of no 
injuries was five times higher than the probability of being injured if 
safety constraints were used. There were also several environmental 

TABLE 2  Coefficient Estimates for MNL Model

B + C K + A

Variable Coeff. SE z P > |z | Coeff. SE z P > |z |

Intercept −0.870 0.320 −2.740 .010 −2.910 0.440 −6.550 .000

Human Factors

Young 0.143 0.050 2.940 .003 0.183 0.080 2.430 .015

Old −0.017 0.050 −0.360 .718 0.450 0.070 6.560 .000

Female 0.879 0.040 20.510 .000 0.619 0.060 9.570 .000

Alcohol 0.191 0.110 1.740 .083 0.850 0.130 6.360 .000

Drugs 1.520 0.340 4.490 .000 2.781 0.340 8.090 .000

Safety constraints −1.482 0.280 −5.260 .000 −1.907 0.360 −5.300 .000

Speed 0.422 0.050 9.210 .000 0.667 0.070 9.530 .000

Rule violation 0.328 0.050 6.580 .000 1.080 0.070 14.930 .000

Reckless behavior 0.205 0.040 4.900 .000 0.452 0.060 7.190 .000

Highway and Traffic Conditionsa

Debris −0.509 0.170 −3.000 .003 −0.231 0.260 −0.900 .368

Visibility 0.091 0.130 0.720 .469 0.565 0.160 3.530 .000

Signal 0.841 0.142 5.920 .000 0.734 0.260 2.820 .005

Two way 0.873 0.148 5.910 .000 1.423 0.260 5.500 .000

Yield–none 0.627 0.140 4.610 .000 0.992 0.250 3.960 .000

Accident Characteristics

Total units 0.461 0.027 17.200 .000 0.630 0.030 21.870 .000

Jackknife −0.931 0.210 −4.380 .000 −1.231 0.460 −2.650 .008

Overturn 0.737 0.080 8.720 .000 0.774 0.140 5.600 .000

Ditch 0.412 0.110 3.770 .000 0.236 0.200 1.200 .232

Median barrier 0.161 0.160 1.000 .317 0.587 0.220 2.720 .006

Environmental Factors

Weather–snow −0.295 0.080 −3.740 .000 0.135 0.130 1.030 .304

Snow −0.397 0.080 −5.140 .000 −1.087 0.140 −7.880 .000

Ice −0.478 0.090 −5.570 .000 −0.415 0.130 −3.130 .002

Wet 0.032 0.050 0.590 .556 −0.330 0.090 −3.700 .000

Dark 0.137 0.050 2.750 .006 0.439 0.070 6.030 .000

Note: Akaike information criteria (AIC) = 27,291.03; likelihood ratio χ2 (df = 48) = 2,545.97; probability > χ2 = 0;  
log likelihood (LL) = −13,620.515; coeff. = coefficient; SE = standard error.
aFour way is base level for all models.
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factors, such as snow and snowy surfaces, that were associated with 
decreased injury severities.

The PPO model treats crash severity as an ordinal response vari-
able but allows the coefficients to vary across levels if the proportional 
odds assumption is violated. Table 3 shows a high chance of severe 
injury if the driver was under the influence of alcohol. The probability 
of Level K + A and B + C injuries is 1.47 (e0.384) times that of PDO, 
while the possibility of Level K + A injuries is expected to be 2.08 
(e0.730) times higher than that of Level B + C and PDO. Similarly, 
drugs appear to consistently and substantially increase the possibility 
of injuries of all levels. In contrast, the use of safety constraints can 
consistently and effectively decrease the possibility of all levels of 
injuries. The traffic control strategy variables imply that four-way-
stop–controlled intersections have the lowest truck crash severities 
and two-way-stop–controlled intersections have the highest crash 
severities. Signalized intersections tend to have a smaller possibility 
of Level K or A injuries than Level B or C injuries.

The ML model is able to account for data heterogeneity by treating 
coefficients as random variables. The selection of random variables 
followed the general procedures documented by Moore et al. (29). 
The first step was to select all the parameters as random parameters; 
the second step was to reduce one random parameter at a time until no 
further reduction of the random variables could be made. According 
to the model outputs in Table 4, the parameter for speed-related factors 
for Injury Level B or C is normally distributed with mean 0.456 and 
standard deviation 0.71, indicating 73.96% [P(Z > −0.642) = 73.96%] 
of the distribution is greater than 0 and 26.04% of the distribution is 
less than 0 (18). This phenomenon indicates that 73.96% of the crashes 
occurred as a result of excessive speed, which led to a higher prob-
ability of Type B or C injuries than that of PDOs, while 26.04% of the 
crashes with a speed-related cause had a lower possibility of Type B 
or C injuries. Similarly, the environmental parameter of snowy surface 
for Type B or C truck crash severity was normally distributed with 
mean −0.967 and standard deviation 2.665. On a snowy pavement, 

TABLE 3  Coefficient Estimates for PPO Model

p
p

( )
( )

+ +K A and B C

PDO
p

p( )
( )+

+
K A

B C and PDO

Variable Coeff. SE z P > |z | Coeff. SE z P > |z |

Intercept −0.930 0.257 −3.620 .000 −2.712 0.259 −10.470 .000

Human Factors

Young 0.123 0.043 2.840 .004 0.123 0.043 2.840 .004

Old 0.093 0.044 2.110 .035 0.457 0.062 7.390 .000

Female 0.816 0.041 19.920 .000 0.147 0.059 2.490 .013

Alcohol 0.384 0.100 3.840 .000 0.730 0.117 6.240 .000

Drugs 1.873 0.204 9.160 .000 1.873 0.204 9.160 .000

Safety constraints −1.385 0.216 −6.400 .000 −1.385 0.216 −6.400 .000

Speed 0.483 0.041 11.890 .000 0.483 0.041 11.890 .000

Rule violation 0.485 0.046 10.520 .000 0.870 0.062 14.030 .000

Reckless behavior 0.296 0.037 8.010 .000 0.296 0.037 8.010 .000

Highway and Traffic Conditionsa

Debris −0.317 0.151 −2.100 .036 −0.317 0.151 −2.100 .036

Visibility 0.203 0.116 1.750 .080 0.537 0.142 3.770 .000

Signal 0.816 0.138 5.910 .000 0.338 0.156 2.160 .031

Two way 1.041 0.140 7.450 .000 1.041 0.140 7.450 .000

Yield–none 0.810 0.138 5.880 .000 0.810 0.138 5.880 .000

Accident Characteristics

Total units 0.476 0.025 19.070 .000 0.281 0.020 14.310 .000

Jackknife −1.005 0.197 −5.090 .000 −1.005 0.197 −5.090 .000

Overturn 0.739 0.080 9.220 .000 0.236 0.129 1.830 .067

Ditch 0.369 0.104 3.570 .000 −0.108 0.190 −0.570 .569

Median barrier 0.410 0.135 3.040 .002 0.410 0.135 3.040 .002

Environmental Factors

Weather–snow −0.179 0.074 −2.430 .015 0.395 0.118 3.350 .001

Snow −0.549 0.073 −7.500 .000 −0.978 0.124 −7.870 .000

Ice −0.380 0.076 −4.990 .000 −0.380 0.076 −4.990 .000

Wet −0.040 0.052 −0.770 .442 −0.363 0.083 −4.380 .000

Dark 0.210 0.046 4.530 .000 0.356 0.067 5.290 .000

Note: The variables in italic represent that their coefficients should vary across levels. AIC = 27,219.05; likelihood  
ratio χ2 (38) = 2,647.94; probability > χ2 = 0; LL = −13,569.526.
aFour way is base level for all models.
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35.94% of the truck crashes had an increased possibility of Type B  
or C injuries and 64.06% of the truck crashes had a decreased possi-
bility of Type B or C injuries. For K or A injuries, the parameter was 
normally distributed with mean −11.076 and standard deviation 8.727. 
This implies that the majority of truck crashes (89.8%) on snowy pave-
ment may have a decreased possibility of Type A or K injuries. This 
observation coincided with the findings of Chen and Chen concerning 
the influence of snow or slush on the road surface (18). It is plausible 
that people often drive more slowly and cautiously on snowy roads 
but the slick conditions still have a tendency to cause accidents.

The results of the three logistic models provide a unique per-
spective on how various factors affect crash severity. Some factors 
have consistent impacts across all levels while others have varied 
impacts. A direct comparison of the parameters between the models 
is difficult because each methodology is different. For comparison, 
the coefficient estimates need to be converted to marginal effects.

Marginal Effects for Logistic Models

The marginal effects calculate how the injury severity probabilities 
change with a small (unit) change in an explanatory variable. For 
continuous variables, the marginal effects can be explained as the dif-
ference in the probability at each level following a one-unit change in 
the independent variables; for dummy variables, the marginal effects 
can be calculated as the changes in the probabilities for each level 
caused by a change in the value of the dummy variable from 0 to 1. 
The marginal effects of the three models are listed in Table 5.

Human Factors

The human factors that are statistically significant at the 5% level and 
have consistent effects on crash severities in all models are drugs, 

TABLE 4  Coefficient Estimates for the ML Model

B + C K + A

Variable Coeff. SE z P > |z | Coeff. SE z P > |z |

Intercept −1.962 0.081 −24.140 .000 −4.400 0.122 −35.950 .000

Human Factors

Old 0.027 0.050 0.540 .594 0.502 0.073 6.870 .000

Female 0.971 0.048 20.229 .000 0.354 0.189 1.870 .061

Standard deviation NA NA NA NA 0.999 0.316 3.160 .002

Alcohol 0.231 0.116 1.991 .047 0.344 0.431 0.800 .425

Standard deviation NA NA NA NA 2.004 0.788 2.540 .011

Drugs 1.663 0.363 4.581 .000 3.180 0.390 8.150 .000

Speed 0.456 0.523 0.872 .000 0.774 0.078 9.950 .000

Standard deviation 0.710 0.300 2.367 .020 NA NA NA NA

Rule violation 0.268 0.053 5.057 .000 1.052 0.081 12.940 .000

Reckless behavior 0.189 0.044 4.295 .000 0.491 0.070 7.000 .000

Highway and Traffic Conditionsa

Debris −0.600 0.180 −3.333 .001 −0.297 0.281 −1.060 .290

Visibility 0.146 0.140 1.043 .297 0.676 0.183 3.680 .000

Signal 0.866 0.143 6.056 .000 0.956 0.263 3.635 .000

Two way 0.887 0.150 5.913 .000 1.299 0.261 4.977 .000

Yield–none 0.642 0.142 4.521 .001 1.137 0.240 4.738 .000

Accident Characteristics

Total units 0.539 0.033 16.500 .000 0.781 0.038 20.400 .000

Jackknife −1.074 0.262 −4.100 .000 −1.049 0.535 −1.960 .050

Overturn 0.877 0.093 9.450 .000 1.001 0.149 6.700 .000

Ditch 0.539 0.117 4.610 .000 0.443 0.212 2.080 .037

Median barrier 0.235 0.179 1.320 .188 0.592 0.248 2.380 .017

Environmental Factors

Weather–snow −0.475 0.111 −4.290 .000 0.264 0.178 1.490 .137

Snow −0.967 0.179 −5.400 .000 −11.076 3.925 −2.820 .005

Standard deviation 2.665 0.410 6.490 .000 8.727 2.791 3.130 .002

Ice −0.422 0.094 −4.520 .000 −0.561 0.154 −3.640 .000

Wet 0.030 0.056 0.550 .585 −0.390 0.095 −4.100 .000

Dark 0.143 0.055 2.590 .009 0.615 0.083 7.410 .000

Note: Italic coefficients are random variables. NA = not available. AIC = 27,537.94; likelihood ratio χ2(5) = 122.02;  
probability > χ2 = 0; LL = −13,717.969.
aFour way is base level for all models.
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speed, rule violation, and reckless behavior. Among these variables, 
drugs have a substantial effect on increasing the probability of Type B  
or C injuries and a major effect on increasing the probability of 
Type K or A injuries. Speed and traffic rule violations have an evident 
impact on probabilities of Type B or C injuries. For Injury Type K 
or A, the augmented effect of traffic rule violation is more apparent 
than speed. Reckless behavior also has a noticeable effect on increas-
ing the probability of all levels of injury. The use of safety constraints 
decreases the probability of Injury Type B or C, but the result is more 
noticeable for Injury Type K or A. However, the effect of use of safety 
constraints cannot be identified in the ML model. The ML model sug-
gests that alcohol should be considered as a random variable with zero 
mean; but in both the MNL and PPO models, alcohol is statistically 
significant in increasing the severity of injury to Level K or A.

Highway and Traffic Conditions

Four-way–stop controlled intersections have the lowest truck crash 
severity, possibly because of the low posted speed limit and vehicle 

travel speed at these intersections. The effects of other intersection 
traffic controls vary across the models. The consensus is that their 
positive effect on injury level K or A is lower than that on injury 
level B or C. In other words, compared with four-way-stop inter-
sections, the other traffic control types may increase the possibility 
of Type B or C injuries but only slightly increase the likelihood of 
Type K or A injuries. Visibility appears to increase the possibility 
of Type K or A injuries but decrease the possibility of Type B or C  
injuries. The presence of debris had a negative effect on injury severi-
ties, an indication that many drivers may slow down after observing 
debris and avoid accidents.

Accident Characteristics

If a truck did not strike a fixed object, it may have overturned or 
jackknifed. The crash severity outcome of an overturned vehicle is 
much more severe than that of a jackknifed one. Most jackknifed 
truck crashes did not cause any injuries; this result was not the 
same for overturned trucks. Although large trucks are sturdier than 

TABLE 5  Marginal Effects of MNL, PPO, and ML Models

PDO B + C K + A

Variable MNL PPO ML MNL PPO ML MNL PPO ML

Human Factors

Young −0.039 −0.031 NS 0.026 0.019 NS 0.013 0.012 NS

Old −0.024 −0.023 −0.021 NS −0.022 NS 0.050 0.045 0.050

Female −0.202 −0.198 −0.189 0.186 0.184 0.172 0.016 0.014 NS

Alcohol −0.089 −0.094 −0.086 NS 0.009 0.003 0.094 0.085 NS

Drugs −0.367 −0.359 −0.336 0.055 0.043 0.051 0.312 0.316 0.285

Safety constraints 0.322 0.294 NS −0.192 −0.089 NS −0.130 −0.205 NS

Speed −0.116 −0.120 −0.100 0.068 0.074 0.055 0.048 0.046 0.045

Rule violation −0.144 −0.120 −0.092 0.035 0.028 0.010 0.109 0.092 0.082

Reckless behavior −0.059 −0.074 −0.049 0.025 0.046 0.018 0.034 0.028 0.031

Highway and Traffic Conditionsa

Debris 0.109 0.079 0.108 −0.107 −0.054 −0.112 NS −0.025 NS

Visibility −0.052 −0.050 −0.051 −0.012 −0.008 NS 0.064 0.058 0.030

Signal −0.236 −0.240 −0.172 0.169 0.111 0.106 0.067 0.129 0.066

Two way −0.212 −0.194 −0.176 0.186 0.161 0.123 0.026 0.033 0.053

Yield–none −0.192 −0.193 −0.176 0.158 0.100 0.094 0.034 0.093 0.082

Accident Characteristics

Total units −0.125 −0.119 −0.225 0.085 0.094 0.187 0.040 0.025 0.038

Jackknife 0.233 0.236 0.212 −0.172 −0.175 −0.168 −0.061 −0.061 −0.044

Overturn −0.177 −0.176 −0.176 0.135 0.153 0.144 0.042 NS 0.032

Ditch −0.091 −0.091 −0.097 0.086 0.100 0.096 NS NS 0.001

Median barrier −0.063 −0.100 −0.056 NS 0.058 NS 0.060 0.042 0.051

Environmental Factors

Weather–snow 0.051 0.045 0.063 −0.076 −0.084 −0.100 NS 0.039 NS

Snow 0.125 0.136 0.109 −0.059 −0.069 −0.035 −0.066 −0.067 −0.074

Ice 0.113 0.095 0.104 −0.096 −0.065 −0.071 −0.017 −0.030 −0.033

Wet 0.007 0.010 0.009 NS NS NS −0.030 −0.029 −0.031

Dark −0.049 −0.052 −0.043 0.006 0.018 −0.002 0.043 0.034 0.045

Note: NS = variable is not statistically significant at 5% level of significance.
aFour way is base level for all models.
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passenger cars, injuries were still prevalent if a truck struck a ditch 
or a median barrier. Although the size difference between vehicles 
affects the injury severity effects of collision, the variables Trk–Trk 
and Trk–pc (Table 1) were not statistically significant at the 5% 
level. It is plausible that both variables may confound with other 
factors, such as accident types and human factors, which had stronger 
correlation with injury severity.

Environmental Factors

With the exception of the ML model, the possibility of B or C 
level injuries on darkened roadways and areas without street lights 
increased by less than 2%, while the possibility of Level K or A 
injuries increased by more than 3%. All the coefficients of adverse 
surface conditions, such as snow, ice, and wet, seem to be associated 
with lower injury severities in truck crashes, possibly because of the 
reduced speed most drivers use on slippery pavement.

Model Comparisons

The previous sections discussed the variables in detail to ensure 
that the directions of the indicated effects and values were logical. 
Overall, the results were consistent between models. Some variations 
provided new insights about the data as well as their effects. Because 
all three logistic models have been popular in modeling crash severi-
ties, their performance can be evaluated by statistical metrics such as 
goodness of fit, prediction accuracy, and the number of statistically 
significant variables. The results of these comparisons are in Table 6.

The Akaike information criterion (AIC) is a measure of the rela-
tive goodness of fit of a statistical model. The general formula is 
AIC = 2k − 2ln(L), where k is the number of parameters in the 
statistical model and L is the maximized value of the likelihood 
function for the estimated model. The preferred model is the one 
with the minimum AIC value. According to the AIC values in Table 6,  
the PPO models fit the data slightly better than the other two models. 
The overall prediction accuracy of the models was compared between 
the observations and the estimation results. The proportions of injury 
severities are arranged in rows by model; values in parentheses mea-
sure the difference between the predicted and observed proportions. 
On the basis of this standard, the ML model performed the best 
because the predicted probabilities for all three levels of injury 
severities are the closest to the observations. Both the MNL model 
and the PPO model underestimated K + A injuries and overestimated 
B + C injuries. Note that the prediction accuracy is an aggregated 
value that may not represent the accuracy at the individual level. For 
instance, the ML model was unable to identify alcohol, drugs, and 
safety constraints as statistically significant variables for the K or A 

injury levels. On the basis of all the information available, the PPO 
model is recommended because it achieved the lowest AIC value, 
had the most variables significant at the 5% level, and satisfied logical 
effects on the crash severity.

CONCLUSIONS

Crash severity issues have been extensively studied in the past decades 
and numerous statistical methodologies have been utilized to define 
the relationship between injury severity and its determinants. Different 
models sometimes return mixed results, making it difficult for decision 
makers to choose a reliable model. This study employed three of the 
most representative logistic models: MNL, PPO, and ML. The models 
were used to investigate the contributing factors of crash severity for an 
exclusive large-truck crash data set. On the basis of the results, the PPO 
model was the recommended choice because it demonstrated the 
best predictive power, had the greatest number of variables that were  
significant at the 5% level, and satisfied logical effects on crash severity.

The study shows that in the human factor category, drivers who 
were under the influence of drugs, speeding (exceeding the speed 
limit or driving too fast for the road conditions), committing rule vio-
lations (failing to yield the right-of-way, disregarding traffic controls, 
or improper turning), or driving recklessly (improper overtake, unsafe 
braking, following too close) illustrated consistent effects on crash 
severity in all model results at the 5% level of significance. The use of 
safety constraints and alcohol had the expected effects on crash severity 
but were not statistically significant at the 5% level in the ML model.

None of the highway alignment characteristics was statistically 
significant in any of the models. However, all three models suggested 
that four-way-stop–controlled intersections had the lowest injury 
severities; the effects of other intersection traffic control types var-
ied from one model to another. Among all the roadside objects 
struck by large trucks, ditches and median barriers consistently caused 
increased injury at all levels. All the coefficients of surface conditions, 
such as snow, ice, and wet, seemed to be associated with lower injury 
severities, possibly because of reduced speeds. It was anticipated 
that the study results that were validated by the different models 
would shed light on the causes of large-truck crash severities. The 
study also offered additional insight on the application of statistical 
methodologies in safety analysis.
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TABLE 6  Estimated Results and Performance of Models

Model PDO (%) B + C (%) K + A (%) AIC
Number of Statistically 
Significant Variables

Observed 49.71 38.45 11.84 na na

MNL 48.70 (−1.01) 40.85 (2.40) 10.45 (−1.39) 27,291.03 17

PPO 48.26 (−1.45) 41.87 (3.42)  9.87 (−1.97) 27,219.05 22

ML 50.12 (0.41) 38.13 (−0.32) 11.75 (−0.09) 27,573.94 16

Note: na = not applicable.
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