
section. Thus, transportation engineers are faced with a compli-
cated challenge in which a certain amount of funds are available for
improving intersections that have no crash history. How can spend-
ing the funds on one intersection instead of another be justified in
this scenario? Such decisions are made largely on a subjective basis;
political factors sometimes also have weight.

Various approaches have been suggested for measuring the safety
of transportation system elements. The traffic conflicts technique,
developed by General Motors (GM) research laboratories in the
1960s, uses a set of specific guidelines to count conflicts between
vehicles at an intersection or other elements of the transportation sys-
tem such as weaving sections. The observed conflicts are classified
according to actions performed by drivers.

In the absence of a crash history for a location, the number of con-
flicts observed can be used as a measure of safety. However, the
problem that arises is how a conflict is defined. The methodology
records conflicts by using a binary state: the conflict either happened
or did not happen. No measurement of severity is made. Further-
more, the GM methodology gives the field observer latitude in what
can be considered a conflict; therefore, ranking of the intersection
with the conflict count as an index relies on the judgment of the field
observer. An approach to conflict counting that can solve this prob-
lem is to define a conflict based on a particular value, such as the gap
experienced or the headway maintained. The approach implies the
use of surrogate safety measures (SSM). In this approach, a conflict
is considered as such if the SSM value meets a specific threshold, for
example, the gap accepted by a left-turning vehicle is smaller than a
value believed to be safe and predefined by an analyst.

The SSM approach cannot distinguish which of two intersections is
safer when they have a similar number of conflicts as defined by the
scenarios exceeding the safe value. The approach presented in this
research is to look at what drivers at an intersection perceive as unsafe.
For example, given Intersections A and B, do drivers at Intersec-
tion A react in the same way as do drivers at Intersection B when
a left-turning vehicle accepts a small gap in the opposing traffic?
Knowing how drivers react to different scenarios allows the
engineer to judge the level of risk taking occurring at both inter-
sections. This approach can solve the problem determining which of
two competing intersections having similar crash histories and vol-
ume conditions should be the target of improvement programs—
the one with higher risk is chosen.

PROBLEM DEFINITION AND OBJECTIVES

Before risk-taking behavior is pursued as a safety ranking tool, the
risk-taking behavior itself must be characterized. For example, in the
interaction between a left-turning and an opposing vehicle, the risk-
taking behavior of the left-turning driver can be easily characterized
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A new safety indicator takes into consideration the risk-taking behavior
of drivers as well as the prevailing traffic conditions at an intersection.
The indicator is based on the idea that an intersection at which drivers are
willing to take a higher risk is not as safe as one at which drivers are not
willing to take high risks. Driver risk-taking behavior is modeled as a
function of a driver’s reaction to a possible collision scenario. Binary logis-
tic regression was used to understand how the probability of a driver
reacting to a possible collision scenario changes as a function of the vari-
ables defining the scenario. The data collection and safety index definition
are presented from the perspective of permissive left turns; however, the
concept of risk taking is universal; thus it is a feasible alternative for other
maneuver types if appropriate data are obtained. Use of a safety index
based on risk taking helps solve the engineer’s dilemma of which of two
intersections that have no crash history, or that have equal crash history,
should be the target of a safety improvement program. The methodology
presented can remove the subjective judgment that often takes place in
such a scenario and provides the engineer with an objective alternative.

A basic principle in economic theory is the scarcity principle, by
which the needs of the society are unlimited, whereas the resources
are limited. The transportation system is not an exception to this prin-
ciple. Although everyone wants to fix road congestion, only some of
the projects that could reduce congestion will be funded. Improving
the safety of the transportation system also is subject to this princi-
ple. Transportation engineers would like to make necessary improve-
ments to the system to bring the fatality count to zero, but resources
are limited, and engineers must select those elements for which the
highest return on investment can be obtained.

If an agency can afford to improve only one of two intersections
that, if treated, would experience an equal reduction in number of
crashes, then the decision is purely monetary. The site selected for
improvement is the one with the lowest ratio of cost per expected
reduced crashes. Thus, when the expected number of crashes can be
computed because a crash history is available, established procedures
provide engineers with the guidance needed for decision making.

Unfortunately, the decision is not always straightforward. There
is agreement among the transportation engineering community that
an intersection with no crash history is not necessarily a safe inter-
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by the gap it accepts. A low gap value indicates high risk taking,
whereas a high value indicates low risk taking. The opposing vehicle
has no control over the gap accepted by the left-turning vehicle; there-
fore, its risk-taking behavior can be characterized only by the reaction
to low and high values of gap acceptance. If the opposing vehicle
reacts by taking evasive action only when faced with low values
of gap acceptance, a higher level of risk taking is indicated than if the
reaction is observed for high values of gap acceptance.

The objectives of this research are to develop a safety ranking
measurement that takes into consideration the risk-taking behavior
of drivers, as well as the prevailing field conditions, and to iden-
tify the means by which to obtain the required data for the method-
ology through the use of existing conflict-counting techniques and
by considering the fundamental values that define the traffic flow.

Achieving these objectives could provide engineers with not only
new guidance on accounting for driver risk-taking behavior when
evaluating the safety of left turns at intersections but also the means
with which to obtain the data from field observations. Although
data gathering and the application of the methodology in this research
are discussed regarding interaction of left-turning and opposing
vehicles, the concepts of risk taking are universal and can be applied
to any other field maneuver if similar data can be obtained and fed
into the models.

LITERATURE REVIEW

There is considerable literature on the use of SSMs to rank inter-
sections for safety performance, and how to collect conflict measure-
ments, either by using simulation or from field observations, has been
discussed. The literature review here presents a discussion of the basic
methodologies for conflict counting, including their weaknesses, as
well as two of the most fundamental SSMs.

A traffic conflict is defined by FHWA as “an event involving the
interaction of two or more road users, usually motor vehicles, where
one or both drivers take evasive action such as braking or swerving to
avoid a collision” (1). A traffic conflict can be considered part of the
normal driving process since braking is not always done to avoid
a collision. There is an apparent agreement among researchers that a
high number of conflicts can be considered an indicator of lower lev-
els of safety at an intersection (2). Unfortunately, there is the question
of how severe a conflict is as well as how to measure its severity, that
is, severity is not considered in the methodology.

The traffic conflicts technique (TCT) was developed by GM
for the former Bureau of Public Roads in 1967 (3). According to
the manual, a traffic conflict takes place when “a driver takes eva-
sive action, brakes or weaves, to avoid a collision” (3). A total of 
24 types of conflicts are described in the document, along with the best
methods for observing them in the field. The research was done to
establish a procedure for counting traffic conflict for determining
accident potential.

Baker was among the first to look at the relationship between con-
flicts and crashes at intersections (4); it was found that conflict counts
obtained with the technique developed by GM can be used as a predic-
tor of crashes at those intersections. Further research by Migletz et al.
looked at the relationship between a group of crash types and the cor-
responding conflict types that lead to the type of crash (5). The proce-
dures developed were used to obtain the expected number of crashes
as a function of the number of conflicts occurring and a crash-to-
conflict ratio for the system in question. At the time, it was argued
that the limitations of such methodology were not a result of the lim-

52 Transportation Research Record 2147

itations of the TCT but instead of the time constraints on the attempt
to obtain an accurate count of conflicts for the site studies, as well
as the variability of the conflict process itself. For example, Hauer
found that conflict counts performed along different weekdays 
for the same site can have a variance-to-mean ratio of 1.4 and 2.2,
depending on whether the conflicts considered are of the same class
or if an aggregate value is used, which shows the variability of the
methodology results (6).

The definition of a traffic conflict to this point has been based
on observing a driver’s evasive actions, such as braking. It can be
argued that an evasive action is conflict; however, not every con-
flict, per the TCT, can be defined as an evasive action. Thus, if
conflicts measured according to the TCT are used as a surrogate
measure of crashes, it is assumed that an evasive action took place
before the accident. Crashes and near-miss situations, according
to Chin and Quek (7), take place because drivers fail at some point to
take an evasive action. However, common sense suggests that in some
situations an evasive action took place, but it was not sufficient to
prevent a crash.

Surrogate safety measures, in addition to conflicts, have been pro-
posed as an alternative to conflict counts for evaluating the safety
of transportation-system elements. As the name suggest, these are
measurements taken from traffic stream characteristics, such as gaps
and headways. Surrogate safety measures can supplement conflict
counts or act as substitutes because of their known capacity to act as
indicators of conflict severity. The term “conflict severity measure”
has been used in the literature to refer to the measurements such as
time to collision (8).

Hayward introduced the time-to-collision (TTC) concept, originally
called the time measured to collision, as a measure of the danger of
near-miss situations (9). A near-miss situation is an event in which the
danger to which a vehicle’s occupants, the second vehicle’s occupants,
or pedestrians are exposed is greater than the danger under normal con-
ditions. TTC is defined as the time required for two vehicles to collide
if they continue at their current speeds and on the same path and is
computed as follows:

where d is the distance between vehicles and Vi is the speed of the
vehicles involved.

One would expect that values of TTC lower than the perception
and reaction time should be considered dangerous; however, because
of variance in drivers and other driving environment characteristics,
it is possible that values of TTC higher than the driver’s percep-
tion and reaction time can still be considered unsafe and could
result in a collision. There appears to be an agreement in the liter-
ature that no value of TTC higher than 6 s is dangerous. Although
it looks like an obvious indicator of safety, the measurement has the
disadvantage that as it indicates a safer situation, that is, higher val-
ues, it starts losing reliability as a safety indicator (10), since a high
value of TTC provides the driver with more time for avoiding a
potential crash.

Since the introduction of the concept in 1972, it has become
one of the most popular indicators of the safety of a particular sce-
nario, despite its shortcomings (9). An additional problem with
the measurement is obtaining the value itself. As Equation 1 indi-
cates, it is necessary to obtain the speed of both the leading and
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the following vehicle in addition to the distance between them,
which is a difficult process. (11) It appears that the only feasible
method for obtaining field values of TTC is through video processing,
which is an extremely time-consuming process.

The TTC measure is suited for measuring the severity of rear-end
conflicts. A new severity measure has been proposed for conflicts
between vehicles making a left turn and vehicles in the opposing traf-
fic flow. The corresponding measure is called postencroachment time
(PET) and is defined by Allen et al. as “the time from the end of
encroachment to the time that the through vehicle arrives at the poten-
tial point of collision” (11). PET is a function of the gap accepted by
the left-turning vehicles as well as the speeds of both vehicles and the
distance traveled toward the encroachment point. The computation of
the measurement is shown in Equation 2:

where

dov = distance from encroachment point to opposing vehicle
(measured at the moment when encroachment by the left-
turning vehicle starts),

dltv = distance traveled by the left-turning vehicle toward the
encroachment point, and

vov,ltv = speeds of the opposing and left-turning vehicles.

Two concepts have been presented so far. A methodology for
traffic conflicts has been successfully used as a predictor of the num-
ber of crashes. However, the methodology lacks a quantitative def-
inition of the severity of the conflict. Surrogate safety measures
are thus introduced to solve this problem. Two of the most funda-
mental surrogate safety measures are the TTC and the PET. There
is no disagreement that as the value of these two measurements
approaches zero, the situation becomes more dangerous; however,
the threshold for defining the safe region is based on analyses per-
formed by engineers without taking into consideration what a driver
considers to be safe conditions.

RESEARCH APPROACH

One of the problems is that the current conflict count methodologies
based on the use of surrogate safety measures are based largely on
judgment. The field conflict identification methodology presented in
this research considers the behavior of drivers as they approach the
conflict point. The action that the observer looks for when perform-
ing the field study are a diving of the vehicle nose, sudden changes
in the speed of the opposing vehicle, and any other indication of a
reaction by the opposing driver. This type of action by the driver is
known as a driver adverse reaction (DAR). Identification of the con-
ditions at which a DAR is observed provides an idea of the level of
risk taking by the driver population; for example, a DAR observed
at a high gap value suggests that drivers are more conservative; the
same observation at a low value suggests that drivers are willing to
take a higher risk.

One of the problems in making DAR observations during a field
study is that the real time and the speed at which everything happens
can be contributing factors to errors in the data collection process,
and missed observations or misjudgment may result. To avoid this,
three intersections with similar geometric characteristics were video-
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taped for 2 h each. All the intersections have left-turn bays and two
lanes of opposing traffic and operate under a permitted-only left-
turn phase scheme with no pedestrian–vehicle interaction. Data
were collected in the city of Madison, Wisconsin. Recording took
place from the median, and the data were processed later in an office
environment. Use of video for data collection allows review of the
interaction among vehicles on a frame-by-frame basis, removing
much of the guesswork associated with real-time field data collec-
tion and observation. The downside of this process is that it is labor
intensive, because going through the video more than once in slow
motion is necessary.

With the use of video to analyze data, time stamps of each vehicle
that goes through the intersection can be obtained. DAR and non-
DAR observations were assigned a corresponding time stamp
from the video. When the video is processed, variables describ-
ing the microscopic conditions can be obtained for the vehicle inter-
action; for example, for every vehicle making a left turn, the time
at which the vehicle arrives at the queue and the time at which it
crosses the opposing traffic are known, as are the gaps that were
rejected and accepted. Because of the data set characteristics, it 
is possible to determine the microscopic conditions that lead to 
a DAR.

From the observation of a DAR and the prevailing microscopic
flow conditions, that is, the gap accepted at the moment, a new data
set was assembled. The resulting data set follows the structure of
a dichotomous response, that is, only two conditions are possible: a
DAR was observed or was not observed, given the value of the pre-
dictor variables such as gap accepted by the left-turning vehicle. In
the case of a dichotomous response with continuous predictor vari-
ables, a binary logistic regression can be used to fit a model to the
corresponding data. The resulting model computes the probability
of a DAR being observed given a value of gap accepted by the left-
turning vehicle. Theoretically, this modeling approach would yield
a 100% probability of observing a DAR when the gap accepted by
the left-turning vehicle approaches zero as well as a 0% probability
when the gap approaches infinity.

As mentioned, the reaction of the opposing driver to a gap accep-
tance situation is not the only safety consideration for a left-turn sce-
nario. Therefore, a binary logistic regression model was created for
understanding the probability of a particular left-turning vehicle
accepting a gap when exposed to it. With these two regression mod-
els, both elements that provide an indication of the risk-taking behav-
ior of the vehicles involved in a gap acceptance process are described
mathematically. When the models are combined as shown in the fol-
lowing section, a new safety ranking measurement that can account
for the risk-taking behavior of drivers is proposed.

RESULTS

To prove the feasibility of obtaining an adequate data set for imple-
menting the proposed methodology, this research analyzed 6 h of
intersection recording while using the procedure described in 
the section on the research approach. During those hours of obser-
vation, 70 gaps below a threshold of 12.0 s were accepted by vehicles,
a value identified in the literature as providing absolute certainty of
acceptance (12). Furthermore, of those 70 accepted gaps, a DAR
was observed during 18, representing 26% of the cases. A histogram
for the groups of gaps producing a DAR and not producing a DAR
is shown in Figure 1. Both data sets follow a normal distribution
according to a Ryan–Joiner test with a null hypothesis of normality.



From the data collected, it was possible to generate a binary
logistic regression model that returns the probability of observing
a DAR as a function of the gap accepted by the driver of the left-
turning vehicle. The result of the model is shown in Table 1, and a
visual representation is shown in Figure 2. As the Hosmer–Lemeshow
test suggests, the hypothesis of an adequate fit cannot be rejected for
the model at a 95% level of confidence.

The odds ratio value of 0.47 indicates that an increase of 1.0 s in
the gap accepted by the driver reduces the odds of observing a con-
flict by almost half. Figure 2 shows that an increase of 6.0 s in the
gap accepted by the left-turn driver reduces the probability of obser-
vation of a DAR from 0.9 to 0.1. The change in the predictor vari-
able responsible for the 0.8 change in probability can be considered
a measure of the gray area between gaps accepted that cause a DAR
and those that do not cause a DAR.

Another model that explains the process of gap acceptance 
was created as part of this research. The model specification is
shown in Table 2. It returns the probability of accepting a gap as
a function of the gap that the left-turning vehicle is exposed to.
Although it violates the common practice of performing gap accep-
tance studies, use of this form of the model is necessary so that
the results can be used as part of a proposed safety indicator, dis-
cussed in the next section. Table 2 shows that the predictor vari-
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ables are significant at a 95% confidence interval and the 0.756
Hosmer–Lemeshow statistic value does not allow rejecting the
null hypothesis of an adequate fit.

As the model specification shows, the gap to which the driver is
exposed is a significant factor, p-value lower than .001, thus indicat-
ing it is at least significant at a 95% confidence level. The odds ratio
for the gap parameter, 2.91, indicates that the odds of accepting a gap
almost triple when the gap to which the driver is exposed is 1 s longer
than the alternative. Figure 3 is a visual representation of the model
shown in Table 2. As can be seen, the model is not only mathemati-
cally sound but logical, since it indicates nearly a 0% probability
of accepting a gap of around 1 s and an almost 100% probability of
accepting a gap near 10 s.

ANALYSIS OF RESULTS

The preceding section presented an important finding: the observa-
tion of a DAR can be modeled through the use of binary logistic
regression by using gap accepted by a driver as the predictor vari-
able. It can be said that given a gap value, known as the reference
gap, rgap, the probability of observing a DAR can be computed;
that is, PD = f (rgap). A model that returns the probability of gap
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TABLE 1 Disaggregate Model Specification for Observation of DAR

Standard Error Odds
Predictor Coefficient of Coefficient Z P Ratio Lower Upper

Constant 3.71305 1.19708 3.10 .002

Gap −0.746383 0.20080 −3.72 .000 0.47 0.32 0.70

NOTE: Hosmer–Lemeshow = 0.354.

95% CI



acceptance as a function of the rgap to which the driver is exposed
was also presented, that is, PA = f(rgap). Given the scenario in
which the value of PA is similar for two intersections, the value
that can be used to indicate whether one intersection should be
considered safer than the other is based on the value of PD. This
statement is based on the assumption that for a given rgap, a low
value of PD suggests that the drivers at that intersection believe
the gap is safer than what other drivers, at an intersection with
higher PD values, believe.

The joint probability of gap acceptance and DAR observation
for an intersection can then be computed by multiplying PD(rgap)
× PA(rgap). Thus, for a given rgap, the lower the value of PD is the
lower value of the joint probability. Intuitively, the result of the
multiplication, that is, the joint area of the Venn diagrams for 
those two probabilities, can act as a safety index that accounts for 
driver behavior at intersections. However, there remains one
missing piece of information that should be considered: the dis-
tribution of gaps at an intersection. Although two intersections
may have the same result of PD(rgap) × PA(rgap), one could have 
a lower probability of observing gaps equal to the rgap, that is,
PG(rgap).

Thus, a newly proposed left-turn driver safety index (LTDS)
is computed as shown in Equation 3. By taking into account what
is known about gap distributions at an intersection approach, the
lower the probability of observing a gap with a relatively high
probability of acceptance and low probability of conflict observa-
tion, the safer the left turn at that intersection can be argued to be.
Therefore, high values of LTDS indicate a lower safety perfor-
mance, that is, a safety concern, whereas lower values indicate the
opposite.

where

PD = probability of observing a DAR given that a gap is accepted,
PA = probability of accepting a gap given that one is exposed to

it, and
PG = probability of observing a certain gap on the traffic stream.

Equation 3 is technically an infinitesimal value, which means that
to obtain a more practical index, the summation of the Equation 3
values should be done from zero up to a selected value of rgap, as

LTDS gap gap gap= ( ) × ( ) × ( )P r P r P rD A G ( )3
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TABLE 2 Disaggregate Model Specification for Gap Acceptance

Standard Error Odds
Predictor Coefficient of Coefficient Z P Ratio Lower Upper

Constant −6.16528 0.493245 −12.5 <.000

Gap 1.06713 0.107683 9.91 <.000 2.91 2.35 3.59

NOTE: Hosmer–Lemeshow = 0.756.

95% CI



shown in Equation 4. Such an approach allows the LTDS index
value to take into account the shape of the gap distribution curve at
an intersection approach.

The challenge for the engineer who performs the safety analy-
sis by using the proposed methodology is to select the appropriate
rgap value. The rgap value will be equal to the gap with the highest
probability of being observed, the median gap, the 85th percentile
gap, or any other gap with a mathematical meaning. In a compar-
ison of the safety of various intersections, the index should not be
computed for a fixed rgap value. Instead, it should be computed
over a range of values to take into account variations that might
result from the shape of the curves involved in the analysis; thus
the sensitivity can be evaluated before a decision is made about
which intersection is safer.

CONCLUSIONS

Two main findings are derived from this research. First, through the
use of field data collection and video techniques, it is possible to
obtain a model that describes the probability of observing an adverse
reaction from a driver, given that the driver is faced with a set of con-
ditions in the field. In the absence of any other information, given the
characteristics of gap acceptance that yield a certain probability of
observing an adverse driver reaction, that value alone can act as a
safety index. A low value indicates that the corresponding driver
population takes greater risks than does a population with a higher
value. An approach like this one would be sufficient for ranking two
intersections with similar volume and gap distribution conditions.
However, when two similar driver populations are considered, the
distribution of gaps must be taken into consideration.
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The second finding of this research involves the use of a gap
acceptance probability curve along with a gap distribution curve;
when combined with the probability curve for driver adverse reac-
tion, it acts as the safety index measurement proposed. The index
is based on the concept of joint probability. The newly proposed
safety index takes into account not only the driver’s behavior at an
intersection but also the prevailing traffic conditions as described
from a microscopic flow theory perspective. An approach like the
one presented can solve the problem engineers face when decid-
ing which intersections to target for safety improvement when no
crash history exists. With knowledge of the shape of the adverse
driver reaction as well as the gap acceptance probability curves, an
engineer can select a timing plan that can influence the shape of
the gap distribution curve to effectively increase the safety index
at the intersection.

FUTURE WORK AND PRACTICAL APPLICATION

The field methodology used in this research is based on the observa-
tion of a DAR from video. This procedure reduces error introduced
by real-time data collection; however, a level of judgment remains
in the process. Thus, an alternative to consider as part of future
research is the use of radar equipment capable of tracking the
positions of vehicles as they approach the intersection as well 
as image-processing techniques to determine when DARs take
place. Image-processing techniques were successfully used by
Saunier and Sayed to perform conflict analyses (13, 14). Appli-
cation of the presented techniques to obtaining the data required
in the proposed LTDS index allows engineers to break the wall
between theory and practice. Furthermore, the data obtained from
such technologies allows observation of driver reactions by using
a quantifiable change in the speed profile rather than qualitative indi-
cators, when exposed to a scenario such as a left-turning vehicle
crossing the path of the opposing vehicle.
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