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a specific location during a specific period. The severity of a crash
occurrence is classified into five levels (2):

• Fatality (Type K);
• Incapacitating injury (Type A)—any visible injuries to a person

who had to be carried from the scene;
• Nonincapacitating injury (Type B)—any visible injuries, such

as bruises or abrasions;
• Possible injury (Type C)—no visible signs of injuries but

complaint of pain or momentary unconsciousness; and
• Property damage only (PDO).

In risk analysis of highway safety, severe crashes with injuries and
fatalities are more emphasized because of their significant human and
economic loss potential. In Wisconsin from 1999 to 2006, 4,919
crashes with injuries and fatalities occurred on highways in all
adverse weather conditions: rain, fog, snow, sleet, and wind (3). Of
these crashes, 1,805, approximately 37%, were crashes with injuries
and fatalities occurring in rainy weather. This proportion is the high-
est for all adverse weather conditions. During the same period,
899 multivehicle crashes occurred specifically on Wisconsin Inter-
state highways in rainy weather; the multivehicle crash frequency
is approximately 1.5 times that of the single-vehicle crash frequency.
Moreover, the proportion of severe multivehicle crash occurrences
is 1.4 times more than the proportion of the severe single-vehicle
crash occurrences.

Regardless of the number of crashes in rainy weather, compara-
tively few studies have been conducted in a disaggregated fashion
to assess rainfall-derived factor effects on highway safety, particu-
larly crash severity. Therefore, the objectives for this research were
to develop a novel methodology for microscopic weather data esti-
mation and to apply this methodology to statistical modeling of
highway safety and weather-sensitive parameter adjustments during
traffic simulation.

LITERATURE REVIEW

Rain-derived factors were found to affect crash frequencies through
manner of collision in the crash, crash types, and road geometries.
In a crash frequency study by negative binomial model, maximum
daily rainfall per month, average daily rainfall per month, and num-
ber of rainy days per month were identified as significant for side-
swipe, parked-vehicle, fixed-object, overturn, and rear-end crashes
on Interstate highways (4). Shankar et al. estimated roadside crashes
for the Washington State highway network by using a zero-inflated
negative binomial model (5). In this study, rain precipitation during
September and October increased the probability of a roadside
crash, whereas less rain precipitation during April and June reduced
the probability of a roadside crash.
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Research was done to examine comprehensively the safety impact of rainy
weather conditions on multivehicle crash frequency and severity and to
validate the impact on traffic operations through microsimulation model-
ing. Three primary tasks were performed to meet these objectives. For
weather data processing, available data were used to estimate the follow-
ing factors: rainfall intensity, water film depth, and deficiency of car-
following distance. For statistical modeling, negative binomial regression
was used for crash frequency, and sequential logistic regression was tested
with forward and backward formats for crash severity. A better format
for the crash severity estimation was determined by combining all model
performance measures. VISSIM was used to design traffic simulation
models to reflect the effect of weather on traffic operation with five sce-
narios of the following weather-sensitive parameter adjustments: desired
deceleration rate function, desired speed distribution, and headway time.
As weather-related determinants, daily rainfall and wind speed were
found to be statistically significant to crash frequency and severity estima-
tions, respectively. VISSIM provided the most similar traffic data to the
observed data when both desired speed distribution and deceleration
rate function were adjusted. Statistical modeling in this research can be
used to examine highway safety in rainy weather and to provide quantita-
tive support on implementing road weather safety management strategies.
Correspondingly, the adjustments of weather-sensitive traffic parameters
will be the preliminary step to measure the strategy efficiencies through
safety surrogate indexes in traffic simulation.

Severe crashes with injuries or fatalities have occurred during rainfall
on wet pavement surfaces on Wisconsin highways. Many studies have
focused on the relationship between snowy weather conditions and
highway safety, and Wisconsin as one of the Snow Belt states. In Wis-
consin, however, rain is the most frequent of all inclement weather
events with average annual rainy days ranging from 100 to 150 (1).
This implies that the rain event is more likely to be a potential risk
to Wisconsin highway safety, prompting a need for comprehensive
analysis of rainfall-related effects on Wisconsin highway safety.

Generally, highway safety is measured by crash frequency and
severity. Crash frequency indicates the sum of crash occurrences at
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Abdel-Aty et al. segregated Florida freeway crashes by appar-
ently unrelated binary categories, including crash type, hour of the
day, lighting condition, crash severity, and pavement condition (6).
They provided insight into specific contributing factors that affected
crash frequencies of each category by using a negative binomial
regression model. In estimating crash frequencies by pavement
condition, roadway curvature, on- and off-ramps, and annual average
daily traffic (AADT) were found to be significant for increasing
crashes on wet pavement. Caliendo et al. estimated multilane road
crash occurrences classified by road geometries by comparing Poisson,
negative binomial, and negative multinomial regression models (7).
In their study, rain was found to be highly significant for increasing the
number of severe crashes, especially on horizontal curves.

The impact of rain-related factors on crash severity has been iden-
tified in previous studies by manner of collision in the crash, vehicle
types, road characteristics, and driver attributes. Shankar et al. esti-
mated a nested logit model of crash severity that occurred on a Wash-
ington State rural Interstate (8). Wet-pavement rear-end collision
indicators were found to increase the likelihood of possible injuries,
capturing the effect of rear-end collisions occurring in rainy weather.

Duncan et al. used an ordered probit model to identify specific vari-
ables significantly influencing levels of injury in truck–passenger car
rear-end involvements on divided roadways (9). In that study, inter-
action of wet and grade was found to significantly increase all injury
propensities.

Khorashadi et al. explored the differences between urban and
rural driver injuries in crashes involving large trucks by using multi-
nomial logit analysis (10). The authors found that rain increased the
likelihood of complaint of pain crashes only in urban areas.

Hill and Boyle investigated fatality and incapacitating injuries to
occupants of passenger vehicles by using a logistic regression model
(11). Their study showed that crashes in adverse weather conditions
with rain, snow, or fog increased the risk of severe injuries to females
that were 55 and older.

Several previous studies tried to integrate weather-related safety
issues with simulating traffic operations via safety surrogate measures
by identifying weather-sensitive traffic parameters. Zhang et al. eval-
uated the impact of weather-sensitive traffic parameters on freeway
traffic operations by using microsimulation (12). As a result of sensi-
tivity analysis, in a medium or high level of congestion, the mean free-
flow speed and the car-following multiplier were found to most affect
measures of effectiveness of freeways.

Lieu and Lin also examined the issues regarding the development
of weather-related signal timing plans at an arterial of intersections
by using CORSIM (13). The authors selected key weather-sensitive
traffic parameters among available CORSIM parameters as follows:
maximum speed, start-up lost time, queue discharge headway, and
additional gaps between vehicles for safety and maximum decelera-
tion rates for collision avoidance. The simulation results of this study
demonstrated that potential benefits could be realized by retiming
signals in inclement weather.

Tantillo and Demetsky also examined the impact of wet weather on
traffic flow at signalized intersections by using VISSIM (14). The
authors identified that the acceleration and deceleration rates were the
most sensitive parameters to weather conditions. However, no data on
the acceleration or deceleration rates were available in this study.
Only free-flow speed and saturation flow rate data were used as
weather-sensitive traffic parameters in this study. Correspondingly,
this study showed statistically significant differences between dry and
wet weather conditions, resulting in decreasing free-flow speeds and
saturation flow rates on wet conditions.

STATISTICAL MODELS

In this study, negative binomial (NB) regression model was used to
estimate crash frequencies caused by overdispersed response. NB
regression assumes the count response Y follow a gamma distribution.
The formula for NB regression model is specified so that

where

Y(r, t) = random variable in area r during fixed period of time t,
X(r, t) = explanatory variables,

β = coefficients of explanatory variables, and
exp(�) follows gamma distribution.

As the model performance, deviance is defined as two times the dif-
ference of log likelihood (LL) for the maximum achievable model and
LL for the fitted model. As another performance measure, the Pearson
chi-square statistic is defined as the squared difference between
the observed and predicted values divided by the predicted value
summed over all observations in the model. The deviance and
Pearson chi-square statistic value divided by degree of freedom should
be approximately one, indicating a good model fit for the data set.

For estimating crash severities, several modeling techniques for
the discrete ordered outcome are available (15–19). A sequential
logistic regression was selected in this study for the crash severity
estimation not only to account for the inherent order of crash sever-
ities, but also to allow for different sets of predictors in the model
specification by severity (20). The cumulative density function for
the logistic regression is used to express the probability of a certain
outcome in the standard logistic regression as follows (21):

where

P(Y) = probability of response outcome,
Y = binary response variable,
α = intercept parameter,
β = vector of parameter estimate, and
X = vector of explanatory variable.

A series of standard logistic regression was applied over two stages
of two following formats to explore whether there was an impact in
the ascending and descending development of crash severity levels,
respectively: forward format and backward format. In this study, Crash
Types K, A, and B were combined as the highest level of crash sever-
ity because of sample size issues. Crash Type C and PDO crashes were
considered as the second highest and lowest level of crash severity,
respectively. In the forward format,

Stage 1. PDO versus Types K, A, B, and C and
Stage 2. Type C versus Types K, A, and B

and in the backward format,

Stage 1. Types K, A, and B versus Type C and PDO and
Stage 2. Type C versus PDO.

A standard logistic regression model classifies a crash observa-
tion as an event, if the estimated probability of the crash observation
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severity is greater than or equal to a given cut point. The event
means a crash observation classified as a more severe crash among
binary crash severity levels on each stage. Otherwise, it is classified
as a nonevent.

In statistical terms, sensitivity measures the proportion of actual
events that are also predicted to be such. Similarly, specificity mea-
sures the proportion of actual nonevents that are also predicted to be
such. The false-positive rate is the ratio of the number of nonevents
incorrectly classified as events to the total nonevents, and the false
negative rate is a ratio of the number of events incorrectly classified
as nonevents to the sum of total events. A model that produced a
high sensitivity and low false-negative rate at the stages of the high-
est crash severity classification was considered good because of the
enormous economic loss.

As the final step of model evaluation, the estimated crash sever-
ity model was validated statistically by a bootstrap sampling method
called jackknife. In each step, one observation was withheld from
the data set used for model building. This restricted model was then
compared with the model with use of the full data set. The process
was repeated until all observations were tested. High and similar
prediction accuracies between an estimated model and the model in
the validation process suggest the estimated model is fairly robust.

DATA PROCESSING

In rainy weather, crash occurrences normalized by segment length,
AADT, and vehicle miles traveled were the most frequent on south-
eastern Wisconsin Interstate highways, including I-43, I-94, I-43/94,
and I-43/894 (3). According to Wisconsin weather station data,
annual rainfall in the concurrent segment of I-43 and I-94 was approx-
imately 14% higher than average annual rainfall on any other seg-
ment of southeastern Wisconsin Interstate highways. Moreover, this
concurrent segment was the most congested of all Wisconsin Inter-
state highways according to AADT data. Therefore, the study areas
for modeling highway safety and traffic simulation consisted of
approximately 75 mi of southeastern Wisconsin highways and a
2.7-mi segment of I-43/94 between Howard Avenue and Mitchell
Street, respectively. These study areas are shown in Figure 1.

In the study areas, traffic flow rate and the variation were found
to be much greater on weekdays than on weekends. The weekday
traffic pattern implies more likelihood of traffic conflicts, especially
in adverse weather conditions. Consequently, only weekday traffic
data during morning and evening peak hours in rainy weather con-
ditions were used for northbound and southbound traffic simulation
because of data homogeneity.

Databases

The crash data set for multivehicle crashes occurring in rainy weather
was obtained from the Wisconsin Department of Transportation
(DOT) crash database (MV4000 database). The crash data used in
this study were filtered through several criteria to form data homo-
geneity: wet pavement during rainfall, multivehicle included in a
crash, Interstate highway divided by barrier, no construction zone,
and no hit and run. Consequently, 634 crashes were collected in the
study area from 2004 to 2009. The crash occurrences by 1-mi seg-
ment of study area were counted for crash frequency estimation. For
crash severity estimation, the crash severity was classified into three
levels as mentioned in the section of statistical model to obtain a

meaningful sample size (22). Crash frequencies by the severities and
SAS program coding are provided in Tables 1, 2, and 3.

On each stage, crash severity was coded as binary values: 0 for
lower severity and 1 for higher severity. A subsample was used on
Stage 2 of each format after observations of a certain crash severity
used in the previous stages were removed.

In addition to the crash database, V-SPOC traffic detectors installed
at approximately 0.7-mi intervals collect and archive traffic data in the
study area every 30 s. Considering the difference in density between
crash and detector locations, average vehicle volume, speed, and occu-
pancy data measured by 5-min intervals were obtained for 1 h before
each crash.

The State Trunk Network (STN) highway log from the Wisconsin
DOT contains the roadway geometric attributes of number and width
for travel lane and shoulder and pavement surface materials. The

FIGURE 1 Study areas.



STN highway log was used to link the geometric attributes to the
crash data set.

As one of the most important tasks in this research, real-time
surface weather data at the time of crash were collected from Wiscon-
sin weather station data run by Weather Underground Inc., which are
the most reliable for obtaining the minute base measurements (23).

Weather Data Estimation

Weather data used in this study were temperature, wind speed and
direction, and rainfall intensity. Additionally, existing rainfall inten-
sity, traffic, and road geometry data were used to estimate water film
depth and deficiency of car-following distance (DCD) as the secondary
weather data. For crash frequency estimation, average daily rainfall per
season was used, because the rain precipitation pattern was found to
vary by season. For crash severity estimation, rain precipitation mea-
sured for 15 min before a crash was adopted because crash severity
estimation is based on disaggregate analysis of a crash. The average
measurement interval of rain precipitation was 15 min over weather
station data in study areas.

Water Film Depth

Water film created by rainfall leads to a decrease in skid resistance
between the tire and the pavement surface. To estimate water film
depth, the empirical formula was produced by a study as follows (24):
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where

D = water film depth (mm/h),
I = rainfall intensity (mm/h),

S′ = S/Sc,
S = (Sl

2 + Sc
2)1/2,

Sl = longitudinal slope (%),
Sc = slope of pavement cross section (%), and
W = width of pavement (m).

Car-Following Distance Factor

In this research, there were no sight distance observations. There-
fore, DCD was considered as a surrogate measure for the sight dis-
tance observed at the time of the crash. DCD represents the risk of
losing control caused by driver overcorrection for avoiding any
potential conflict, which is calculated with the following formula:

where SSD is stopping sight distance and AVG is average vehicle gap.
AVG is obtained by subtracting average vehicle length from inverse

of vehicle density (25). Specifically, SSD is computed as follows (26):

where

V = vehicle speed (mph),
t = brake reaction time (s), and
a = deceleration rate (ft/s2).

A detailed study about pavement conditions shows the relation
between friction force and vehicle speed by levels of water film depth
(27). Combining the relation in the study with pavement surface
material information, deceleration rates to apply to the SSD equation
were obtained by correlating to the pavement friction coefficient (28).
In this research, 2.5 s was used as brake reaction time to encompass
the capabilities of most drivers (26). Average 5-min traffic detector
data containing the crash occurrence time was used to surrogate the
real-time individual vehicular speeds at the crash moment because of
data deficiency.

As a result of data processing, explanatory variables used in this
research are shown in Tables 1, 2, and 3.

SSD (5)= +1 47 1 075
2

. .Vt
V

a

DCD SSD AVG (4)= −

TABLE 1 Variables Used in Statistical Models: Crash Distribution

Forward Backward

Injury Severity Stage 1 Stage 2 Stage 1 Stage 2

Types K, A, and B 53 (1)a 53 (1) 53 (1) —b

Type C 170 (1) 170 (0) 170 (0) 170 (1)

PDO 411 (0) —b 411 (0) 411 (0)

Total 634 223 634 581

aSAS coding of crash severity level.
bNot applicable.

TABLE 2 Explanatory Variables Used in Crash Frequency Estimation

Roadway Traffic Weather

On- and off-ramp indicator AADT/1,000 Avg. daily temperature/season

Speed limit change indicator AADT/lane/1,000 Avg. hourly wind speed/day

Lane width and number change indicator Avg. 5-min traffic volume/day Avg. daily rainfall/season

Right and left shoulder width change indicator Avg. 5-min traffic speed/day Avg. hourly water film depth/season

Posted speed limit (mph) Avg. 5-min occupancy/day Avg. number of rainy days/month

Asphaltic cement pavement ratio Avg. SD of 5-min volume/day

Number of horizontal curves Avg. SD of 5-min speed/day

Lane width (ft) and number Avg. SD of 5-min occupancy/day

Right and left shoulder width

NOTE: SD = standard deviation; avg. = average.
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TABLE 5 Multiple NB Regression, Maximum 
Likelihood Estimates

Parameter Estimate Standard Error p-Value

Intercept −3.4622 0.6263 <.0001

Off-ramp indicator 0.7403 0.2228 .0009

LSWIa 0.7223 0.2029 .0004

AADT/1,000 0.0312 0.0087 .0004

SDVb 0.0392 0.0119 .0010

Average daily rainfall 1.0270 0.2455 <.0001
in winter

SLCI*LSWc 0.0608 0.0244 .0128

aIndicator of left shoulder width change.
bAverage standard deviation of 5-min traffic volume in a day.
cInteraction between indicator of speed limit change and left shoulder width.
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STATISTICAL MODEL RESULTS AND DISCUSSION

Because of the geographical and temporal variety of weather station
data, rainfall intensity, water film depth, and wind speed were inter-
polated between three weather stations nearest to the crash spot. The
interpolation was conducted by the inverse squared distance method
that is appropriate for the field with short spatial correlation length
scale and large variability (29, 30). However, temperature data from
one weather station nearest to each crash was used because of its
proximity.

For statistical modeling, negative binomial and sequential logis-
tic regression models were estimated with PROC GENMOD and
LOGISTIC statements in SAS 9.1. In both estimation models, the
relation between a response and each of the explanatory variables
was tested so a single significant predictor to the response could be
individually selected.

Next, backward elimination was conducted to select the best multi-
ple regression model with conventional p-value of parameter esti-
mate significance for crash frequency and severity estimations. The
backward elimination performs better to remove multicollinearity than
forward and stepwise selection (31).

To measure the prediction accuracy of the crash severity estimation
model, the event probability cut-points on each stage of each format
were referred to the average proportions of actual crashes with higher
severity on the stage occurred from 2000 to 2009.

Crash Frequency Estimation

The best multiple regression models for crash frequency estimation
are provided in Tables 4 and 5.

The dispersion parameter greater than zero implies that NB regres-
sion was more appropriate than Poisson regression. Moreover, the
fitted NB regression model performed well to predict multivehicle

TABLE 3 Explanatory Variables Used in Crash Severity Estimation

Roadway at Crash Spot Traffica Weather Time and Crash Type At-Fault Driver

Posted speed limit

Asphaltic cement 
pavement indicator

Right curve = 1,
left curve = 2

Lane width

Lane number

Left shoulder width

Right shoulder width

First harmful locationb

Terrainc

Light conditiond

aAverage 5-min traffic data for 1 h before crash moment.
bRamp = 1, shoulder–outside shoulder = 2, median = 3, on roadway = 4.
cCurve = 1, grade = 2, curve–grade = 3, tangent = 4.
dDaylight = 1, dusk–dawn–dark = 2, night but street light = 3.
eAction at crash moment: straight = 1, lane change–merge = 2, negotiating curve = 3, slowing–stopped = 4.

Volume

Speed

Occupancy

Standard deviation
of volume

Standard deviation
of speed

Standard deviation
of occupancy

Wind speed at the time of
crash (mph)

15-min rainfall intensity
(mm/15 min)

Water film depth for an 1 h
before crash moment
(mm/h)

Temperature at crash
moment (°F)

Peak-hour (6–8 a.m./3–5 p.m.) = 1,
off-peak = 2

Tuesday to Thursday = 1, Monday
and Friday = 2, Saturday and
Sunday = 3

Season:
Dec.∼Feb. = 1, March∼May = 2
June∼Aug. = 3, Sept.∼Nov. = 4
Median related crash = 1, fixed

object outside roadway crash = 2,
crash on travel lane = 3

Sideswipe collision = 1, rear-end
collision = 2, others = 3

Car = 1, truck–truck-tractor = 2,
Motorcycle = 3

Driver’s sex:
Female = 1, male = 2

Sobriety = 1, under alcohol or drug
effect = 2

Use of safety belt = 1, Not used = 2

Driver’s age

Driver’s actione

TABLE 4 Multiple NB Regression,
Goodness of Fit

Criteria Values

Deviance/DF 1.1980

Pearson chi-square/DF 0.9508

LL0
a 1,016.7376

LL (NB)b 1,052.0650

LR statistic 77.932

Dispersion 0.3740

NOTE: DF = degrees of freedom; 
LR = likelihood ratio.
aLL0 = log likelihood for intercept-only
model.
bLL (NB) = log likelihood for the best 
fitted NB regression model.



crash frequency based on deviance, Pearson chi-squared values, and
likelihood ratio statistic.

Average daily rainfall in winter, indicator of off-ramp existence,
and change of left shoulder width were found to be statistically sig-
nificant to highly increased multivehicle crash occurrences in rainy
weather. These findings imply that changes in roadway geometry and
weather condition are the most significant factors in multivehicle
crash occurrences in rainy weather.

Daily rainfall in winter was most likely to increase multivehicle
crash frequency among all significant predictors. Less sunlight in win-
ter and high rainfall intensity can obscure drivers’ visibility. This can
cause an increase in multivehicle crash occurrences.

A change in the left lane width was also likely to significantly
increase multivehicle crash frequency in rainy weather. Generally,
vehicles easily go into skid on wet pavement because of reduced
pavement friction force. Changing left-lane width can increase the
difficulty of maneuvering vehicles on wet travel lanes.

Standard deviation of 5-min traffic volume, AADT, and interaction
between speed limit change and left shoulder width were also likely
to increase the number of multivehicle crashes, but these variable
effects were relatively lower.

Adjusted R-squared value for this multiple regression model was
found to be .32, which is a reasonable global goodness of fit based
on a comprehensive study (32).

Crash Severity Estimation

The best multiple model for each format of sequential logistic
regression is shown in Table 6.

For global model fit, parameter estimates, prediction accuracies,
and cross-validation, the backward format was found to perform
better than forward format, especially for predicting the most severe
crashes with nonincapacitating, incapacitating, and fatal injuries.

On the first stage of the backward format, wind speed as a
weather-related factor was likely to decrease the most severe crashes
in rainy weather. Strong wind during rainfall can obstruct a driver’s
vision, increasing driver attention. This is a possible explanation to
a decrease in the likelihood of occurrence of the most severe crash.
At-fault driver and crash type related factors were found to affect the
most severe multivehicle crashes more than were weather-related
factors. Wearing a safety belt was found to decrease the likelihood
of the most severe level of crash. Negotiating a curve by an at-fault
driver and collision with fixed objects outside the roadway were
found to be likely to increase the most severe crashes. Because of
reduced pavement friction during rainfall, vehicles are more likely
to go into skid, especially on curves, which may cause collisions
with fixed objects outside the roadway. This process could cause an
increase in the most severe crashes.

In the second stage, passenger car, lane change or merge by the
at-fault driver, standard deviation of 5-min traffic occupancy, and
Monday or Friday decreased the likelihood of possible injury crashes.
However, female driver and median-related crashes were likely to
increase possible injury crashes. The effects for lane change or merge,
traffic occupancy, and day of the week may be opposite to expecta-
tions. Traffic congestion with long traffic occupancy usually occurs
during commuting peak hours on Monday or Friday. Correspondingly,
this traffic condition can make drivers more cautious during lane
changing or merging, especially in rainy weather, because drivers rec-
ognize the risk of driving in rainfall from experience; this could be
why crash severity decreased in Stage 2.

Thus, it is straightforward to explain the effects of weather-related
factors on highway safety in rainy weather by integrating crash fre-
quency and severity estimation models. Applying the methodologies
used in the models, microsimulation will be conducted to improve
traffic safety in rainy weather as follows.

TRAFFIC SIMULATION MODEL

To complete a comprehensive analysis of highway safety related to
rainy weather, safety improvement strategies based on the results
in statistical models should be evaluated through traffic simulation
before the strategies are implemented. In current traffic simulation
programs, safety surrogate indices are used to indirectly measure
traffic safety during traffic simulation (33). However, the preliminary
step for the simulation is to replicate traffic observed on wet pave-
ment under rainfall. That is, weather-sensitive traffic parameters
should be adjusted preferentially to reflect rainy weather effects
on traffic operations before the simulated safety surrogate indices
are used. The significance of traffic simulation in this research is
emphasized in conducting the preliminary step. Correspondingly,
traffic simulation in this research was designed to validate previous
findings of weather-sensitive traffic parameters and to develop a
novel method for rainy weather microsimulation models. The novel
methodology of weather data estimation was used in both statistical
highway safety models and weather-sensitive parameter adjustments
during microsimulation.

From the findings in the previous studies, operating speed in free-
flow conditions, deceleration rate, and headway time were found to be
key weather-sensitive traffic parameters (11–13). In this research,
therefore, the following parameters in VISSIM, a frequently used traf-
fic simulation software program, were selected as weather-sensitive
traffic parameters: desired vehicle deceleration function, desired speed
distribution, and headway time.

There were three primary tasks for simulating rainy weather
traffic in this research. First, traffic simulation was conducted with
loading traffic volume observed in rainy weather under the default
VISSIM parameter setting, which is Scenario 5 in the following. Sec-
ond, weather-sensitive parameters were adjusted by the following
scenarios:

Scenario 1. Change desired speed distribution only;
Scenario 2. Change both desired speed distribution and vehicle

decelerate rate function;
Scenario 3. Change both desired speed distribution and headway

time value;
Scenario 4. Change desired speed distribution, vehicle deceleration

rate function, and headway time simultaneously; and
Scenario 5. Change nothing.

To reflect rainy weather effects on traffic operations, the follow-
ing criteria were applied to propose the first four simulation scenar-
ios. First, default values of any other VISSIM parameters are not
changed in five scenarios, except for three weather-sensitive traffic
parameter values. Second, desired speed distribution is adjusted in
every scenario because traffic speed in rainy weather was observed
to validate the simulated traffic speed. That is, scenarios for individ-
ually adjusting deceleration rate function or headway time were not
considered because only traffic speed data were observed. Finally,
the simulation system performance under each scenario was mea-
sured to select the most realistic scenario that shows the highest
similarity between observed and simulated data.
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Base Simulation Data

Weather station data, V-SPOC traffic detector data, and the Wiscon-
sin STN log in the traffic simulation area were combined and a
sample of rainy days was selected for traffic simulation with the fol-
lowing criteria: continuous rain during morning or evening peak
period with rainfall precipitation greater than 0.01 in per hour and
temperature greater than 32°F to exclude the effect of icy pavement
surface. Traffic data on dry weather weekdays near the rainy
weather weekdays were also collected to be compared with the rainy

weather traffic pattern. For Scenario 5, the base parameter setting is
summarized as follows:

• Vehicle type, class, category: car and truck with 20% truck in
traffic (34);

• Link type and length: 2.7-mi two-way freeway;
• Travel lane number and width: three 12-ft lanes; and
• Speed limit: 55 mph.

The VISSIM parameter setting was commonly applied to five
simulation scenarios.

TABLE 6 Multiple Sequential Logistic Regression

Forward Format Backward Format

Fit Measure Parameter Stage 1 Stage 2 Stage 1 Stage 2

Global null

Maximum
likelihood
estimate

Prediction accuracy

Cross validation

aEstimate, standard error, p-value for intercept.
bEstimate, standard error, odds-ratio, p-value.
cLane changing or merging by at fault driver before crash occurrence.
dNegotiating curve by at-fault driver before crash occurrence.
eSlowing or stopping by at-fault driver before crash occurrence.
fSideswipe collisions.
gCrash type related to fixed object outside roadway.
hCrash occurred on travel lane.

Chi-square (Chisq)
Degrees of freedom
P > Chisq

Intercept

Passenger car

Female driver

DR 2c

DR 3d

DR 4e

Safety belt

Standard deviation of traffic occupancy

Traffic volume

Deficiency of car-following distance

Wind speed

SIDEf

SIDE � CT 3

Median-related crash

CT 2g

CT 3 h

Monday or Friday

Total
Sensitivity
Specificity
False positive
False negative

Total

48.5202
6
<.0001

2.7206/0.7208/
.0002a

−0.5041/0.1798/
.604/0.0050b

−0.9126/0.2913/
0.401/0.0017b

−0.3980/0.1918/
0.672/0.0380b

−1.6092/0.6817/
0.200/0.0183b

−0.0684/0.0303/
0.934/0.0238b

−1.0364/0.3558/
0.3550/0.0036b

56.3
66.8
50.4
56.8
27.1

56.5

32.3974
4
<.0001

0.9417/0.5551/
0.0898a

−0.0060/0.0020/
0.994/0.0009b

−1.5869/0.8715/
0.205/0.0686b

2.0054/0.9833/
7.429/0.0023b

−1.8194/0.5687/
0.162/0.0014b

65.5
62.3
66.5
63.3
15.0

65.9

49.6830
5
<.0001

0.7059/0.5968/
0.3979a

1.1823/0.5222/
3.262/0.0236b

−1.3376/0.6304/
0.262/0.0399b

−0.0180/0.0043/
0.982/<.0001b

−0.0502/0.0231/
0.951/0.0299b

1.7650/0.6897/
5.841/0.0105b

66.9
69.8
66.6
84.0
4.0

66.9

33.5044
6
<.0001

−0.3628/0.2290/
0.1132a

−0.5198/0.1956/
0.595/0.0079b

0.3845/0.1916/
1.469/0.0448b

−0.8060/0.3187/
0.447/0.0114b

−0.0679/0.0333/
0.934/0.0411b

1.2690/0.4232/
3.557/0.0027b

−0.4985/0.2047/
0.607/0.0149b

53.9
50.6
55.2
68.1
27.0

54.0



Desired Speed Distribution

Real-time traffic detector speed data were used to obtain the mean and
standard deviation of hourly traffic speed on rainy weekdays. Assum-
ing the normality of continuous speed data and a 95% confidence inter-
val, approximately 66% of the traffic speed observed in rainy weather
would fall within one standard deviation of the mean and roughly 95%
of the data would fall within two standard deviations of the mean in the
desired vehicle speed distribution.

Desired Deceleration Rate Function

Because of data deficiency, vehicle deceleration rate was estimated
with available data, such as rainfall intensity, road geometry, traffic
volume, and speed. The estimation methodology is explained in the
section on the car-following distance factor. Relating the estimated
vehicle deceleration rates to V-SPOC traffic detector speed on the
rainy weather weekday sample, a linear regression between the
vehicle deceleration rate and traffic speed was fitted.

Headway Time

VISSIM assumes that freeway car-following behavior follows the
Wiedemann 99 car-following model. To estimate headway time,
necessary because of the data deficiency, average spacing was cal-
culated by dividing 5,280 ft/mi by lane density. The lane density
was computed by dividing hourly flow rate by space mean speed.
Since the hourly flow rate and space mean speed were collected,
headway time on each rainy-weather weekday was estimated by
dividing average spacing by average vehicle speed.

Simulation Performance Measures

During simulation, two criteria were needed to stop traffic parameter
calibration and to judge the similarity between simulated and observed
traffic data.

To stop the traffic parameter calibration, the Wisconsin DOT
system performance measure was used in this research. The Wis-
consin DOT measure includes the number of observations that meet
the difference between simulated and observed flows falls within
15% of the observed traffic flow is greater than 85% of the number
of total observations (35). Additionally, the simulated speed and
occupancy are visually acceptable, which indicates that the simu-

lated measurements in traffic speed and occupancy are consistent
with stable traffic flow–speed–occupancy relationships (36).

As the simulation similarity criteria, the root-mean-square per-
cent error (RMSPE) was used in this research to quantify overall
error of the simulator, which is shown in the following (37 ):

where

Ysim = simulated traffic performance estimates,
Yobs = observed traffic performance estimates, and

N = total number of observations.

TRAFFIC SIMULATION RESULTS

For rainy weather conditions, 56 weekdays were collected with 15-min
traffic volume, speed, and occupancy data. For robust simulated
results, 10 automatic runs were conducted to produce average
simulated traffic data measurements on each weekday.

Compared with traffic speeds observed in dry weather, in rainy
weather a reduction in traffic speed and increments of traffic occu-
pancy were clearly found, and the standard deviation of traffic speed
was approximately twice as high during peak periods. Key weather-
sensitive parameters were adjusted for Scenarios 1 through 4, as shown
in Tables 7 and 8. The simulation results with weather-sensitive
parameter adjustments are also provided in Tables 7 and 8.

RMSPE
sim obs

obs
(6)=

−( )
( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∑1
2

2
1

1 2

N

Y Y

Y

n

TABLE 7 Weather-Sensitive Parameter Adjustments

Parameter Adjustment a.m. p.m.

Desired speed Mean (mph) 50 45
distribution Standard deviation 6 10

Maximum 62 65
Minimum 38 25
17th percentile 44 35
84th percentile 56 55

Desired deceleration Deceleration rate2 (ft/s2) = 17.2 − 0.06 � vehicle 
rate function speed (mph)

Headway time 1.1 s (Wiedemann 99 car-following model
default = 0.9 s)
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TABLE 8 Weather-Sensitive Simulation Performance

Ratio of Weekdays with
RMSPE Acceptable Performance

Scenario Va SPDb OCCc Averaged V SPD OCC Averagee

1 0.02 0.13 0.21 0.12 1 0.70 0.45 0.72
2 0.02 0.13 0.20 0.12 1 0.75 0.50 0.75
3 0.02 0.14 0.20 0.12 1 0.63 0.45 0.69
4 0.02 0.14 0.20 0.12 1 0.71 0.46 0.72
5 0.02 0.24 0.34 0.20 1 0.50 0.15 0.55

aHourly traffic volume.
bHourly traffic speed.
cHourly traffic occupancy.
d(sum of RMSPE for each traffic data including V, SPD, and OCC)/3.
e(sum of ratio of weekdays with acceptable performance for each traffic data)/3.
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The average RMSPE in Scenario 5 was clearly found to be the
greatest of that of all the scenarios. This implies that VISSIM did
not efficiently simulate rainy weather traffic under the dry pave-
ment assumption. In a comparison of Scenarios 1 through 4, how-
ever, the best scenario apparently was not identified by RMSPE.
Therefore, the ratio of the number of weekdays with acceptable per-
formance to total number of weekdays was calculated for each sim-
ulated traffic datum to measure the system performance of each
scenario. If RMSPE of each traffic data measurement on a week-
day was less than 0.15, the weekday was counted as the day with
acceptable performance of simulation.

As a result, the average ratio was 0.75 in Scenario 2, the greatest
of all the scenarios. This implies that the adjustments in both desired
speed distribution and deceleration rate function were effective to
particularly replicate traffic operations observed in rainy weather
through microsimulation.

CONCLUSIONS AND FUTURE EXTENSION
OF RESEARCH

Road surface conditions and visibility during rainfall have not been
sufficiently characterized in previous studies. This study, therefore,
estimated several novel data, including 15-min rainfall intensity,
water film depth, and deficiency of car-following distance, to micro-
scopically reflect rainy weather conditions at the time of crash. The
weather data estimation method was used to comprehensively exam-
ine rainfall-derived factor impact on highway safety and applied to
microsimulation of traffic operations in rainy weather.

In multivehicle crash frequency estimation, daily rainfall in winter,
off ramp, and change of left shoulder width comparatively increased
the likelihood of crash occurrence. Particularly, daily rainfall in
winter was likely to increase the crash frequency by the highest fac-
tor. This result can be caused by low visibility from rainfall and less
sunlight in winter.

In multivehicle crash severity estimation, the backward sequential
logistic regression model was found to perform better in predicting
the most severe crashes with fatal, incapacitating, and nonincapaci-
tating injuries. As a weather determinant, strong wind was found to
be likely to decrease crash severity. Strong wind combined with rain-
fall can also reduce driver vision, resulting in cautious driving in
rainy weather. This is a possible explanation for the decrease in the
most severe crashes with strong wind. In addition, negotiating curve
by at-fault driver and roadside fixed objects were found to signifi-
cantly increase the likelihood of the most severe vehicle crashes in
rainy weather conditions. These findings imply that there is a need to
implement countermeasures to avoid skidding on curves and off-road
collisions during rainfall.

In traffic simulation, following weather-sensitive traffic parameters
were adjusted to reflect rainy weather effects on traffic operations
through microsimulation: desired speed distribution, desired deceler-
ation rate, and headway time. Simultaneous adjustment of the first two
parameters was found to best replicate traffic in rainy weather. To
improve traffic safety in rainy weather, possible strategies based on
statistical model results will be efficiently tested by safety surrogate
measures in simulations adjusting for weather-sensitive traffic
parameters.

Findings related to weather, particularly rain-derived factor
and road geometry effects, in highway safety estimation models
will provide quantitative support on comprehensive safety improve-
ment strategies in rainy weather. Implementing weather warning,

lighting, and antiskid systems are possible strategies. Correspond-
ingly, the strategies can be examined through traffic simulation with
weather-sensitive parameter adjustments conducted in this research.

For future research, databases on a regional and national scale are
needed to explore and validate the impact of rainy weather on high-
way safety more comprehensively. Furthermore, the use of weather-
based adjustment factors in the core simulation models should be
expanded so that these microsimulation models can effectively con-
sider adverse weather impact, because researchers need better mod-
els to evaluate safety decisions and identify the best techniques of
safety surrogate measures.
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