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in Rainy Weather
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Resear ch wasdoneto examine compr ehensively the safety impact of rainy
weather conditions on multivehicle crash frequency and severity and to
validatetheimpact on traffic operationsthrough microsimulation model-
ing. Three primary tasks were performed to meet these objectives. For
weather data processing, available data wer e used to estimate the follow-
ing factors: rainfall intensity, water film depth, and deficiency of car-
following distance. For statistical modeling, negative binomial regression
wasused for crash frequency, and sequential logistic regression wastested
with forward and backward formats for crash severity. A better format
for the crash severity estimation was determined by combining all model
performance measures. VI SSIM wasused to design traffic simulation
modelstoreflect the effect of weather on traffic operation with five sce-
narios of the following weather -sensitive parameter adjustments: desired
deceleration rate function, desired speed distribution, and headway time.
As weather-related determinants, daily rainfall and wind speed were
found to be statistically significant to crash frequency and severity estima-
tions, respectively. VISSIM provided the most similar traffic data to the
observed data when both desired speed distribution and deceleration
rate function wer e adjusted. Statistical modeling in this research can be
used to examine highway safety in rainy weather and to provide quantita-
tivesupport on implementing road weather safety management strategies.
Correspondingly, theadjustments of weather -sensitivetraffic parameters
will be the preliminary step to measur e the strategy efficiencies through
safety surrogateindexesin traffic smulation.

Severe crasheswith injuries or fatalities have occurred during rainfall
onwet pavement surfaceson Wisconsin highways. Many studieshave
focused on the relationship between snowy weather conditions and
highway safety, and Wisconsin asone of the Snow Belt states. In Wis-
consin, however, rain is the most frequent of al inclement weather
events with average annual rainy days ranging from 100 to 150 (1).
Thisimpliesthat the rain event ismorelikely to be apotential risk
to Wisconsin highway safety, prompting a need for comprehensive
analysis of rainfall-related effects on Wisconsin highway safety.
Generally, highway safety is measured by crash frequency and
severity. Crash frequency indicates the sum of crash occurrences at
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a specific location during a specific period. The severity of acrash
occurrenceis classified into five levels (2):

e Fatality (TypeK);

e |ncapacitatinginjury (Type A)—any visibleinjuriesto aperson
who had to be carried from the scene;

e Nonincapacitating injury (Type B)—any visibleinjuries, such
as bruises or abrasions;

e Possible injury (Type C)—no visible signs of injuries but
complaint of pain or momentary unconsciousness; and

e Property damage only (PDO).

Inrisk analysisof highway safety, severe crasheswithinjuriesand
fatalities are more emphasi zed because of their significant human and
economic loss potential. In Wisconsin from 1999 to 2006, 4,919
crashes with injuries and fatalities occurred on highways in all
adverse weather conditions: rain, fog, snow, sleet, and wind (3). Of
these crashes, 1,805, approximately 37%, were crasheswith injuries
and fatalities occurring in rainy weather. Thisproportionisthe high-
est for all adverse weather conditions. During the same period,
899 multivehicle crashes occurred specifically on Wisconsin Inter-
state highwaysin rainy weather; the multivehicle crash frequency
isapproximately 1.5 timesthat of the single-vehicle crash frequency.
Moreover, the proportion of severe multivehicle crash occurrences
is 1.4 times more than the proportion of the severe single-vehicle
crash occurrences.

Regardless of the number of crashes in rainy weather, compara-
tively few studies have been conducted in a disaggregated fashion
to assess rainfall-derived factor effects on highway safety, particu-
larly crash severity. Therefore, the objectivesfor thisresearch were
to develop anovel methodology for microscopic weather data esti-
mation and to apply this methodology to statistical modeling of
highway safety and weather-sensitive parameter adjustmentsduring
traffic simulation.

LITERATURE REVIEW

Rain-derived factors were found to affect crash frequenciesthrough
manner of collision in the crash, crash types, and road geometries.
In a crash frequency study by negative binomial model, maximum
daily rainfall per month, average daily rainfall per month, and num-
ber of rainy days per month were identified as significant for side-
swipe, parked-vehicle, fixed-object, overturn, and rear-end crashes
on Interstate highways (4). Shankar et al. estimated roadside crashes
for the Washington State highway network by using azero-inflated
negative binomial model (5). In this study, rain precipitation during
September and October increased the probability of a roadside
crash, whereaslessrain precipitation during April and June reduced
the probability of aroadside crash.
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Abdel-Aty et al. segregated Florida freeway crashes by appar-
ently unrelated binary categories, including crash type, hour of the
day, lighting condition, crash severity, and pavement condition (6).
They provided insight into specific contributing factors that affected
crash frequencies of each category by using a negative binomial
regression model. In estimating crash frequencies by pavement
condition, roadway curvature, on- and off-ramps, and annual average
daily traffic (AADT) were found to be significant for increasing
crashes on wet pavement. Caliendo et a. estimated multilane road
crash occurrences classified by road geometries by comparing Poisson,
negative binomial, and negative multinomial regression models (7).
Intheir study, rain wasfound to be highly significant for increasing the
number of severe crashes, especially on horizontal curves.

Theimpact of rain-related factors on crash severity has been iden-
tified in previous studies by manner of collision in the crash, vehicle
types, road characteristics, and driver attributes. Shankar et al. esti-
mated anested logit model of crash severity that occurred on aWash-
ington State rural Interstate (8). Wet-pavement rear-end collision
indicators were found to increase the likelihood of possible injuries,
capturing the effect of rear-end collisions occurring in rainy weather.

Duncan et a. used an ordered probit model toidentify specific vari-
ables significantly influencing levels of injury in truck—passenger car
rear-end involvements on divided roadways (9). In that study, inter-
action of wet and grade was found to significantly increase all injury
propensities.

Khorashadi et al. explored the differences between urban and
rural driver injuriesin crashesinvolving large trucks by using multi-
nomial logit analysis (10). The authorsfound that rain increased the
likelihood of complaint of pain crashes only in urban areas.

Hill and Boyle investigated fatality and incapacitating injuriesto
occupants of passenger vehiclesby using alogistic regression model
(11). Their study showed that crashesin adverse weather conditions
withrain, snow, or fog increased therisk of severeinjuriesto females
that were 55 and older.

Severa previous studies tried to integrate weather-related safety
issueswith simulating traffic operationsvia safety surrogate measures
by identifying weather-sensitive traffic parameters. Zhang et al. eval-
uated the impact of weather-sensitive traffic parameters on freeway
traffic operations by using microsimulation (12). As aresult of sensi-
tivity analysis, inamedium or highlevel of congestion, the mean free-
flow speed and the car-following multiplier were found to most affect
measures of effectiveness of freeways.

Lieuand Lin aso examined theissuesregarding the development
of weather-related signal timing plans at an arterial of intersections
by using CORSIM (13). The authors selected key weather-sensitive
traffic parametersamong available CORSIM parametersasfollows:
maximum speed, start-up lost time, queue discharge headway, and
additiona gaps between vehicles for safety and maximum decelera-
tion rates for collision avoidance. The simulation results of this study
demonstrated that potential benefits could be realized by retiming
signalsin inclement weather.

Tantillo and Demetsky al so examined theimpact of wet weather on
traffic flow at signalized intersections by using VISSIM (14). The
authorsidentified that the accel eration and decel eration rateswerethe
most sensitive parametersto weather conditions. However, no dataon
the acceleration or deceleration rates were available in this study.
Only free-flow speed and saturation flow rate data were used as
weather-sensitive traffic parameters in this study. Correspondingly,
thisstudy showed statistically significant differences between dry and
wet weather conditions, resulting in decreasing free-flow speeds and
saturation flow rates on wet conditions.
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STATISTICAL MODELS

In this study, negative binomial (NB) regression model was used to
estimate crash frequencies caused by overdispersed response. NB
regression assumesthe count response Y follow agammadistribution.
The formulafor NB regression model is specified so that

In(Y(r,t)=> X(r,t)p+e @)

where

Y(r, t) = random variablein arear during fixed period of timet,
X(r, t) = explanatory variables,
B = coefficients of explanatory variables, and
exp(e) follows gammadistribution.

Asthemodel performance, devianceisdefined astwo timesthe dif-
ference of log likelihood (LL) for the maximum achievable model and
LL for thefitted model. Asanother performance measure, the Pearson
chi-square statistic is defined as the squared difference between
the observed and predicted values divided by the predicted value
summed over all observations in the model. The deviance and
Pearson chi-square statistic value divided by degree of freedom should
be approximately one, indicating agood modé fit for the data set.

For estimating crash severities, several modeling techniques for
the discrete ordered outcome are available (15-19). A sequential
logistic regression was selected in this study for the crash severity
estimation not only to account for the inherent order of crash sever-
ities, but also to allow for different sets of predictorsin the model
specification by severity (20). The cumulative density function for
thelogistic regression is used to express the probability of acertain
outcome in the standard logistic regression as follows (21):

P(Y)
1-P(Y)

= exp(a +BX) 2

where

P(Y) = probability of response outcome,
Y = binary response variable,
o = intercept parameter,
B = vector of parameter estimate, and
X = vector of explanatory variable.

A seriesof standard logistic regression was applied over two stages
of two following formats to explore whether there was animpact in
the ascending and descending development of crash severity levels,
respectively: forward format and backward format. Inthisstudy, Crash
TypesK, A, and B were combined as the highest level of crash sever-
ity because of samplesizeissues. Crash Type C and PDO crasheswere
considered as the second highest and lowest level of crash severity,
respectively. Inthe forward format,

Stage 1. PDO versus TypesK, A, B, and C and
Stage 2. Type Cversus TypesK, A, and B

and in the backward format,

Stage 1. TypesK, A, and B versus Type C and PDO and
Stage 2. Type C versus PDO.

A standard logistic regression model classifies a crash observa
tion asan event, if the estimated probability of the crash observation
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severity is greater than or equal to a given cut point. The event
means a crash observation classified as a more severe crash among
binary crash severity levelson each stage. Otherwise, it isclassified
as anonevent.

In statistical terms, sensitivity measures the proportion of actual
eventsthat are also predicted to be such. Similarly, specificity mea-
suresthe proportion of actual noneventsthat are al so predicted to be
such. Thefalse-positive rate isthe ratio of the number of nonevents
incorrectly classified as events to the total nonevents, and the false
negative rateisaratio of the number of eventsincorrectly classified
as nonevents to the sum of total events. A model that produced a
high sensitivity and low false-negative rate at the stages of the high-
est crash severity classification was considered good because of the
enormous economic | oss.

Asthefina step of model evaluation, the estimated crash sever-
ity model wasvalidated statistically by abootstrap sampling method
called jackknife. In each step, one observation was withheld from
the data set used for model building. Thisrestricted model wasthen
compared with the model with use of the full data set. The process
was repeated until all observations were tested. High and similar
prediction accuracies between an estimated model and the model in
the validation process suggest the estimated model isfairly robust.

DATA PROCESSING

In rainy weather, crash occurrences normalized by segment length,
AADT, and vehiclemilestravel ed were the most frequent on south-
eastern Wisconsin Interstate highways, including 1-43, 1-94, 1-43/94,
and 1-43/894 (3). According to Wisconsin weather station data,
annual rainfall inthe concurrent segment of 1-43 and 1-94 was approx-
imately 14% higher than average annual rainfall on any other seg-
ment of southeastern Wisconsin I nterstate highways. Moreover, this
concurrent segment was the most congested of all Wisconsin Inter-
state highways according to AADT data. Therefore, the study areas
for modeling highway safety and traffic simulation consisted of
approximately 75 mi of southeastern Wisconsin highways and a
2.7-mi segment of 1-43/94 between Howard Avenue and Mitchell
Street, respectively. These study areas are shown in Figure 1.

In the study areas, traffic flow rate and the variation were found
to be much greater on weekdays than on weekends. The weekday
traffic patternimpliesmorelikelihood of traffic conflicts, especialy
in adverse weather conditions. Consequently, only weekday traffic
data during morning and evening peak hours in rainy weather con-
ditionswere used for northbound and southbound traffic simulation
because of data homogeneity.

Databases

The crash dataset for multivehicle crashes occurring in rainy weather
was obtained from the Wisconsin Department of Transportation
(DQOT) crash database (MV 4000 database). The crash data used in
this study were filtered through several criteriato form data homo-
geneity: wet pavement during rainfall, multivehicle included in a
crash, Interstate highway divided by barrier, no construction zone,
and no hit and run. Consequently, 634 crashes were collected in the
study area from 2004 to 2009. The crash occurrences by 1-mi seg-
ment of study areawere counted for crash frequency estimation. For
crash severity estimation, the crash severity was classified into three
levels as mentioned in the section of statistical model to obtain a
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FIGURE 1 Study areas.

meaningful samplesize (22). Crash frequencies by the severitiesand
SAS program coding are provided in Tables 1, 2, and 3.

On each stage, crash severity was coded as binary values: 0 for
lower severity and 1 for higher severity. A subsample was used on
Stage 2 of each format after observations of acertain crash severity
used in the previous stages were removed.

Inaddition to the crash database, V-SPOC traffic detectorsinstalled
at approximately 0.7-mi intervalscollect and archivetraffic datainthe
study area every 30 s. Considering the difference in density between
crash and detector locations, average vehiclevolume, speed, and occu-
pancy data measured by 5-min intervals were obtained for 1 h before
each crash.

The State Trunk Network (STN) highway log from the Wisconsin
DQOT contains the roadway geometric attributes of number and width
for travel lane and shoulder and pavement surface materials. The
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TABLE 1 Variables Used in Statistical Models: Crash Distribution

Forward Backward
Injury Severity Stage 1 Stage 2 Stage 1 Stage 2
TypesK, A, and B 53 (1)* 53(1) 53 (1) —>
TypeC 170 (1) 170 (0) 170 (0) 170 (1)
PDO 411 (0) —> 411 (0) 411 (0)
Tota 634 223 634 581

#SAS coding of crash severity level.
°Not applicable.

STN highway log was used to link the geometric attributes to the
crash data set.

As one of the most important tasks in this research, real-time
surfaceweather dataat thetime of crash were collected from Wiscon-
sin weether station datarun by Weather Underground Inc., which are
the most reliable for obtaining the minute base measurements (23).

Weather Data Estimation

Weather data used in this study were temperature, wind speed and
direction, and rainfall intensity. Additionally, existing rainfal inten-
sity, traffic, and road geometry data were used to estimate water film
depth and deficiency of car-following distance (DCD) asthe secondary
westher data. For crash frequency estimation, averagedaily rainfall per
season was used, because therain precipitation pattern wasfound to
vary by season. For crash severity estimation, rain precipitation mea-
sured for 15 min before a crash was adopted because crash severity
estimation is based on disaggregate analysis of a crash. The average
measurement interval of rain precipitation was 15 min over weather
station datain study areas.

Water Film Depth

Water film created by rainfall leads to a decrease in skid resistance
between the tire and the pavement surface. To estimate water film
depth, theempirical formulawas produced by astudy asfollows (24):

(ws1)”

D = 0.046"— ®
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where

D = water film depth (mm/h),
| = rainfal intensity (mm/h),
S =895,
S=(§+9%
S = longitudinal slope (%),
S = slope of pavement cross section (%), and
W = width of pavement (m).

Car-Following Distance Factor

In this research, there were no sight distance observations. There-
fore, DCD was considered as a surrogate measure for the sight dis-
tance observed at the time of the crash. DCD represents the risk of
losing control caused by driver overcorrection for avoiding any
potential conflict, which is calculated with the following formula:

DCD = SSD-AVG @)

where SSD isstopping sight distanceand AV G isaverage vehicle gap.
AV Gisobtained by subtracting average vehiclelength frominverse
of vehicledensity (25). Specifically, SSD iscomputed asfollows (26):

2
SSD =147Vt + 1.075\/? )

where

V = vehicle speed (mph),
t = brake reaction time (s), and
a = deceleration rate (ft/s%).

A detailed study about pavement conditions shows the relation
between friction force and vehicle speed by levels of water film depth
(27). Combining the relation in the study with pavement surface
material information, deceleration ratesto apply to the SSD equation
were obtained by correlating to the pavement friction coefficient (28).
In this research, 2.5 s was used as brake reaction time to encompass
the capabilities of most drivers (26). Average 5-min traffic detector
data containing the crash occurrence time was used to surrogate the
real-timeindividual vehicular speeds at the crash moment because of
data deficiency.

Asaresult of data processing, explanatory variables used in this
research are shownin Tables 1, 2, and 3.

TABLE 2 Explanatory Variables Used in Crash Frequency Estimation

Roadway Traffic Weather
On- and off-ramp indicator AADT/1,000 Avg. daily temperature/season
Speed limit change indicator AADT/lane/1,000 Avg. hourly wind speed/day

Lane width and number change indicator
Right and left shoulder width change indicator
Posted speed limit (mph)

Asphaltic cement pavement ratio

Number of horizontal curves

Lane width (ft) and number

Right and left shoulder width

Avg. 5-min traffic volume/day
Avg. 5-min traffic speed/day
Avg. 5-min occupancy/day

Avg. SD of 5-min volume/day
Avg. SD of 5-min speed/day
Avg. SD of 5-min occupancy/day

Avg. daily rainfall/season
Avg. hourly water film depth/season
Avg. number of rainy days'/month

NotEe: SD = standard deviation; avg. = average.
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TABLE 3 Explanatory Variables Used in Crash Severity Estimation
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Roadway at Crash Spot ~ Traffic? Weather Time and Crash Type At-Fault Driver
Posted speed limit Volume Wind speed at the time of Peak-hour (6-8am./3-5p.m.) =1, Car = 1, truck—truck-tractor = 2,
crash (mph) off-peak = 2 Motorcycle=3
Asphaltic cement Speed 15-minrainfall intensity Tuesday to Thursday = 1, Monday Driver'ssex:
pavement indicator (mm/15 min) and Friday = 2, Saturday and Femae=1, mae=2
Sunday =3
Right curve=1, Occupancy Water filmdepthforan1h  Season: Sobriety = 1, under alcohol or drug

left curve=2 before crash moment
(mm/h)

Lanewidth Standard deviation ~ Temperature at crash
of volume moment (°F)

Lane number Standard deviation
of speed

L eft shoulder width Standard deviation
of occupancy

Right shoulder width

First harmful location®

Terrain®

Light condition®

Dec.~Feb. = 1, March~May = 2 effect=2
June~Aug. = 3, Sept.~Nov.=4
Median related crash = 1, fixed
object outside roadway crash = 2,
crash ontravel lane=3
Sideswipe collision = 1, rear-end
collision= 2, others=3

Use of safety belt =1, Not used = 2

Driver'sage

Driver'saction®

#Average 5-min traffic datafor 1 h before crash moment.

"Ramp = 1, shoulder—outside shoulder = 2, median = 3, on roadway = 4.
‘Curve=1, grade= 2, curve—grade = 3, tangent = 4.

9Daylight = 1, dusk—dawn—dark = 2, night but street light = 3.

fAction at crash moment: straight = 1, lane change-merge = 2, negotiating curve = 3, slowing—stopped = 4.

STATISTICAL MODEL RESULTS AND DISCUSSION

Because of the geographical and temporal variety of weather station
data, rainfall intensity, water film depth, and wind speed wereinter-
polated between three weather stations nearest to the crash spot. The
interpolation was conducted by theinverse squared distance method
that is appropriate for the field with short spatial correlation length
scaleand large variability (29, 30). However, temperature datafrom
one weather station nearest to each crash was used because of its
proximity.

For statistical modeling, negative binomial and sequential logis-
tic regression models were estimated with PROC GENMOD and
LOGISTIC statements in SAS 9.1. In both estimation models, the
relation between a response and each of the explanatory variables
was tested so a single significant predictor to the response could be
individually selected.

Next, backward elimination was conducted to sel ect the best multi-
ple regression model with conventional p-value of parameter esti-
mate significance for crash frequency and severity estimations. The
backward elimination performs better to remove multicollinearity than
forward and stepwise selection (31).

Tomeasurethe prediction accuracy of the crash severity estimation
model, the event probability cut-points on each stage of each format
werereferred to the average proportions of actual crasheswith higher
severity on the stage occurred from 2000 to 20009.

Crash Frequency Estimation

The best multiple regression modelsfor crash frequency estimation
areprovided in Tables4 and 5.

The dispersion parameter greater than zeroimpliesthat NB regres-
sion was more appropriate than Poisson regression. Moreover, the
fitted NB regression model performed well to predict multivehicle

TABLE 4 Multiple NB Regression,
Goodness of Fit

Criteria Values
Deviance/DF 1.1980
Pearson chi-square/DF 0.9508
LL2 1,016.7376
LL (NB)® 1,052.0650
LR statistic 77.932
Dispersion 0.3740

NotEe: DF = degrees of freedom;

LR =likelihood ratio.

“LLo=log likelihood for intercept-only

model.

°LL (NB) = log likelihood for the best
fitted NB regression model.

TABLE 5 Multiple NB Regression, Maximum

Likelihood Estimates

Parameter Estimate Standard Error p-Value
Intercept —-3.4622 0.6263 <.0001
Off-ramp indicator 0.7403 0.2228 .0009
LSwi? 0.7223 0.2029 .0004
AADT/1,000 0.0312 0.0087 .0004
SDVP 0.0392 0.0119 .0010
Average daily rainfall 1.0270 0.2455 <.0001
inwinter
SLCI*LSw* 0.0608 0.0244 .0128

 ndicator of left shoulder width change.
°Average standard deviation of 5-min traffic volumein aday.
“Interaction between indicator of speed limit change and left shoulder width.
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crash frequency based on deviance, Pearson chi-squared values, and
likelihood ratio statistic.

Average daily rainfall in winter, indicator of off-ramp existence,
and change of left shoulder width werefound to be statistically sig-
nificant to highly increased multivehicle crash occurrencesin rainy
weather. Thesefindingsimply that changesin roadway geometry and
weather condition are the most significant factors in multivehicle
Crash occurrencesin rainy weather.

Daily rainfall in winter was most likely to increase multivehicle
crash frequency among al significant predictors. Lesssunlightinwin-
ter and high rainfall intensity can obscuredrivers' visibility. Thiscan
cause an increase in multivehicle crash occurrences.

A change in the left lane width was also likely to significantly
increase multivehicle crash frequency in rainy weather. Generally,
vehicles easily go into skid on wet pavement because of reduced
pavement friction force. Changing left-lane width can increase the
difficulty of maneuvering vehicles on wet travel lanes.

Standard deviation of 5-mintraffic volume, AADT, and interaction
between speed limit change and | eft shoulder width were also likely
to increase the number of multivehicle crashes, but these variable
effectswere relatively lower.

Adjusted R-squared value for this multiple regression model was
found to be .32, which is a reasonable global goodness of fit based
on acomprehensive study (32).

Crash Severity Estimation

The best multiple model for each format of sequential logistic
regression is shown in Table 6.

For global modél fit, parameter estimates, prediction accuracies,
and cross-validation, the backward format was found to perform
better than forward format, especially for predicting the most severe
crashes with nonincapacitating, incapacitating, and fatal injuries.

On the first stage of the backward format, wind speed as a
weather-related factor waslikely to decrease the most severe crashes
inrainy weather. Strong wind during rainfall can obstruct adriver's
vision, increasing driver attention. Thisis a possible explanation to
adecrease in the likelihood of occurrence of the most severe crash.
At-fault driver and crash typerelated factorswere found to affect the
most severe multivehicle crashes more than were weather-related
factors. Wearing a safety belt was found to decrease the likelihood
of the most severe level of crash. Negotiating a curve by an at-fault
driver and collision with fixed objects outside the roadway were
found to be likely to increase the most severe crashes. Because of
reduced pavement friction during rainfal, vehicles are more likely
to go into skid, especialy on curves, which may cause collisions
with fixed objects outside the roadway. This process could cause an
increase in the most severe crashes.

In the second stage, passenger car, lane change or merge by the
at-fault driver, standard deviation of 5-min traffic occupancy, and
Monday or Friday decreased the likelihood of possibleinjury crashes.
However, female driver and median-related crashes were likely to
increase possibleinjury crashes. The effectsfor lane change or merge,
traffic occupancy, and day of the week may be opposite to expecta-
tions. Traffic congestion with long traffic occupancy usualy occurs
during commuting peak hourson Monday or Friday. Correspondingly,
this traffic condition can make drivers more cautious during lane
changing or merging, especially in rainy weather, because driversrec-
ognize the risk of driving in rainfall from experience; this could be
why crash severity decreased in Stage 2.
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Thus, it is straightforward to explain the effects of weather-related
factors on highway safety in rainy weather by integrating crash fre-
quency and severity estimation models. Applying the methodologies
used in the models, microsimulation will be conducted to improve
traffic safety in rainy weather asfollows.

TRAFFIC SIMULATION MODEL

To complete acomprehensive analysis of highway safety related to
rainy weather, safety improvement strategies based on the results
in statistical models should be evaluated through traffic simulation
before the strategies are implemented. In current traffic smulation
programs, safety surrogate indices are used to indirectly measure
traffic safety during traffic smulation (33). However, the preliminary
step for the simulation is to replicate traffic observed on wet pave-
ment under rainfal. That is, weather-sensitive traffic parameters
should be adjusted preferentially to reflect rainy weather effects
on traffic operations before the simul ated safety surrogate indices
are used. The significance of traffic simulation in thisresearch is
emphasized in conducting the preliminary step. Correspondingly,
traffic simulation in this research was designed to validate previous
findings of weather-sensitive traffic parameters and to develop a
novel method for rainy weather microsimulation models. The novel
methodology of weather data estimation was used in both statistical
highway safety models and weather-sensitive parameter adjustments
during microsimulation.

From the findings in the previous studies, operating speed in free-
flow conditions, deceleration rate, and headway timewere found to be
key weather-sensitive traffic parameters (11-13). In this research,
therefore, the following parametersin VISSIM, afrequently used traf-
fic simulation software program, were selected as weather-sensitive
traffic parameters. desired vehicle decel eration function, desired speed
distribution, and headway time.

There were three primary tasks for simulating rainy weather
traffic in this research. First, traffic simulation was conducted with
loading traffic volume observed in rainy weather under the default
VISSIM parameter setting, whichis Scenario 5in thefollowing. Sec-
ond, weather-sensitive parameters were adjusted by the following
scenarios:

Scenario 1. Change desired speed distribution only;

Scenario 2. Change both desired speed distribution and vehicle
decelerate rate function;

Scenario 3. Change both desired speed distribution and headway
time value;

Scenario4. Changedesired speed distribution, vehicle deceleration
rate function, and headway time simultaneously; and

Scenario 5. Change nothing.

To reflect rainy weather effects on traffic operations, the follow-
ing criteriawere applied to propose the first four simulation scenar-
ios. First, default values of any other VISSIM parameters are not
changed in five scenarios, except for three weather-sensitive traffic
parameter values. Second, desired speed distribution is adjusted in
every scenario because traffic speed in rainy weather was observed
to validate the simulated traffic speed. That is, scenariosfor individ-
ually adjusting decel eration rate function or headway time were not
considered because only traffic speed data were observed. Finally,
the simulation system performance under each scenario was mea-
sured to select the most realistic scenario that shows the highest
similarity between observed and simulated data.



140

TABLE 6 Multiple Sequential Logistic Regression
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Forward Format

Backward Format

Fit Measure Parameter Stage 1 Stage 2 Stage 1 Stage 2
Global null Chi-square (Chisq) 485202 32.3974 49.6830 33.5044
Degrees of freedom 6 4 5 6
P> Chisg <.0001 <.0001 <.0001 <.0001
Maximum Intercept 2.7206/0.7208/ 0.9417/0.5551/ 0.7059/0.5968/ —0.3628/0.2290/
likelihood .00022 0.0898° 0.3979° 0.1132*
estimate Passenger car —0.5041/0.1798/ —0.5198/0.1956/
.604/0.0050° 0.595/0.0079"
Female driver 0.3845/0.1916/
1.469/0.0448"
DR 2° —0.9126/0.2913/ —0.8060/0.3187/
0.401/0.0017° 0.447/0.0114°
DR 3¢ 1.1823/0.5222/
3.262/0.0236°
DR 4° —0.3980/0.1918/
0.672/0.0380°
Safety belt -1.6092/0.6817/ —1.3376/0.6304/
0.200/0.0183° 0.262/0.0399°
Standard deviation of traffic occupancy —0.0684/0.0303/ —0.0679/0.0333/
0.934/0.0238° 0.934/0.0411°
Traffic volume —0.0180/0.0043/
0.982/<.0001°
Deficiency of car-following distance —0.0060/0.0020/
0.994/0.0009°
Wind speed -0.0502/0.0231/
0.951/0.0299
SIDE! —1.5869/0.8715/
0.205/0.0686°
SIDE = CT 3 2.0054/0.9833/
7.429/0.0023°
Median-related crash 1.2690/0.4232/
3.557/0.0027°
CT2 1.7650/0.6897/
5.841/0.0105"
cT3n —1.0364/0.3558/ —1.8194/0.5687/
0.3550/0.0036" 0.162/0.0014°
Monday or Friday —0.4985/0.2047/
0.607/0.0149"
Prediction accuracy Total 56.3 65.5 66.9 53.9
Sensitivity 66.8 62.3 69.8 50.6
Specificity 50.4 66.5 66.6 55.2
False positive 56.8 63.3 84.0 68.1
False negative 27.1 15.0 4.0 27.0
Cross vaidation Total 56.5 65.9 66.9 54.0

*Estimate, standard error, p-value for intercept.

PEstimate, standard error, odds-ratio, p-value.

‘Lane changing or merging by at fault driver before crash occurrence.
9Negotiating curve by at-fault driver before crash occurrence.
°Slowing or stopping by at-fault driver before crash occurrence.
'Sideswipe collisions.

9Crash type related to fixed object outside roadway.

"Crash occurred on travel lane.

Base Simulation Data

Weather station data, V-SPOC traffic detector data, and the Wiscon-
sin STN log in the traffic simulation area were combined and a
sample of rainy dayswas selected for traffic simulation with thefol-
lowing criteria: continuous rain during morning or evening peak
period with rainfall precipitation greater than 0.01 in per hour and
temperature greater than 32°F to exclude the effect of icy pavement
surface. Traffic data on dry weather weekdays near the rainy
wesather weekdayswere al so collected to be compared with therainy

weather traffic pattern. For Scenario 5, the base parameter setting is
summarized as follows:

e Vehicletype, class, category: car and truck with 20% truck in
traffic (34);

e Link typeand length: 2.7-mi two-way freeway;

e Travel lane number and width: three 12-ft lanes; and

e Speed limit: 55 mph.

The VISSIM parameter setting was commonly applied to five
simulation scenarios.
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Desired Speed Distribution

Real-timetraffic detector speed datawere used to obtain the mean and
standard deviation of hourly traffic speed on rainy weekdays. Assum-
ing the normality of continuous speed dataand a95% confidenceinter-
val, approximately 66% of thetraffic speed observed in rainy weather
would fall within one standard deviation of the mean and roughly 95%
of thedatawould fall within two standard deviations of themeaninthe
desired vehicle speed distribution.

Desired Deceleration Rate Function

Because of data deficiency, vehicle decel eration rate was estimated
with available data, such asrainfal intensity, road geometry, traffic
volume, and speed. The estimation methodology isexplainedin the
section on the car-following distance factor. Relating the estimated
vehicle deceleration rates to V-SPOC traffic detector speed on the
rainy weather weekday sample, a linear regression between the
vehicle deceleration rate and traffic speed was fitted.

Headway Time

VISSIM assumes that freeway car-following behavior followsthe
Wiedemann 99 car-following model. To estimate headway time,
necessary because of the data deficiency, average spacing wascal -
culated by dividing 5,280 ft/mi by lane density. The lane density
was computed by dividing hourly flow rate by space mean speed.
Since the hourly flow rate and space mean speed were collected,
headway time on each rainy-weather weekday was estimated by
dividing average spacing by average vehicle speed.

Simulation Performance Measures

During simulation, two criteriawere needed to stop traffic parameter
calibration and to judge the similarity between simulated and observed
traffic data.

To stop the traffic parameter calibration, the Wisconsin DOT
system performance measure was used in this research. The Wis-
consin DOT measure includesthe number of observationsthat meet
the difference between simulated and observed flows falls within
15% of the observed traffic flow is greater than 85% of the number
of total observations (35). Additionally, the simulated speed and
occupancy are visually acceptable, which indicates that the simu-
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TABLE 7 Weather-Sensitive Parameter Adjustments
Parameter Adjustment am. p.m.
Desired speed Mean (mph) 50 45
distribution Standard deviation 6 10
Maximum 62 65
Minimum 38 25
17th percentile 14 35
84th percentile 56 55
Desired deceleration Deceleration raté? (ft/s?) = 17.2 — 0.06 = vehicle
rate function speed (mph)
Headway time 1.1 s(Wiedemann 99 car-following model
default=0.95)

lated measurements in traffic speed and occupancy are consistent
with stable traffic flow—speed—occupancy relationships (36).

As the simulation similarity criteria, the root-mean-square per-
cent error (RMSPE) was used in this research to quantify overall
error of the simulator, which is shown in the following (37):

. 2 Y2
RMSPE:{iZ(Ysm—YOZbS) } ©)
NS (Yobs)

where

Ysim = simulated traffic performance estimates,
Yobs = observed traffic performance estimates, and
N = total number of observations.

TRAFFIC SIMULATION RESULTS

For rainy weather conditions, 56 weekdayswere collected with 15-min
traffic volume, speed, and occupancy data. For robust simulated
results, 10 automatic runs were conducted to produce average
simulated traffic data measurements on each weekday.

Compared with traffic speeds observed in dry weather, in rainy
weather a reduction in traffic speed and increments of traffic occu-
pancy were clearly found, and the standard deviation of traffic speed
was approximately twice as high during peak periods. Key wesather-
sensitive parameterswere adjusted for Scenarios 1 through 4, asshown
in Tables 7 and 8. The simulation results with weather-sensitive
parameter adjustments are also provided in Tables 7 and 8.

TABLE 8 Weather-Sensitive Simulation Performance

Ratio of Weekdayswith
RMSPE Acceptable Performance
Scenario V2 SPDP occe Average” \Y SPD occ Average®
1 0.02 0.13 0.21 0.12 1 0.70 0.45 0.72
2 0.02 0.13 0.20 0.12 1 0.75 0.50 0.75
3 0.02 0.14 0.20 0.12 1 0.63 0.45 0.69
4 0.02 0.14 0.20 0.12 1 0.71 0.46 0.72
5 0.02 0.24 0.34 0.20 1 0.50 0.15 0.55

“Hourly traffic volume.

°Hourly traffic speed.

“Hourly traffic occupancy.

9(sum of RMSPE for each traffic dataincluding V, SPD, and OCC)/3.

¢(sum of ratio of weekdays with acceptable performance for each traffic data)/3.
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The average RMSPE in Scenario 5 was clearly found to be the
greatest of that of all the scenarios. Thisimplies that VISSIM did
not efficiently simulate rainy weather traffic under the dry pave-
ment assumption. In a comparison of Scenarios 1 through 4, how-
ever, the best scenario apparently was not identified by RM SPE.
Therefore, the ratio of the number of weekdayswith acceptable per-
formanceto total number of weekdayswas calculated for each sim-
ulated traffic datum to measure the system performance of each
scenario. If RMSPE of each traffic data measurement on a week-
day was less than 0.15, the weekday was counted as the day with
acceptabl e performance of simulation.

Asaresult, the average ratio was 0.75 in Scenario 2, the greatest
of al the scenarios. Thisimpliesthat the adjustmentsin both desired
speed distribution and deceleration rate function were effective to
particularly replicate traffic operations observed in rainy weather
through microsimul ation.

CONCLUSIONS AND FUTURE EXTENSION
OF RESEARCH

Road surface conditions and visibility during rainfall have not been
sufficiently characterized in previous studies. This study, therefore,
estimated several novel data, including 15-min rainfall intensity,
water film depth, and deficiency of car-following distance, to micro-
scopically reflect rainy wesather conditions at the time of crash. The
weather data estimation method was used to comprehensively exam-
inerainfall-derived factor impact on highway safety and applied to
microsimulation of traffic operationsin rainy weather.

In multivehicle crash frequency estimation, daily rainfall inwinter,
off ramp, and change of |eft shoulder width comparatively increased
the likelihood of crash occurrence. Particularly, daily rainfall in
winter waslikely to increasethe crash frequency by the highest fac-
tor. Thisresult can be caused by low visibility fromrainfall and less
sunlight in winter.

In multivehicle crash severity estimation, the backward sequential
logistic regression model was found to perform better in predicting
the most severe crashes with fatal, incapacitating, and nonincapaci-
tating injuries. As aweather determinant, strong wind was found to
belikely to decrease crash severity. Strong wind combined with rain-
fall can also reduce driver vision, resulting in cautious driving in
rainy weather. Thisis apossible explanation for the decrease in the
most severe crashes with strong wind. In addition, negotiating curve
by at-fault driver and roadside fixed objects were found to signifi-
cantly increase the likelihood of the most severe vehicle crashesin
rainy westher conditions. These findingsimply that thereisaneed to
implement countermeasuresto avoid skidding on curvesand off-road
collisions during rainfall.

Intraffic simulation, following weather-sensitive traffic parameters
were adjusted to reflect rainy weather effects on traffic operations
through microsimulation: desired speed distribution, desired deceler-
ation rate, and headway time. Simultaneous adjustment of thefirst two
parameters was found to best replicate traffic in rainy weather. To
improve traffic safety in rainy weather, possible strategies based on
statistical model results will be efficiently tested by safety surrogate
measures in simulations adjusting for weather-sensitive traffic
parameters.

Findings related to weather, particularly rain-derived factor
and road geometry effects, in highway safety estimation models
will provide quantitative support on comprehensive safety improve-
ment strategiesin rainy weather. Implementing weather warning,
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lighting, and antiskid systems are possible strategies. Correspond-
ingly, the strategies can be examined through traffic simulation with
weather-sensitive parameter adjustments conducted in this research.

For future research, databases on aregional and national scale are
needed to explore and validate the impact of rainy weather on high-
way safety more comprehensively. Furthermore, the use of weather-
based adjustment factors in the core simulation models should be
expanded so that these microsimulation model s can effectively con-
sider adverse weather impact, because researchers need better mod-
elsto evaluate safety decisions and identify the best techniques of
safety surrogate measures.
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