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•	 Describing heterogeneous crash count data through finite mix-
ture regression models (4);
•	 Adopting a well-specified mean function (5);
•	 Improving the structure of the dispersion parameter ϕ by 

replacing a fixed value with a varying one (6–8); and
•	 Addressing the crash data heterogeneity by specifying a ran-

dom parameter model (9, 10), in which some or all of the parameters 
are allowed to vary to account for the heterogeneity across locations 
caused by unobserved factors.

These approaches have explicitly considered the data heterogeneity 
and significantly improved the unbiased estimation of standard errors 
for the coefficients as well as the coefficients’ statistical inferences.

Data heterogeneity and, more specifically, data overdispersion 
may originate from the fact that crash data are collected from differ-
ent sources at different locations at different times. At a disaggregate 
level, crashes may result from many Bernoulli trials with an unequal 
probability of independent individual crashes (3). If so, a generalized 
linear model that relies on the conditional mean across different val-
ues of predictors to describe the data central tendency is less efficient 
because of its inherent limitations. The mean is more sensitive to the 
influence of data outliers. The model assumptions cannot be easily 
extended to noncentral locations and are not always met with real-
world data, especially in the case of the homoscedasticity assumption. 
Therefore, other measures of data central tendency or the shape of 
the distribution become more relevant, more appropriate, and more 
informative than merely the mean and the variance. For instance, the 
median (50th percentile) is known for its robustness of data central 
tendency when the data distribution is highly skewed (compressed 
or stretched) with heavy tails. If other quantiles besides the median 
are used, distributional properties, such as skew and modality, can be 
described in greater detail. Similarly to mean regression, the relation-
ship between the quantile locations of the response variable and a 
set of covariates can be established. It should be possible to find out 
how the covariates affect the response variable. This methodology 
is called quantile regression (QR) and is commonly used when an 
understanding of the effect of covariates in all aspects of the response 
distribution is desired.

The origin of QR can be traced to early work related to the develop-
ment of median regression, when conditional median modeling was 
developed with the least absolute error (11). The groundbreaking 
introduction of QR in 1978 by Koenker and Bassett specified con-
ditional quantiles as functions of predictors (12). The least absolute 
error and QR are closely related in the sense that they both opti-
mize certain functions of absolute residuals. The least absolute error 
optimizes a symmetric piecewise linear absolute error, whereas QR 
optimizes an asymmetrically weighted residual function. In 2005, 
Machado and Santos Silva proposed QR for count data and demon-
strated its implementation (13). Since then, QR has been used to 
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decade, several promising modeling strategies have been proposed to 
handle overdispersed crash data, most of which have focused on estimat-
ing the conditional mean crash count. This paper applies an alternative 
crash modeling approach: quantile regression (QR) in the context of 
a count data model. The application of QR to model crash frequency is 
illustrated, and empirical results are interpreted. Poisson gamma, the 
benchmark statistical model for crash counts, is referenced to estimate 
the covariate coefficients for the mean crash count. Focusing on the mean 
may result in important aspects of the data being missed. A more detailed 
analysis, using a QR model for crash count data, confirms that crash pre-
dictors have varying impacts on the different areas of the crash distribu-
tion. Moreover, the marginal effects of covariates provide a more direct 
observation of changes in the quantity, rather than the percentage, of 
crash frequency when responding to one-unit changes in regressors.

Crash modeling is an effective approach for exploring the relation-
ship between crash frequency and a set of predictors from the statisti-
cal perspective. Once the relationship is established, the mean crash 
count can be estimated with the values of a set of regressors. It is 
anticipated that the regressors will not only be statistically correlated 
but also logically related to crash occurrences. Such a method for con-
ditional mean regression assumes the error to be random noise, and 
the mean can be represented as the true value around which observa-
tions fluctuate. The location (mean) of the conditional distribution is 
of more concern than its scale or shape.

Decades of experience with crash data distribution and modeling 
have shown that crash count data are usually overdispersed for a 
variety of reasons, including the omission of important variables, a 
misspecification of the link function, or a structured error term. Under 
these circumstances, it is no longer appropriate to treat the error term 
as random noise for the sake of modeling convenience. Hence, sev-
eral modeling approaches have been proposed to improve the model 
assumptions. Representative work includes

•	 Generalizing the parametric count model through hurdle 
models, such as a zero-inflated Poisson or a zero-inflated negative 
binomial (1–3);
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model not only continuous variables but also discrete variables, 
which grants it immediate applicability in many disciplines, includ-
ing highway safety. Recent developments in QR have been prolific 
in many areas, such as nonparametric models, multivariate quantile 
regression, nonlinear models, and Bayesian models, most of which 
can be found in Koenker and Hallock’s review article (14).

The application of QR is growing rapidly in research communi-
ties, such as sociology, economics, finance, medicine, and public 
health (15–18). In contrast, the development of QR in transportation 
research is still in its infancy. Publications involving this methodology 
are scarce. A few pioneering studies include the paper by Hewson, 
who applied a quantile smoother for speed data (19), and the papers by 
Qin et al. (20) and Qin and Reyes (21), who utilized QR to determine 
crash-prone locations and modeled crash frequencies at intersections. 
Progressing along with QR theory development is the availability of 
statistical tools. To date, QR is provided in several statistical software 
packages, including QREG and QCOUNT in STATA (22, 23), and 
QUANTREG in SAS and R (24, 25). Given the data issues existing in 
transportation studies, QR can be a useful method.

QR models conditional quantiles as functions of predictors that 
specify changes in the response variable as the changes in predictors. 
Because any quantile can be used, QR is flexible enough to model any 
position of a probabilistic distribution. QR offers a direct observation 
of the impact of covariates on the response variable, yields rich infor-
mation on different parts of the response distribution, and provides 
a complete understanding of the marginal effects of predictors. This 
analysis will be particularly useful for safety researchers and practi-
tioners who are interested in investigating the factors that affect loca-
tions with a very low or an extremely high number of crashes (i.e., 
the information indicated in the low tail and the high tail of the crash 
frequency distribution). This paper introduces QR as an alternative 
crash modeling approach in the context of a count data model, pro-
vides a practical example of modeling crash frequency, and interprets 
the empirical results.

QR for Count Data

Quantiles are points taken at regular intervals from the cumula-
tive distribution function of a random variable. Special quantiles are 
named after the length of the interval (e.g., the 2-quantile is called 
the median, the 4-quantiles are called quartiles, the 10-quantiles are 
called deciles, and the 100-quantiles are called percentiles). Let p be a 
number between zero and one, and the 100p percentile of the distribu-
tion of a continuous random variable Y, denoted by Q(p), be defined 
in Equation 1:

p F Y F Q p f y dy
Q p
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−∞
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Formally, the p-quantile of Y with cumulative distribution function 
F on ℜ with 0 ≤ p ≤ 1 is defined in Equation 2:

Q p F p y F y p p( ) = ( ) = ( ) ≥{ } < <−1 0 1 2inf : ( )

where F −1 represents the inverse function of the cumulative distri-
bution function, and inf represents the greatest lower bound. Note 
that Q(0.5) is the median, and the commonly used first and third 
quartiles are denoted as Q(0.25) and Q(0.75), respectively. Q(p) can 
be interpreted as the threshold that splits the possible values of Y 
into two sets, such that P(Y ≤ Q(p)) = p and P(Y > Q(p)) = 1 − p.

The median of a random sample {y1, y2, . . . , yn} of a random vari-
able Y is the minimal of the sum of absolute deviations, which is 
analogous to the mean of a random sample as the minimal of the 
sum of square errors. Koenker suggested that the pth sample statistics 
quantile, given by X, QY(p | X), may be solved as an optimal solu-
tion to minimize a weighted average of the samples whose values are 
larger than or equal to QY(p | X) and the samples whose values are less 
than or equal to QY(p | X), as formulated in Equation 3 (12):
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The bracket in Equation 3 can be simplified as ∑ρp(µ) =  
∑µ(p − 1(µ<0)), where µ = yi − QY( p | X) and 1A is an indicator function 
of a subset A of a set U. If the pth sample quantile QY( p | X) is a linear 
function of the parameters of interest Xβ, it can be solved efficiently 
by linear programming methods. The process of estimating the  
vector of unknown coefficients β for the vector of variables X is 
called QR.

QR is a standard application for a continuous variable but not for 
a discrete variable. Because the distribution of a discrete variable 
is not continuous, neither are its quantiles. Hence, quantiles cannot 
be modeled directly as a continuous function of the regressors. In 
other words, the objective function in the optimization is not differ-
entiable. Machado and Santos Silva have proposed a few alternatives 
that extend the quantile regression to count data (13). The proposal 
to smooth approaches can be roughly categorized into discretization 
and jittering. Discretization introduces a latent variable and classifies 
a discrete variable between two continuous values that are defined 
by the latent variable. One obvious shortcoming of this approach 
is that it introduces a new parameter for each observation, making 
it computationally inefficient. The other popular alternative in QR 
for count is the jittering method. The jittering method constructs a 
continuous variable whose conditional quantiles have a one-to-one 
relationship with the conditional quantiles of the discrete variable. 
Adding a uniformly distributed random variable U between [0, 1] to 
a discrete variable Y creates a new variable Z = U + Y, and results 
in a conditional quantile function that is continuous in p. Similarly, a 
continuous variable can be generated with the jittering method from 
the nonnegative crash count.

The quantile of the new continuous variable Z has two important 
features: (a) according to its distribution, the pth quantiles of Z can 
never be smaller than p, and (b) the quantiles of Z can never be 
negative because Z is the sum of the crash count Y and a uniform 
variable U between zero and one (26). Therefore, the pth quantile 
of Z can be specified in Equation 4 as

Q p p pZ X X( ) = + ( )( )exp ( )b 4

To estimate the unknown coefficients, a natural logarithm is 
applied to obtain a linear function of βs in Equation 5:

T Z p
Z p Z p

Z p
;

log

log
( )( ) =

−( ) >

≤





 ζ
5

where T means a transformed function and ζ is a very small positive 
number. The transformed quantile function in Equation 6 is linear 
in its parameters:

T Q p pZ X X( )( ) = ( ) ( )6
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The last effort is to prove that the quantiles of transformed Z, 
QT(Z), are the same as the quantiles of Z, QZ. One of the properties 
of quantiles is that they are invariant to monotonic transformations 
and are also invariant to censoring from below up to the quantile of 
interest (14). Hence, the optimization problem becomes to solve the 
estimates for βs in Equation 7:
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For any quantile p between zero and one, ̂(p) is called the pth regres-
sion quantile, which minimizes the sum of weighted absolute residu-
als. As a special case, the sample median minimizes the sum of the 
absolute errors of the sample set when p is equal to 0.5.

Like other count models, the expected value of the conditional 
quantile regression is specified as a linear function of the covariates, 
as shown in Equation 6. The estimated coefficients βs are partial- or 
semielasticities because Equation 6 is a semi-log function where 
∂lny/∂xk = βk. In other words, βk means the percentage change in Y 
associated with a one-unit change in Xk. Comparing βs from different 
conditional quantile functions can be problematic because Y is differ-
ent. Y corresponds to different quantiles of the response variable that 
are conditional upon the covariate values. To facilitate the comparison 
of covariate effects across different quantiles, the marginal effect that 
measures a one-unit change in X on the dependent variable Y needs 
to be calculated for each coefficient. The marginal effect is calculated 
as the partial derivative ∂[QZ(p | X) − p]/∂x, the product of β(p) and  
[QZ( p | X

_
) − p] (13). For a continuous variable, the marginal effect 

is β(p)[QZ(p | X
_

) − p], where β(p) is the estimated coefficient at the 
p-quantile. For a dummy variable, the marginal effect is QZ(p | X

_
,  

xk = 1) − QZ(p | X
_

, xk = 0) = [exp(γ(p)) − 1][QZ(p | X
_

) − p)], where γ(p) 
is the estimated coefficient for dummy variable xk at the p-quantile.

Machado and Santos Silva’s jittering algorithm QCOUNT was 
implemented in Stata by Miranda (23). QCOUNT not only calculates 
the QR estimates for coefficients, as well as the coefficients’ statistical 
inferences, but also computes the marginal effects of these coefficients, 
which is a more effective measure of the impact of covariates on the 
response variable across different areas of the distribution. Because 
generating a uniform variable is a random process, QCOUNT allows 
users to specify the number of repeats and then averages the estimates 
of all of the iterations, as suggested by Machado and Santos Silva (13). 
According to several empirical studies, 1,500 iterations is considered 
sufficient to achieve a stable coefficient estimate (13, 26, 27). Another 
specification is the value of ζ, which is a small positive number. In 
QCOUNT, ζ is set to be 10−4, which is consistent with other studies. 
The coefficients for the covariates are estimated by the linear pro-

gramming process that minimizes the weighted residual function, 
as formulated in Equation 3.

Empirical Study of Crash Frequency  
of Highway Segment

Data Description

Crash information and roadway inventory data were requested, 
respectively, from the South Dakota Department of Public Safety 
and South Dakota Department of Transportation. The data acquired 
to generate crash prediction models included a five-year crash data 
set from 2004 to 2008 and the corresponding highway functional 
classification, annual average daily traffic, and geometric character-
istics. The majority of South Dakota highways are in rural areas. The 
rural minor arterial highway type is chosen for this study because it 
is one of the principal highway types in the state. A total of 1,231 
roadway segments with the necessary data elements are available in 
this class, ranging from 0.1 mi to 26.2 mi in length, with a mean of 
2.7 mi. The total number of crashes occurring during the 5-year time 
period on these segments ranges from zero to 64, with an average of 
1.81 crashes and a standard deviation of 3.61 crashes. Tables 1–3 list 
the data summary statistics. Detailed information on data collection 
and processing is available in a previous report (28).

Results and Discussion

Previous crash prediction models have focused on estimating the 
conditional mean crash count. However, the resulting estimates of 
effects were not necessarily indicative of the nature of these effects 
on the low tails (low number of crashes) or high tails (high number of 
crashes) of the crash distribution. The characteristics of the sites that 

TABLE 1    Summary Statistics for  
Dependent Variable Crash (Total Number 
of Crashes, 2004–2008)

Percentile Value Percentile Value

10   0 90   5

25   0 95   9

50   1 99 14

75   2

Note: Mean = 1.81; standard deviation (SD) = 3.61; 
variance = 13.00; skewness = 6.35; kurtosis = 83.33.

TABLE 2    Summary Statistics for Continuous Independent Variable

Continuous Independent 
Variable Description Mean SD Range

Length Segment length (mi) 2.75 3.60 [0.1, 26.2]

ADT Average daily traffic 1,180 1,009 [110, 6845]

SURF_WI Surface width (ft) 28.82 8.43 [18, 91]

SHLDR_WI Shoulder width (ft) 4 2.49 [0, 12]

SPD_LIM Speed limit (mph) 54.89 13.43 [20, 65]

V_DEN Vertical curve density 
(curves/mi)

4.71 4.23 [0, 39.96] 
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experience low or high numbers of crashes are of particular interest 
and can be described by a family of conditional quantile functions, 
as specified in Equation 8:

ln Q p pZ X( ) −( ) = + + +β β β β0 1 2 3lnVMT SURF_WI SHLDR_WII

+ SPD_LIM V_DEN SRS Yβ β γ4 5 1 8+ + =( ) ( )

where

	 VMT	=	vehicle miles traveled (millions),
	 SURF_WI	=	surface width (ft),
	 SHLDR_WI	=	shoulder width (ft),
	 SPD_LIM	=	speed limit (mph),
	 V_DEN	=	vertical curve density (curves/mi), and
	 SRS = Y	=	presence of shoulder rumble strip.

VMT is calculated as the product of the annual average daily traf-
fic, the segment length, and the number of days between 2004 and 
2008, divided by 1 million.

The covariates included in the QR models were chosen by a con-
ventional Poisson gamma model, which is the benchmark statisti-
cal distribution for modeling crash counts. All of the covariates are 
statistically significant at the 5% significance level in the Poisson 
gamma model. The details for developing the Poisson gamma model 
and selecting the variables are referred to in an earlier research 
report and are omitted here for brevity (28). The reason for keep-
ing the same covariates in the QR model as in the mean regression 
model is to illustrate the difference in the amount of information 
presented. Because 48% of the crash counts in the data set are zeros, 
the upper tail of the crash distribution is certainly more interesting. 
The coefficients of the covariates were estimated for the 25-, 50-, 

75-, 85-, and 95-quantiles. In the lower tail, a variation in the condi-
tional quantiles of QZ( p | X) may be due to the random error. Table 4 
lists the QR estimates for these quantiles with the standard errors in 
parentheses. Poisson gamma estimates for the covariate coefficients 
are provided in the last column of the table.

Similarities and differences can be clearly identified by comparing 
each quantile level to the others. The sign of each statistically sig-
nificant coefficient is consistent across all quantiles tested, whereas 
the value of the coefficient varies considerably from one quantile 
to another. Figure 1 illustrates the quantile regression results of the 
coefficients. The solid line represents the estimates of the coeffi-
cients for the 25, 50, 75, 85, and 95 percentiles, which are enveloped 
by two dashed lines representing a 95% confidence interval. The 
horizontal dotted line presents the estimates of the coefficients from 
the Poisson gamma model. A positive relationship between crash 
frequency and lnVMT is presented at all quantile levels, but the trend 
of effect decreases from 1.164 at the low crash count brackets to 
0.727 at the high crash count brackets. The rural minor arterial crash 
data suggest that the effect of lnVMT is substantially lower at the 
high tail of the crash frequency distribution than at the low tail of the 
distribution. This effect implies that for segments with a high number 
of crashes, travel demand management that tries to reduce traffic 
exposure (VMT) may lead to a smaller reduction in crash percentage 
than the areas with a relatively low numbers of crashes. Arguably, the 
sites with high crash frequencies may have a greater VMT because of 
a positive causal relationship. From a different perspective, this may 
suggest that any significant increase in traffic volume at locations 
with a historically low number of crashes may trigger a considerable 
surge in crashes compared with the sites already experiencing a high 
number of crashes.

TABLE 3    Summary Statistics for Categorical Independent Variable

Categorical Independent 
Variable Description Value Frequency

Proportion  
(%)

ACCESS Access control None 1,192 96.8
Part 39 3.2

SRS Shoulder rumble strip No 1,144 92.9
Yes 87 7.1

SHLDR_TY Shoulder surface type Asphalt 750 60.9
Blotter 20 1.6
Concrete 142 11.5
Gravel 191 15.5
None 115 9.3
Recycled 13 1.1

TABLE 4    Estimated Coefficients for QZ(p |X)

QR
Poisson-Gamma 
(Means Model)QZ(0.25X) QZ(0.5X) QZ(0.75X) QZ(0.85X) QZ(0.95X)

LnVMT 1.164a (0.055) 1.100a (0.048) 1.023a (0.051) 0.941a (0.065) 0.727a (0.058) 0.934a (0.033)

SURF_WI −0.027 (0.014) −0.018 (0.012) −0.010 (0.012) −0.018 (0.011) −0.021a (0.009) −0.025a (0.006)

SHLDR_WI −0.059a (0.026) −0.092a (0.023) −0.079a (0.023) −0.064a (0.029) −0.071a (0.018) −0.085a (0.015)

SPD_LIM 0.004 (0.008) 0.000 (0.007) −0.008 (0.008) −0.018a (0.009) −0.023a (0.005) −0.019a (0.003)

V_DEN −0.030 (0.027) −0.049a (0.021) −0.082a (0.027) −0.093a (0.037) −0.068a (0.023) −0.061a (0.01)

SRS −0.466 (0.289) −0.369 (0.193) −0.461 (0.254) −0.488a (0.194) −0.352 (0.232) −0.368a (0.142)

Constant −1.266 (0.773) −0.251 (0.624) 0.749 (0.783) 2.024a (0.812) 3.116a (0.441) 1.285a (0.306)

aStatistically significant at 5% level of significance. 
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Given the limited right-of-way, widening the surface width, the 
shoulder width, or a combination of both becomes a critical deci-
sion. Gross et al. compared the safety cost-effectiveness of several 
lane–shoulder width configurations for fixed total paved widths as a 
countermeasure for roadway departure crashes and concluded that cer-
tain lane–shoulder configurations have the potential to cost-effectively 
reduce crashes on rural, two-lane, undivided roads (29). In this study, 
surface width was defined as the edge of travel lane to travel lane and 
did not include shoulder width. A negative relationship can be found 
between crash counts and both surface width and shoulder width, 
indicating that wider surfaces and shoulders may contribute to fewer 
crashes. A close comparison between surface width and shoulder 
width reveals that the coefficients of surface width are not statisti-
cally significant at the 5% level of significance at all estimated quan-

tile levels. Moreover, the values of coefficient estimates suggest that 
widening the shoulders is more effective in reducing crashes than 
widening the surfaces. Therefore, empirical QR results show that 
although widening the surfaces and widening the shoulders may both 
reduce crashes, the safety performance of shoulder widening is more 
stable than surface widening because the coefficient is statistically 
significant at the 5% significance level at all quantile levels tested.

For the other variables in the model—posted speed limit, vertical 
curve density, and shoulder rumble strip—the value and statistical 
significance of the estimated coefficients vary at different quantiles. 
Vertical curve density (the number of vertical curves per mile) is 
negatively related to the number of crashes at all test quantile lev-
els, except for the 25 percentile. On the contrary, installing shoulder 
rumble strips is only statistically significant at the 85-percentile, even 
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FIGURE 1    Quantile plots for variable coefficients.
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though the coefficient has a positive impact on highway safety. For 
the statistically significant coefficients of posted speed limit, the rela-
tionship with the crash frequency is negative, suggesting a positive 
safety impact; the effect gradually changes from −0.008 to −0.023.

As expected, the Poisson gamma coefficient estimates are all 
within the boundary of the quantiles of interest. The signs of the Pois-
son gamma coefficients are consistent with their QR counterparts; 
however, the sizes vary at different quantile levels compared with the 
QR estimates. Some are close to the high tail and others are close to 
the median. Obviously, mean regression only yields one set of coef-
ficient estimates, which are not able to reflect the subtle to substantial 
covariate effects in different areas of the crash distribution.

The change in the dependent variable corresponding to the change 
in each predictor can usually be expressed as the value of coefficient β. 
For instance, βk means the percentage change in Y associated with a 
one-unit change in Xk. It does not matter whether the change is rela-
tive or absolute for mean regression estimates because there is only 
one set of coefficients. For quantile regression, the change matters 
because quantile estimates are with respect to different quantiles of 
the dependent variable. Comparing low quantiles with high quantiles 
in terms of percentage change in Y may not be appropriate. A better 
comparison can be made with the marginal effects of covariates that 
take the magnitude of Y into consideration. In other words, marginal 
effects suggest the change in the response variable—in this study, 
the number of crashes—as the change of one unit in the regressor. 
The marginal effects for the conditional quantiles of the jittered data 
Z are calculated by setting all continuous variables to their means 
and all dummy variables to their modes (23). Then the changes on 
the conditional quantile of interest are a function of QR coefficient 
estimates at that quantile level. Table 5 shows the results of the mar-
ginal effects for the covariates. All of the marginal effects show a 
greater impact of covariates at the high tail than at the median or low 
tail in this empirical data set, which may not be true for other data. 
For example, in Miranda’s research on women’s preferences toward 
number of children, some variables fluctuated from the low quantile 
(fewer children) to the high quantile (more children) (27).

A nuisance caused by the jittering algorithm is the production of 
a slightly biased estimate for quantiles. As shown in Equation 9, QY 
can be retrieved from QZ:

Q p Q pY ZX X( ) = ( ) − 1 9( )

where ⎡ ⎤ represents the ceiling function (i.e., the next largest integer). 
A change in a covariate may or may not be sufficient to change the 
p-quantile of the dependent variable Y because that covariate’s mar-
ginal effect may be rounded to the nearest integer without increasing 
or decreasing the value of QY( p | X), even though the covariate is sta-
tistically significant to QZ( p | X). In other words, different quantiles of 

Z may correspond to a single Y because of the relationship formulated 
between Y and Z. Again, this is one of the fundamental differences 
between quantiles and the mean for count data. In count data, quantiles 
have to be integers, but the mean can be a continuous variable. Given 
the resolution level of integers and the data characteristics (48% are 
zeros), it is more meaningful to estimate the covariate effects than to 
estimate actual quantiles.

Closing Remarks

Crash data are heterogeneous in nature because they are collected 
from different sources at different locations at different times. This 
data heterogeneity creates challenges for researchers and practition
ers who are dedicated to improving highway safety. In the past 
decade, several promising modeling strategies have been proposed 
to handle overdispersed crash data. The prevailing research focuses 
on estimating the conditional mean crash count. However, the con-
ditional mean method has inherent limitations and is less efficient at 
describing highly skewed or multimodal distributions.

Poisson gamma, the benchmark statistical model for crash counts, 
is employed to estimate the covariate coefficients. The mean regres-
sion provides some information about the effect on the response of 
a unit change in a covariate. The limitation is that mean regression 
only accounts for the effect of this change at the mean of the depen-
dent variable. Because the effect can vary over the range of covariate 
values, it is plausible that the use of typical values leads to a distorted 
(incomplete) view of highly skewed data sets. Nevertheless, the 
study confirms a high consistency between the mean estimates and 
the QR estimates. The value of the mean estimate is encapsulated in 
the range of QR estimates, and both have the same sign. Hence, QR 
can be a useful alternative to mean-based crash modeling.

Furthermore, this paper illustrates that focusing on means may 
cause important aspects contained in the data to be missed. A more 
detailed analysis using a QR model for crash count data confirms that 
crash predictors have varying effects on crash distribution. Empirical 
results for South Dakota rural minor arterials suggest that the impact 
of traffic exposure is substantially lower in the high tail of the crash 
distribution than in the low tail. These results imply that for roadway 
segments with high crash frequencies, the same reduction in travel 
demand (VMT) may not be equally effective for areas with a rela-
tively low numbers of crashes. This finding might also suggest that 
any significant increase in traffic volume at locations with a histori-
cally low number of crashes may trigger a more considerable surge 
in crashes than at the sites that already experience a high number of 
crashes. The analysis also reveals that widening the shoulder width is 
more effective at the high tail of the crash distribution than widening 
the surface width. The marginal effects of covariates, as alternative 

TABLE 5    Marginal Effects for QZ(p |X)

QZ(0.25X) QZ(0.5X) QZ(0.75X) QZ(0.85X) QZ(0.95X)

lnVMT 0.257a (0.02) 0.524a (0.033) 0.933a (0.055) 1.355a (0.114) 2.077a (0.169)

SURF_WI −0.006 (0.003) −0.009 (0.006) −0.009 (0.011) −0.026 (0.016) −0.060a (0.027)

SHLDR_WI −0.013a (0.006) −0.044a (0.011) −0.072a (0.022) −0.092a (0.041) −0.203a (0.055)

SPD_LIM 0.001 (0.002) 0.000 (0.003) −0.007 (0.007) −0.026a (0.014) −0.067a (0.015)

V_DEN −0.007 (0.006) −0.023a (0.010) −0.075a (0.025) −0.134a (0.051) −0.194a (0.065)

SRS −0.085 (0.043) −0.151 (0.067) −0.348 (0.157) −0.576a (0.194) −0.869 (0.501)

aSignificant at 5% level of significance.
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measures to QR coefficient estimates, provide a direct observation 
of changes in the quantity, not percentage, of the crash frequency in 
response to a one-unit change in covariates.

In summary, QR is a statistical method that can be used to effec-
tively describe the data heterogeneity through different regres-
sion equations at different quantiles. Data heterogeneity implies more 
than one relationship between a response variable and explanatory 
variables measured on a subset of these factors. QR estimates multiple 
relationships from the low quantile to the high quantile of the response, 
yields rich information on different parts of the response distribu-
tion, and provides a complete understanding about the sophisticated 
associations between variables.
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