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one person is injured or killed in a truck accident every 16 min and  
one out of every eight traffic fatalities involves a truck collision (2).  
NHTSA has estimated that more than 400,000 truck accidents 
occurred in 2009 and approximately 7,800 of those were fatal 
crashes (4). Therefore, it is urgent to improve truck safety and 
reduce truck-related crashes.

Extensive research has been conducted on site-specific character-
istics and their effects on truck crashes, either at intersections or on 
highway segments (5–12). Moreover, truck safety on freeways and 
Interstate highways has usually been a focus of research because 
of the high speed and high truck percentage (8–17). Studies have 
shown that full access-controlled roads have a safer traffic record, 
accounting for only 24% of crashes, whereas the remainder occurs on 
arterial or local roadways (7). In contrast, limited research has been 
conducted on arterial streets, especially from a corridor perspective. 
Arterial streets connect freeway corridors to the distributors, carriers, 
vendors, and customers. They are the “last miles” for commercial 
motor vehicles to deliver the freight to destinations or enter the Inter-
state Highway System. Analyzing safety from an arterial corridor 
perspective is important because there are more opportunities for 
conflicts with passenger vehicles at signalized intersections and such 
analysis is valuable for developing systemwide, corridor-based, and, 
more important, proactive safety improvement strategies.

Although emphasizing highway safety, the safety risk index is an 
effective measure for proactively identifying and analyzing safety 
issues. More concisely, the safety risk index is a measure by which 
transport personnel can quantify the hazards associated with par-
ticular roadway characteristics, environmental patterns, and driver 
populations. A quantifiable risk index associated with a roadway 
segment will help transportation agencies to identify potential safety 
problems and adopt appropriate remedies before a crash occurrence 
and thereby reduce the risk exposure to other road users.

Previously, many agencies took a reactive approach to safety, 
only responding to requests for safety improvements or relying 
heavily on the historic crash statistics. Recently, more agencies have 
committed to utilizing a more proactive safety management approach 
that would identify high-risk roadway features or high-risk locations 
in the context of a roadway network and implement effective low-cost 
improvements whenever appropriate. AASHTO’s newly published 
Highway Safety Manual (HSM) has substantially accelerated the 
deployment of the proactive safety analysis approach. The HSM 
recommends the use of the relative severity index (RSI), which is 
the predicted average crash costs for a site, as the performance mea-
sure for the network screen (18). Therefore, the objective of this 
research is to investigate the relationship between highway and traf-
fic engineering characteristics and truck crashes from a collection 
of arterial corridors with the purpose of developing a truck arterial 
corridor crash severity index (CSI) as a holistic measurement of 
truck crash risk.
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According to NHTSA, more than 400,000 truck accidents occurred in 
2009 and approximately 7,800 of those were fatal crashes. Compared 
with extensive studies conducted on freeway truck safety, the research 
on arterial streets is considerably disproportionate. Making the con-
nections between truck traffic generators, arterial streets are key links 
in door-to-door deliveries. There is an urgent need to study truck safety 
on arterial streets because of the strong growth of truck traffic. Truck-
related crashes are expected to be reduced through careful planning 
of the location, design, and operation of driveways, median openings, 
street connections, and street sections. Through the collection of extensive 
data on selected arterial corridors that are heavily used by trucks, con-
tributing factors to truck crash frequency and severity were identified 
with a negative binomial model and multinomial logit model. Corridor 
truck miles traveled, annual average daily traffic, signal density, shoulder 
width, and pavement serviceability index and its standard deviation are 
significant factors for crash frequency prediction. The multinomial logit 
model identified 12 causal factors for crash severity, such as posted speed 
limit, lane width, number of lanes, pavement condition index, and un- 
divided roadway portion. Subsequently, a crash severity index for truck 
arterial corridors was developed. The findings from the study not only 
will benefit state and local agencies in planning, design, and manage-
ment of a safer truck arterial corridor, but will also help carriers to 
optimize their routes from a safety perspective.

Freight transportation is extremely critical to the economic devel-
opment of a nation. The U.S. economy depends on trucks to deliver 
nearly 70% of all freight transported annually, accounting for  
$671 billion worth of manufactured and retail goods, along with 
$295 billion in trade with Canada and $195.6 billion in trade with 
Mexico (1). Trucking revenues totaled $610 billion in 2011, and rev-
enues are estimated to nearly double by 2015 (2). Although the rapid 
commercial trucking growth is great news for the country’s economy, 
the increasing truck traffic may negatively affect cars, vans, sport util-
ity vehicles, and other vehicles that share the road. In 2010, large trucks 
accounted for 4% of all registered vehicles and 10% of the total vehi-
cle miles traveled. Of the fatalities in crashes involving large trucks 
during 2010, 76% were occupants of other vehicles (3). In fact, 
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Many factors may be involved in truck crashes. The Large Truck 
Crash Causation Study identified human factors (an action or inaction 
by the driver) and vehicle malfunctions (brake problems) as the two 
leading causes (19). Roadway problems were present in 16% of the 
two-vehicle cases based on 967 crashes involving 1,127 large trucks 
and 959 non-truck motor vehicles. Of prime interest to transporta-
tion agencies, the impacts of roadway geometric features on truck 
crashes have attracted considerable attention from many researchers. 
Extensive studies have focused on identifying roadway geometric  
features, traffic operational, and pavement characteristics that con-
tribute to truck crashes (5–14, 17). Looking beyond highway geomet-
ric data, Wang et al. developed multilevel estimation models by using 
freeway traffic data (flow, ramp volume, and shoulder width), eco-
nomic activity data (shipment, county unemployment rate, income), 
and safety performance data to identify any contributing factors that 
may increase crash rates (8). They found that factors such as the num-
ber of shipments, county unemployment rate, truck and ramp annual 
average daily traffic (AADT), and lane width significantly affect the 
number of truck crashes.

Many of the preceding studies were based on either individual 
intersections or segments, and few studies approached truck safety 
issues from a corridor perspective (20–23). El-Basyouny and Sayed 
assessed the corridor effects with alternate specifications (20). They 
compared the traditional Poisson lognormal model with two extended 
Poisson lognormal models by using a data set from 392 urban arte-
rials in the city of Vancouver, British Columbia, Canada, that were 
clustered into 58 corridors. The results of their study provided some 
strong evidence of the benefit of clustering road segments into rather 
homogeneous groups (e.g., corridors) and incorporating random 
corridor parameters in accident prediction models.

Research performed by Lee et al. examined factors that affected 
urban divided arterial road midblock crashes on a 5.3-km section of 
urban arterial (21). The authors concluded that the number of access 
points on urban arterial roadways should be reduced to minimize the 
number of midblock crashes.

Abdel-Aty and Wang emphasized the fact that signalized inter-
sections within a corridor have a correlated influence on the occur-
rence of crashes if the intersections are placed close together (22). 
To account for the correlated data problem they used generalized 
estimating equations with a negative binomial link function.

Milton et al. used corridor-specific and weather-related variables 
to predict injury severity proportions with a mixed logistic model (23). 
Within these results, the average daily traffic, snowfall, truck average 
daily traffic, truck percentage, and the number of interchanges per 
mile were found to be statistically significant random variables for 
predicting different levels of injury severity. In contrast, pavement 
friction, horizontal curvature per mile, and number of grade breaks 
per mile have a fixed effect across all injury levels. These studies dem-
onstrate the importance of corridor effects or corridor-level variables 
on crash occurrence and injury severities.

The proved relationship between crash frequency, severity, and 
any contributory factors can be applied in a proactive safety analysis.  
De Leur and Sayed worked on the development of a systematic frame-
work for proactive road safety planning in which they assumed that 
road risk was a function of exposure, collision probability of a vehi-
cle, and consequence of a potential collision (24). They also provided 
some planning recommendations regarding land use shape, road net-
work shape, geometric design elements, roadway functionality and 

friction, speed at crash-prone areas, and roadside environment in an 
effort to improve the safety of a roadway segment.

In addition to planning recommendations for safety improvements, 
the results of the statistical models of accident frequencies and injury 
severities can be used to present a road safety risk index (RSRI). 
De Leur and Sayed developed two types of RSRI (RSRIspecific and 
RSRIcombined) based on the risk score of a particular road feature 
(25). RSRIspecific defines the risk associated with each road feature, 
obtained by combining the scores for the three components of risk, 
and RSRIcombined defines overall risk by combining the RSRIspecific 
scores for all road features.

In a recent study, Wu and Zhang proposed a framework for devel-
oping a composite road risk index by using a logistic function based 
on exposure, crash rate, and crash severity (26). They showed the 
risk index as a function of a predicted number of different crash 
types multiplied by a relative level of cost due to a particular type 
of crash with the HSM crash severity distribution and associated 
crash unit costs. In the HSM network screening process, a site-
specific RSI is calculated by multiplying the observed or predicted 
average crash frequency for each crash severity with their respec-
tive comprehensive crash cost; an average RSI is then obtained by 
dividing the overall RSI by the total number of observed crashes 
that occurred at the site (18). Regardless of the differences in the 
methods examined, they can provide valuable clues for informed 
decision making.

METHODOLOGY

This section contains the theoretical concepts and mathematical equa-
tions necessary for the development of the truck arterial corridor CSI. 
Methodologies of predictive methods for crash frequency and crash 
severity distribution are discussed.

Crash Severity Index

Truck corridor CSI was measured by the annual societal economic 
costs due to truck crashes that occurred along the specific corridor 
measured by unit length. Expected annual number of truck crashes 
as well as the proportion of crashes by severity can be estimated via 
corridor geometric characteristics and traffic conditions. By combin-
ing annual crash frequency, severities, unit crash cost, and corridor 
length, the truck arterial corridor CSI is formulated as follows:
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where

 CSIi = crash severity index for truck corridor i,
 Ni = annual expected number of truck crashes along corridor i,
 Pj = proportion of crash severity j with j = 1, J for corridor i,
 Uj = unit crash cost for severity j, and
 Li = length of corridor i.

For any truck corridor under consideration, the CSI value can be 
estimated by using the corridor characteristics and applied either as 
the ranking tool for truck safety performance or a proactive method 
for truck safety planning.
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Modeling Methods for Crash Frequency

Count-data modeling (Poisson, negative binomial) techniques are 
widely used for crash frequency because the number of accidents 
ni on a roadway segment per unit of time is a nonnegative integer. 
When the variance is larger than the mean, the data are said to be 
overdispersed. Overdispersed count data are usually modeled with a 
negative binomial distribution because the Poisson distribution has 
a restrictive assumption of equal variance and mean. In a Poisson 
model, the probability of the number of truck crashes for corridor  
i (ni) is as follows:

P n
ni

i i
n

i

i( )( ) =
−λ λexp

!
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where P(ni) is the probability of corridor i’s having ni crashes, and λi 
is the expected number of crashes in corridor i. The negative binomial 
model is an extension of the Poisson in which the Poisson param-
eter λ follows a gamma probability distribution. The standard log 
link function for the negative binomial model can be expressed as a 
linear model of the covariates in Equation 3:

x xi i i k ki i( ) ( )λ = β + β + + β εexp . . . exp (3)0 1 1

where the β’s are coefficients of explanatory variables and exp(εi) 
is the term adjusting for overdispersion and is gamma distributed. 
The models were estimated by using generalized linear modeling. 
For this modeling, the SAS GENMOD procedure was used (27).

Modeling Methods for Crash Severity

Ordered Probit Model

The consequence of a crash can be modeled as a discrete outcome. 
An extensive and detailed review of the discrete choice probabilistic 
models and their applications in predicting crash severities is given 
by Savolainen et al. (28). It has been accepted by many researchers 
that there is an ordinal nature to crash severities; that is, injury severity 
can be ranked from high to low as fatal injury (K), incapacitating 
injury (A), nonincapacitating injury (B), possible injury (C), and 
property-damage-only (O). To model injury severities as the ordinal 
response, researchers most frequently use discrete choice models such 
as ordered probit (OP) models (28). An OP model is a special case 
of the probit model in which more than two outcomes of an ordinal 
dependent variable is modeled, usually estimated by using maximum 
likelihood. The underlying relationship to be characterized is

Xy∗ = + ε (4)9b

where

 y* = exact but unobserved dependent variable,
 X = vector of independent variables, and
 b = vector of regression coefficients, which needs to be estimated.

The ε is a random error term that is assumed to follow a standard 
normal distribution. Furthermore y* cannot be observed; instead, 
only the categories of response can be observed, expressed as 
follows:
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1 if * 0

2 if 0 < *

3 if *

(5)

where µ represents thresholds to be estimated along with the parameter 
vector b.

Multinomial Logistic Model

When crash severities are modeled as an ordinal dependent variable, 
some restrictions can potentially affect the estimated results (28). 
The primary concern is the manner in which the explanatory variables 
affect the probabilities of the discrete outcome; that is, the shift in 
the cutoff thresholds is constrained to move in the same direction. 
However, nonordinal probabilistic models, such as multinomial logit 
(MNL) models, allow variables to have opposite effects regardless 
of the order of the injury severities. The MNL model is a regression 
model that generalizes logistic regression by allowing more than 
two discrete outcomes. MNL relies on the assumption of indepen-
dence of irrelevant alternatives; that is, the odds of preferring one 
class over another do not depend on the presence or absence of other 
“irrelevant” alternatives. The mathematical model underlying MNL is 
to construct a linear predictor function that constructs the relationship 
between outcomes from a set of weights that are linearly combined 
with the explanatory variables of a given observation:

Xi jUij ij= ′ + ε (6)b

where

 Xi = vector of explanatory variables describing observation i,
 bj =  vector of weights (or regression coefficients) corresponding 

to outcome j, and
 Uij =  utility associated with assigning observation i to get cate-

gory j.

The εij is an error term that accounts for the random noise and is 
assumed to be independently and identically distributed with a 
Gumbel extreme value distribution; its logistic formulation is
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In an MNL model, for K possible outcomes, running (K − 1) inde-
pendent binary logistic regression models, one outcome is chosen as a 
“pivot” and then the other (K − 1) outcomes are separately regressed 
against the pivot outcome. If the last outcome K is chosen as the pivot, 
the estimated coefficients are usually presented as a log odds ratio 
between the probability of a given category and the reference one, 
resulting in (K − 1) estimates for each independent variable if the 
response variable has K levels:
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Note that bj is a vector of estimable parameters representing the log 
odds ratio between the probabilities of two alternatives.
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In a similar attempt, Geedipally et al. applied MNL models for 
estimating the proportion of crashes by collision type and then mul-
tiplied by the total number of crashes estimated with a total crash 
model to obtain the crash counts for each crash type at a site (29). 
They concluded that it is a promising method based on compari-
sons with the fixed proportion method and the method of developing 
respective collision-type models.

DATA COLLECTION AND PROCESSING

The data used in this research consisted of 5 years (2005 to 2009) of 
crash counts and geometric, pavement, and traffic volume data. Truck 
crashes were retrieved from the online Wisconsin crash database 
through the WisTransportal System (30). In order to undertake the 
investigation of truck crashes from a corridor perspective based on 
arterial roads, the truck corridor selection was confined to principal 

arterials and minor arterials. Because of the challenge of short 
(less than 1 mi) or very short segments (less than 0.1 mi) in the 
data set, it was necessary to collapse short segments into longer 
ones so that they could be treated as a corridor. This operation was 
done by using collapsing criteria to dissolve adjacent roadway seg-
ments with similar or the same annual average daily truck traffic 
(AADTT).

After a sensitivity analysis to specify a reasonable corridor length, 
it was determined to collapse adjacent segments having AADTT 
differences within the range of 100 trucks per day. Next, three more 
criteria were applied to identify the beginning and end of the study 
corridors: (a) threshold of the corridor length is no less than 1 mi, 
(b) threshold value of truck AADT is 800 or more, and (c) study 
segment is within 5 mi of an Interstate highway or a freeway. This 
operation resulted in 100 corridors containing 720 smaller segments. 
The descriptive statistics for key variables used in the crash frequency 
and severity models can be seen in Table 1.

TABLE 1  Summary Statistics of Crash, Geometric, and Traffic Variables for 100 Corridors

Variable Description Mean SD Min. Max.

Crash count 5-year crash count for each corridor 82 71 14 407

Crash severity
 O Property damage only 54 49 9 276
 C Possible injury 17 16 0 84
 B Nonincapacitating injury 8 7 0 41
 A Incapacitating injury 3 3 0 11
 K Fatal injury 1 2 0 6

L Length of corridor (mi) 4.88 3.42 1.03 16.94

AADT Annual average daily traffic 16,256 6,107 8,172 39,435

AADTT Annual average daily truck traffic 1,077 211 800 1,892

TRKPT Truck percentage (%) 7.1 1.4 4.8 10.2

N_br Number of bridges 1.01 1.38 0 8

Sigden Signal density (signals/mi) 0.51 0.87 0 4.33

Accden Access point density (access points/mi) 5.29 4.81 0 30.47

SPD Posted speed limit (mph) 45 9 30 60

Lnwd Lane width (ft) 12.3 0.8 10 18

Mednwd Median width (ft) 14 12.9 0 47.3

Lshwd Left shoulder width (ft) 3.8 3.4 0 10.9

Rshwd Right shoulder width (ft) 5.6 4.2 0 15

Divund_U Portion of undivided segments within a corridor 0.48 0.4 0 1

Divund_D Portion of divided segments within a corridor 0.52 0.4 0 1

NL_1 Portion of segment with one lane 0.01 0.06 0 0.47

NL_2 Portion of segment with two lanes 0.81 0.3 0 1

NL_3 Portion of segment with three lanes 0.06 0.2 0 1

NL_4 Portion of segment with four lanes 0.12 0.25 0 1

Hcl_g Portion of segment with horizontal curve speed less than 40 mph_good 0.95 0.19 0 1

Hcl_f Portion of segment with horizontal curve speed less than 40 mph_fair 0.03 0.17 0 1

Hcl_p Portion of segment with horizontal curve speed less than 40 mph _poor 0.01 0.07 0 0.43

Hcg_g Portion of segment with horizontal curve speed greater than 40 mph_good 0.89 0.29 0 1

Hcg_f Portion of segment with horizontal curve speed greater than 40 mph_fair 0.09 0.26 0 1

Hcg_p Portion of segment with horizontal curve speed greater than 40 mph_poor 0.02 0.09 0 0.59

PSI Pavement serviceability index (0–5) 3.05 0.92 0.88 4.75

STD(PSI) Standard deviation of PSI 0.58 0.42 0 1.98

IRI International roughness index (mm) 0.08 0.08 0 0.427

PCI Pavement condition index (0–100) 77.09 24.35 0 100

Note: SD = standard deviation; min. = minimum; max. = maximum.
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During this 5-year period, 8,196 truck-related crashes occurred 
in selected corridors; notably more than 50% of the crashes occurred 
in the southeast region and near the Milwaukee area, where most 
truck activities occur. There was a decreasing trend of crashes over 
the 5-year period with 2009 showing the lowest number of crashes. 
Among these truck crashes 66% were property damage only (O), 21% 
were possible injuries (C), 9% were nonincapacitating injuries (B), 
3% were incapacitating injuries (A), and 1% were fatal injuries (K). 
From the results of single- and multiple-vehicle crashes studied, 88% 
of the crashes involved more than one vehicle.

Corridor-level variables were created for each of the 100 corridors. 
As shown in Table 1, the total annual crash frequency had a mean 
of 82 and a standard deviation of 71, with a maximum of 407 crashes. 
The percentage of observations with more than 50 crashes within 
a corridor was found to be over 50%. Corridor lengths vary from 
relatively short (1.03 mi) to very long (16.94 mi) with an average 
segment length of 4.88 mi. The mean corridor AADT was 16,256 with 
a standard deviation of 6,107. Signal density and access point density 
were calculated by the ratio of the number of signalized intersections 
and corridor lengths and the number of unsignalized intersections and 
corridor lengths. The maximum access point density of 30.47 exists in 
a 2.56-mi corridor where a total of 78 access points were counted, 
including 60 residential and commercial driveways and 18 other 
types of access points.

The maximum speed of 60 mph identifies the corridor, which con-
tains a portion of a principal arterial with a 65-mph posted speed limit. 
Similarly, the maximum lane width of 18 ft reflects a portion of a prin-
cipal arterial corridor that has very wide lanes (22 ft). In addition, 
the proportion of corridor by the number of lanes, median presence, 
and speed limited was calculated. In particular, the corridor data were 
analyzed carefully for the good, fair, and poor condition of roadways 
with less than or greater than 40-mph horizontal curvature speed.

ANALYSIS AND DISCUSSION OF RESULTS

When traveling along an arterial corridor, truck drivers must adjust 
to design inconsistencies such as posted speed limits, signal timing, 
and geometric variations as well as heed the drivers of other motor 
vehicles to avoid any potential collisions. The expected number of 
truck crashes can be modeled as the product of traffic exposure and 
truck crash rate, which may be a function of truck volume, AADT, 
and other factors. There is no fixed formula for measuring traffic 
exposure; different methods can be applicable depending on the way 
that segment length and traffic volume were specified (10, 31, 32). 
For example, Miaou et al. used AADTT as an exposure variable and 
AADT as a surrogate variable to indicate traffic condition when they 
modeled truck crashes (10). In contrast, Venkataraman et al. used 
AADT and the length of a segment as exposure variables in modeling 
Interstate crash occurrences (31). Use of vehicle miles traveled, which 
is the product of segment length, AADT, and the number of days 
a year in units of millions or 100 millions, as the traffic exposure 
measurement is also common (31). Therefore, a variety of model 
specifications were tested before the selection was narrowed down 
to the three representative ones.

As shown in Table 2, Model 1 uses million vehicle miles traveled 
as the traffic exposure and truck percentage (TRKPT) as one of the 
explanatory variables in the crash rate function. Model 2 uses truck 
miles traveled (TMT) as the traffic exposure, assuming that truck 
crashes are proportional to the truck volume and segment length. 
AADT is treated as one of the explanatory variables, representing 

the traffic density. Model 3 uses both AADTT and AADT in the 
traffic exposure, and segment length is treated as an offset. This model 
structure emphasizes the interaction between trucks and nontruck 
motor vehicles.

The statistically significant variables vary across the three mod-
els because of different model specifications. For brevity, they are 
represented as X9b in the model. The final model was selected on 
the basis of the model statistical goodness of fit and the number 
of meaningful and statistically significant variables. The AIC is a 
measure of the statistical goodness of fit. The general formula is 
AIC = 2k − 2ln(L), where k is the number of parameters in the statis-
tical model and L is the maximized value of the likelihood function 
for the estimated model. The preferred model is the one with the 
minimum AIC value, which is Model 2.

Table 3 summarizes the parameter estimates, standard deviation, 
t-statistics, and variables that are significant at the 95% confidence 
limit. Along with the intercept, million TMT, AADT, signal density, 
and standard deviation of the pavement serviceability index (PSI) 
are positively associated with the number of truck crashes. The 
closely spaced signalized intersections along corridors could influ-
ence each other in operation as well as in safety (22). The shoulder 
width and PSI are negatively associated with the number of truck 
crashes. Among these crash-contributing factors, the PSI value was 
calculated on the basis of the slope variance, rut depth, cracking, 
and patching. A PSI value of 5 means a perfect riding condition of a 
road surface and vice versa. The model results imply that corridor-
based safety performance could be improved by better pavement 
condition, wider shoulder width, and more consistent signal timing 
design (e.g., protected phases, longer clearance interval).

Following the crash frequency prediction, the crash severity dis-
tribution was also estimated on the basis of corridor-level variables. 

TABLE 2  Negative Binomial Model Structures

Model Equation AIC Value

Model 1 µ = (VMT)α exp (β0 + β1TRKPT + X′b) 968
where VMT is million VMT

Model 2 µ = (TMT)α exp (β0 + β1AADT + X′b) 966
where TMT is million truck miles traveled

Model 3 µ = length p AADTTα1AADTα2exp (β0 + X′b) 982

Note: TRKPT = truck percentage; VMT = vehicle miles traveled;  
AIC = Akaike information criterion.

TABLE 3  Negative Binomial Estimates for Accident  
Frequency Prediction

Effect Estimate SE t-Statistic p-Value

Constant 2.7523 0.255 11 .0001

TMT 0.8404 0.08 10.2 .0001

AADT (thousands) 0.023 0.009 2.54 .0366

Shoulder width −0.042 0.02 −2.24 .0283

Signal density 0.186 0.042 2.95 .0036

PSI −0.2115 0.061 −3.53 .0009

STD(PSI) 0.26 0.112 2.27 .0278

Dispersion 0.180 0.027 6.67 .0001

Note: AIC = 966; Pearson chi-square/degrees of freedom = 1.07;  
SE = standard error.
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Both MNL and OP models were used for the prediction of probabilities 
for crash injury severity proportions for each corridor. The predicted 
probabilities were compared with the observed proportion by using 
the sum of absolute difference (SAD) as follows:

j P j O ji i
i
∑( ) ( ) ( )= −

=

SAD (9)
1

100

where

 SAD( j) =  sum of absolute difference for all 100 corridors for 
injury severity type j,

 Pi ( j) =  predicted probability for injury severity type j on cor-
ridor i, and

 Oi ( j) =  observed probability for injury severity type j on cor-
ridor i.

Table 4 shows the SAD of injury severity proportions for MNL 
and OP models. The MNL model was chosen to calculate the pre-
dicted number of crashes for the five levels within a corridor because 
the SAD in the MNL model was smaller than in the OP models for 
all levels.

In the MNL model results shown in Table 5, the posted speed limit, 
shoulder width, PSI, standard deviation of PSI, pavement condition 
index, number of lanes, lane width, AADTT, AADT, and undivided 
portion of roadway were all determined to be statistically significant 
variables for predicting different levels of injury severity at the 10% 
significance level. In the MNL model, the coefficient estimates are 
explained as the comparison between injury level i and the base 

level O. For example, if a road is undivided, a driver’s chance of 
getting injured increases significantly, with respective probabilities 
of Level B’s being 1.42 (e0.348) times that of O. Similarly, a one-lane 
corridor increases the probabilities of Level B’s being 3.97 (e1.38) 
times that of O and the injury severity due to the effect of PSI for 
Level B 1.2 (e.173) times that of the base level.

In the final phase of the research, the predicted crash frequency and 
the predicted severity proportions for each corridor were employed to 
develop the truck corridor CSI with Equation 1. The total number of 
predicted crashes for a corridor was multiplied by the corresponding 
injury severity proportions in order to get the crash frequency for 
each severity type. Then those predicted injury severity frequencies 
were multiplied by the respective comprehensive crash cost provided 
in the HSM for the estimation of total crash costs of each corridor 
(18). A worksheet designed to facilitate the calculation is illustrated 
in Figure 1.

The observed truck corridor CSIs were calculated and compared 
with the predicted ones. Figure 2 shows that both predicted CSI and 
observed CSI skewed to the left; this distribution suggests that the 
CSI is not symmetrically distributed. The average annual predicted 
CSI was found to be $239,830 per mile with a standard deviation of 
$190,269, which was higher than the actual average annual CSI of 
$202,850 per mile with a standard deviation of $198,751. The over-
estimation was more apparent in the range of $200,000∼$300,000 
than in other intervals. For those overestimated corridors, some 
common characteristics such as narrower shoulder width, higher 
standard deviation of AADTT, lower PSI, and narrower lane width 
were observed; these characteristics seem to contribute considerably 
to the predicted crash frequency and severity. Nevertheless, the over-
estimated corridors are the ones with low CSI; this finding suggests 
very few serious injury crashes.

The developed CSI can play a vital role in quantifying the overall 
risk to the traveling public posed by each truck corridor. The CSI 
is designed to alert motor carriers and transportation agencies of 
potential safety issues so that preventive measures can be taken. 
The index could assist transportation agencies in allocating safety 
improvement funding and enhancing the identified geometric design 

TABLE 4  Sum of Absolute Difference of  
Injury Severity Proportions

Model O C B A K

OP 6.29 6.02 3.81 2.16 1.50

MNL 6.16 5.06 3.70 1.82 1.27

TABLE 5  Coefficient Estimates for MNL

C B A K

Variable Coeff. (SE) Z (p-value) Coeff. (SE) Z (p-value) Coeff. (SE) Z (p-value) Coeff. (SE) Z (p-value)

Intercept — — −2.44 (1.08) −2.24 (.02) −7.13 (2.0) −3.40 (.001) −12.51 (4.0) −3.11 (.002)

AADT — — −.043 (.024) −1.83 (.06) — — — —

AADTT — — .001 (.000) 1.99 (0.04) — — — —

SPD — — — — .052 (.01) 3.22 (.001) .059 (.03) 1.85 (.06)

Lnwd −.096 (.04) −1.94 (.053) — — — — .393 (.22) 1.76 (.07)

NL_1 — — 1.38 (0.61) 2.25 (.02) — — — —

NL_2 −.378 (.17) −2.21 (.02) — — — — — —

NL_3 −.480 (.19) −2.41 (.01) — — — — — —

Shoulder width — — — — .111 (.03) 2.87 (.004) — —

Divund_U — — .348 (.18) 1.93 (.053) — — — —

PCI −.003 (.001) −1.69 (.09) −.004 (.002) −2.06 (.03) — — — —

PSI — — .173 (.08) 2.15 (0.03) — — — —

SD(PSI) — — — — −.735 (.20) −3.61 (.000) −1.25 (.42) −2.89 (.003)

Note: Number of observations = 1,986; probability > chi-square = 0; log likelihood = −7,755.43; coeff. = coefficient; — = variable not statistically significant at 10% level 
of significance.
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Corridor Location Information  
Highway name: 
From / To:  
Nearby Interstate Highway: 
Region: 
Variables 
AADT  
AADTT  
L 
Shoulder width 
Signal density 
Ln width  
NL_1  
NL_2  
NL_3  
Divund_U  
SPD 
PCI 
PSI 
STD(PSI)  

Calculation of expected number of crashes 

 
Calculation of predicted injury severity proportion  
(for coefficients, refer to Table 5) 

 
 
 

Unit crash cost 
($)
UPDO = 7,400 
UC = 44,900 
UB = 79,000 
UA = 216,000 
UK = 4,008,900 

Calculation of corridor crash severity index (CSI) 

 

P(B) = P (O) ∗ eαBXB

P(C) = P (O) ∗ eαCXC

CSI =

TMT = 

N = TMT0.084exp

365 � AADTT � L

1000000
(2.75 + 0.02∗AADT – 0.042∗ Shoulder width + 0.186 ∗ Signal density

– 0.212 ∗ PSI + .258 ∗ STD(PSI))

P(K) = P (O) ∗ eαkXk

log  = αk–1X(k–1)

P(O) =  
1+∑4

j=1e
α j∗x

1

P (k – 1)
P (k )

P(A) = P (O) ∗ eαAXA

∑J
j=1PjUj

L

N

FIGURE 1  CSI estimation worksheet. For definition of variables, see Table 1. PDO = property 
damage only. Unit crash cost from Highway Safety Manual (18).
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FIGURE 2  Histogram of (a) observed CSI per thousand.
(continued on next page)
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components of arterials. By taking adequate measures based on 
the CSI, road agencies can direct trucks to arterial roadways with 
adequate geometries and pavement conditions. The CSI can also be 
employed in a truck route network analysis so that highway safety 
can be incorporated into the route choice. Motor carriers can make 
informed decisions based on not only logistics but also safety.

CONCLUSIONS

Because of rapid truck travel growth in the United States, concern 
among transportation agencies about truck-related safety issues has 
increased. Although numerous studies have been conducted for 
truck safety on the Interstate Highway System, research on truck 
crashes on arterial streets, especially from the arterial corridor per-
spective, is relatively limited. Arterial streets are the “last miles” for 
trucks to deliver freight to destinations or enter the Interstate Highway 
System. Improving truck safety from an arterial corridor standpoint 
is crucial for developing more proactive, corridor-based safety 
strategies.

In this study, a rigorous effort was made in the selection of the truck 
corridors based on corridor length, truck volume, and their proxim-
ity to Interstate highways. Based on the selected truck corridors, a 
quantifiable crash severity index (CSI) was developed to provide a 
holistic measurement of truck crash risk.

The truck corridor–based CSI is defined as the annual societal 
economic costs due to truck crashes per unit length. It is a composite 
average of the truck crashes by severity with the weights determined 
by the crash unit cost. The truck crash count by severity for each 
corridor can be estimated by combining a crash severity model and 
a crash frequency model through a set of corridor-level variables. 
The negative binomial model was used to predict the total number 
of truck crashes, where million truck miles traveled, AADT, signal 
density, shoulder width, and the PCI and its standard deviation were 
identified as statistically significant variables. The MNL model was 
employed to estimate the injury severity proportion.

The model results showed that some factors, such as signal density, 
affect only truck crash frequency, and other factors, such as posted 

speed limit, lane width, number of lanes, pavement condition index, 
and undivided roadway portion, only affect crash severity. The com-
mon factors that affect both are AADT, AADTT, shoulder width, 
and PSI and its standard deviation. Therefore, when different safety 
improvement strategies are compared, any change to the value of 
the factors related to crash frequency, severity, and especially to both 
should be comprehensively and carefully evaluated.
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