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Advances in geographic information system (GIS) software and
exploratory spatial dataanalysis(ESDA) techniquesgivetransportation
safety engineer stoolsto observe and analyze safety-related datafrom a
new per spective. Thisresearch takesthe use of GI S softwareand ESDA
techniques one step further by incor porating advanced statistical tech-
niquesfor amorethorough and complex analysis of safety data. Thisis
achieved by implementing a network-constrained cross K-function to
analyzetherelationship between bridgesand theoccurrencesof ice-related
crashes within a county. The counties in Wisconsin included in the
analysiswer eselected through theuse of thelocal Moran’s| statistic; this
statisticallowsfor the selection of countieswithin the same geogr aphical
area, which havesimilar parameters(in thiscase, ice-related crash rates).
The objective of thisresearch isto explore the relationship between
ice-related crashesand bridgesin countiesthat display similar ice-related
crash rates, to compare and analyze winter maintenance techniques.
Theresultsidentify clustering of ice-related crashes around bridgesin
four countieswith similar ice-related crash ratesin southeast Wisconsin.
Similarly, two of four counties show clustering of ice-related crashes
around bridgesin northwest Wisconsin. Theseresults make a strong
case to suggest that countiesin these regions should focus additional
winter maintenanceeffortsat bridgelocations. I n addition, thisresear ch
shows how the use of advanced spatial statistical techniques, partic-
ularly network-based statistics applied within a GI'S environment,
can be used as a unique and innovative approach towar d safety data
analysis.

Advances in geographic information system (GIS) software have
provided transportation safety engineers with tools to observe and
analyze safety-related data from a new perspective. Recently, there
has been a boom in the use of exploratory spatial data analysis (ESDA)
techniques for safety data analysis. This research takes advantage of
expanding GIS capabilities and incorporates ESDA with advanced
statistical techniques to take the analysis of safety data one step further.
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Winter maintenance costs can consume a large percentage of the
budgets allocated to departments of transportation (DOTS) in northern
states, depending on the intensity and severity of weather conditions.
Winter maintenance decision making is one of the most complex tasks
that DOTs in northern states have when assessing where to implement
effective maintenance activities. Decision makers are faced with
the challenge of how to optimize the use of continually decreasing
resources. As problems become more complex, so have solutions. For-
tunately, the use of GIS tools provides a powerful platform to perform
the complex analyses that are needed to optimize resource use.

One variable that can be analyzed by the use of GIS and spatial
statistical analyses is the location that should be the primary target
of winter maintenance activities such as deicing and anti-icing, to
reduce ice-related crashes. One of the most common approaches to
identify locations for safety treatments is hotspot identification.
Traditional hotspot identification techniques, however, do not have
any statistical grounds. Specifically, the technologies used to identify
hotspots are based on the locations of crashes, but the methods do
not take into consideration whether the crashes are random events
or the result of some underlying factors.

The objective of this research is to incorporate the use of advanced
spatial statistical methods with GIS software to evaluate an innovative
approach to safety data analysis. Moreover, the research is intended
to provide winter maintenance personnel with a means of evaluating
their activities in relation to specific locations on the system, through
the results of spatial data analysis techniques coupled with safety
(i.e., crash) data.

Through spatial pattern analysis of lattice data, counties with
both statistically significant similar and statistically significant
dissimilar ice-related crashes were identified. The analysis was
performed for all counties in Wisconsin using the local Moran’s |
statistic, which identified eight counties demonstrating similar
ice-related crash rates. This finding was the basis for comparing and
contrasting local- and microscopic-level patterns of ice-related
crashes in these counties. Spatial pattern analysis on a local level
was performed using a network cross K-function, which identified
the clustering of crashes around specific locations (i.e., bridges).
This technique not only identified areas of hotspots for ice-related
crashes but also enhanced understanding of the factors affecting
these crashes, such as their proximity to the geometric features.
Unlike a planar K-function, which analyzes patterns for data dis-
tributed in a planar space, a network cross K-function brings added
accuracy to data analysis (e.g., for road crashes) that is inherently
network-constrained.
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LITERATURE REVIEW

The literature review looked at the state-of-the-practice of GIS in
analyzing traffic safety data, advanced spatial statistical methods,
and pattern analysis techniques for safety data. Recently, there have
been tremendous advancements in GIS software capabilities and
increases in the availability of spatial data sets, especially those that
give point locations for each crash. GIS use has been most effective in
analyzing point-based crash data, because it identifies spatial patterns
of safety trends and issues that are otherwise difficult to observe from
tabular data sets. Several studies have established spatial patterns in
vehicle or pedestrian crashes for identification of critical locations (1).
Kim and Yamashita analyzed spatial patterns of pedestrian crashes
in Honolulu, Hawaii, by using K-means clustering techniques (2).
These spatial patterns identified areas of high levels of pedestrian-
involved crashes, which were present in light of various demographic
features such as population or land use. Similarly, Levine et al. (3)
conducted a spatial analysis of Honolulu crashes in the context of
varying conditions and noted the limitations of “blackspot’ analysis
in describing the location and cause of different types of crashes.
Thomas carried out a study for black zones (i.e., locations with high
crash frequencies) and found several advantages in defining black
zones using spatial autocorrelation and kernel methods on road
segments (4). Abdel-Aty and Wang (5) studied the spatial effects of
crashes at intersections along corridors.

The aforementioned research applied various methodologies to
evaluate the spatial patterns of crashes alone, identifying potential
hotspots or high crash locations at various scales. The aim of this
research was to extend the spatial pattern analysis of crashes in con-
junction with geometric feature locations to study the interactions
between two point patterns. The idea was to determine the under-
lying factors and relationships between crashes and geometric features
that lead to crashes.

Spatial statistical tools have been used for many years, espe-
cially in the fields of epidemiology and social sciences, to study the
spatial variation and geographic dependencies in relevant data sets.
Such data sets can occur anywhere in planar space and, hence, the
methodologies have been developed accordingly. In the case of crash
data analysis however, the assumption of planar space is no longer
valid because distances are only relevant on a network. Therefore,
spatial statistical techniques have to be modified to address the
issue of network dependencies. Okabe and Yamada derived the
K-functions and cross K-functions for a network in their ground-
breaking research in 2001 (6). Yamada and Thill compared network
and planar K-functions by analyzing crash data from New York to
show how the assumptions of planar space are unsuitable for crash
data analysis (7). In subsequent research, Yamada and Thill described
another network-based K-function to identify local spatial patterns
for crashes in the New York area (8).

This research advances the traditional hotspot analysis by making
use of the cross K-function on a network to analyze the relationships
between two point patterns: crashes and geometric features. The
literature suggests that most research designed to analyze spatial
point patterns has been focused on a particular scale: for example,
at the citywide or statewide level. This research is unique in that it
considers a statewide level through lattice data analysis to prioritize
locations that were in turn further analyzed on an individual point
scale for each county. This method provides the most comprehensive
analysis on varying scales starting from the statewide level and
scaling down to individual crash locations, a scope of research that
is absent from the literature.
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OBJECTIVE AND HYPOTHESIS

The objective of this research is to combine advanced spatial statis-
tical methods with GIS functionality to analyze spatial patterns of
safety data. The aim is to show the usefulness of these techniques
by analyzing county-level data and identifying spatial patterns
of ice-related crashes that have occurred in the selected counties.
Researchers focused on the identification of specific features to
better understand the underlying factors affecting those crashes,
therefore providing the grounds to improve safety.

Ice-related crashes are selected for analysis because bridge decks
and nearby locations are widely known to be prone to ice formation
during the winter season. In fact, almost all the counties in Wisconsin
do significant anti-icing or deicing at bridges and nearby locations (9).
As aresult, bridge locations can be considered one of the factors that
can be evaluated using statistical methodologies that are able to detect
clustering.

The clustering of ice-related crash patterns against bridge loca-
tions would provide evidence that these crashes are related to the
location of the bridges. It would help prioritize locations for winter
maintenance personnel and help them focus their activities at these
locations, in turn leading to more effective, efficient, and proactive
winter maintenance activities. Moreover, the identification of relation-
ships between ice-related crashes and bridge locations for counties
with similar ice-related crash rates would present a suitable basis for
comparing these counties’ ice-related crash patterns against bridge
locations. This would help winter maintenance personnel to com-
pare and contrast their activities across different jurisdictions and to
make suitable improvements.

This research also expands the state-of-the-practice by using lattice-
based pattern analysis and network-based point-pattern analysis
together with GIS using safety data to identify areas where winter
maintenance should be focused and to provide useful insight to
winter maintenance personnel on how to prioritize and modify their
winter maintenance activities. The procedures identified and stream-
lined in this research can easily be incorporated to study other types
of safety data at any location.

DATA COLLECTION AND PROCESSING

The first step in the data collection process was to assemble the
various data elements required for a state-level analysis. These state-
level data were further segregated by county to provide a well-defined
jurisdictional-based global picture of the Wisconsin data being
analyzed. It also provides a global overview of the safety issues to be
studied by this research, to identify areas for more detailed analysis.
County-level analysis was the first step by which areas of similar safety
performance in terms of ice-related crashes could be scrutinized for
further microscopic analysis. Figure 1 shows a flowchart of each
data set collection, processing using GIS analyses and subsequent
statistical analyses.

Four years of Wisconsin crash data (2003 through 2006) were
obtained for this research. The crash data were reduced to November 1
through April 30 of the following year, which is the typical winter-
time period in Wisconsin. This period is also used by the Wisconsin
Department of Transportation (WisDOT) for winter maintenance
purposes. Crash data covering the winter seasons of 2003 to 2004,
2004 to 2005, and 2005 to 2006 were considered. Wisconsin crash
data contains two sections pertinent to weather conditions at the time
of the crash: weather conditions and road conditions. Ice-related
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crashes were identified for the three winter seasons as those crashes
which occurred with ice on the pavement, sleet falling, or both. Along
with the crash data, data on wintertime vehicle miles traveled (VMT)
were obtained from the Wisconsin winter maintenance reports for
the aforementioned three wintertime seasons. Ice-related crash rates
were calculated to normalize crashes by some level of exposure
to facilitate the comparisons between counties. An ice-related crash
rate was defined as follows:

X =— [€))

where

X = ice-related crash rate for county i,
IC; = total number of ice-related crashes in county i, and
WV, = exposure represented as 100 million VMT in entire winter
season in county i.

Data on bridge locations and on roads comprising the Wisconsin
State Trunk Network (STN) system were also obtained with the use
of advanced geo-processing techniques in ArcGIS software, only
for those counties that were analyzed in this research. Details of the
data sets and processing procedures are presented in Figure 1. There
were 66 bridges in Barron County, 38 in Bayfield County, 29 in
Rusk County, 20 in Washburn County, 56 in Kenosha County, 51 in
Ozaukee County, 51 in Racine County, and 160 in Waukesha County.
Crash data were collected only for roads on the STN system because
traffic-volume information was not available for local roads. The
Wisconsin STN system consists of Interstate, U.S., and state highways.
Moreover, exact geographic locations of crashes were required to
conduct some of the point-pattern analysis (to be described further
in this research), and these data were not available for all local roads.
A pilot research project has recently been completed to fill this data
gap with local roads (10). For the purpose of this research, data
analysis was confined to crashes only on roads in Wisconsin’s STN
system. A shapefile of crash locations was generated by WisDOT
by using intersection or milepost location, distance of the crash from
that intersection or milepost location (in increments of one-hundredth
of a mile), and STN-specific reference point tables that identify
specific locations on the STN system, thus affording researchers
accurate positions of the crashes.

METHODOLOGY

The first step in this research was to plot the ice-crash rates and then
analyze the subsequent patterns on a statewide level, to identify
counties that were part of a wider region displaying similar safety
trends. These counties were then selected for microscopic-level analy-
sis. Analyses of locations displaying similar global safety trends
could then be compared, to identify potential differences in winter
maintenance activities and procedures.

To analyze the patterns of spatially distributed features, overall
patterns can be visually interpreted through frequency, mean, or pro-
portion measurements on GIS-generated maps. Although ice-related
crashes can easily be plotted statewide, the ability to visually dis-
cern spatial patterns and to identify areas with similar or dissimilar
performance is limited. There is a need to identify statistical processes
to quantifiably measure spatial patterns rather than a predefined
ranking or number-based classification, because visual interpretations
alone cannot provide conclusive results. Spatial patterns supported
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by statistically significant quantities that describe those patterns
accurately, can resolve the issue by providing a quantifiable method
of analysis.

Local Moran'’s / Statistic

There are several statistical techniques available for the analysis of
spatial patterns of lattice data providing different answers based
on desired results. Some techniques identify clusters of high or low
attribute values (Getis-Ord Gi* statistic), while others identify clusters
of similar or dissimilar values (Anselin’s local Moran | statistic). Both
of these statistics are part of local spatial autocorrelation statistics that
can identify a local spatial clustering around an individual location,
especially in cases where global statistics may fail to detect these
patterns (11). The use of local spatial statistical techniques can discern
spatial patterns that could be masked by global spatial autocorrelation
statistics, and this method adds depth and significance to the results
that could otherwise be a chance occurrence. With these require-
ments in mind, Anselin’s local Moran’s | statistic (I;) was selected
to analyze patterns of ice-related crashes on a statewide level for
Wisconsin (11).

I; identifies clusters of areas that have statistically significant
similar or dissimilar values (11). Its output consists of a statistic
value | and associated Z score for each feature in the study area. The
resulting index value | for a specific feature indicates that it is clustered
with other features with similar attribute values. A negative value for
a feature indicates that the feature is clustered by dissimilar values,
hence it is an outlier. Z scores are measures of standard deviation
associated with a standard normal distribution calculated using the
ratio of differences between observed and expected (mean) values,
representing statistical significance of the index value. Anselin’s
research provides additional details on calculating expected values and
Zscores (11). Z scores indicate whether the similarity or dissimilarity
in attribute values between the feature and its neighbors is greater
than one would expect simply by chance. The Z score can be inter-
preted similar to the index value. A low Z score indicates clustering of
dissimilar values, while a high Z score indicates clustering of similar
values. The more positive or negative the Z score, the more significant
are the results. The |; statistic can be presented as follows:

=g 2w (x - %) @

where

X, = ice-related crash rate of site i,
X, = ice-related crash rate of neighboring locations to site i,
Wj; = spatial weight matrix for all sites j, and
N = number of weighted points, each representing ice-related
crash rate for each county

and

N
2 X
L= j;\llel — x> 3)

In Equation 2, i is the site with an attribute value x; where the I;
statistic is being calculated and X are the neighboring locations with
similar or dissimilar attribute values. For analysis, the attribute values
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were multiplied by the spatial weight matrix wj; that defines which
locations were included in the analysis and the corresponding weight.
Locations i and j in the above equations are depicted by the geometric
centroids of individual counties because the data were aggregated at
acounty level. The attribute values used at these sites were ice-related
crash rates, which have already been defined.

In any type of clustering analysis, one of the most important ques-
tions is the conceptualization of spatial association among the fea-
tures, or the construction of the spatial weight matrix W. For the
purposes of this research, it was decided that the proposed choice of
weight matrix would be based on an inverse distance relationship,
which means that the influence of spatial relationships decreases as
an inverse function of increasing distance. The choice was based on
the premise that features close to one another are more similar than
features further away, although further research will be required to
bring some objectivity to this subjective selection.

Network Cross K-Function

The second step of analysis was based on the analysis of two point
patterns and their interrelationship. The idea was to analyze the spatial
patterns of ice-related crashes for counties displaying similar safety
trends. The patterns were analyzed for each county identified as
belonging to a statistically significant cluster of counties displaying
similar safety trends. This would enable the comparison of the dis-
tribution of ice-related crashes against bridge locations in each county.
As mentioned in the literature review, there are a number of point-
pattern analysis methodologies that have been developed for use in
the field of epidemiology and in the social sciences. The K-function
method is one such procedure, which has been most widely used (12).
However, this method is based on the assumption that data are
distributed in planar space. This assumption is violated for the pur-
poses of crash data analysis, hence the cross K-function for network
was selected as the appropriate method for this research (13).

The network cross K-function describes the relationship between
the patterns of two sets of points, for example A= {ay, &, . . ., @y}
and B={by, b,,. .., by}, placed on a finite planar network (Ly), and
shows whether the set of points B affects the location of the set of
points A (6). To examine this effect, the null hypothesis is that the
set of points A is distributed randomly according to the binomial
point process regardless of the location of the set of points B. If this
hypothesis is rejected, it can be reasoned that the location of the set of
points B affects the distribution of the set of points A. No assumption

71

is made with respect to the distribution of points B (6). The cross
K-function can now be defined as follows:

1 number of points of A within
E C))

network distance ‘t” of a point b in B

where

A = set of point locations of ice-related crashes on the STN
roads in each county,
B = set of point locations of bridges on STN roads in each
county,
E() = expected value of A following binomial point process,
with respect to by, . .., b, (b € B),
pa = density of points of A, which is equal to n,/ ‘ Lt
n, = total number of ice-related crashes,
L+ = finite planar network of STN roads in each county, and
K"(t) = network cross K-function of Arelative to B, for the bino-
mial point process.

s

The results of the observed network cross K-function can be plotted
on a graph that shows the clustering or dispersion of points at various
distance scales. The expected value can also be plotted on the graph
to show the upper and lower 5% bounds and show the statistical
significance of the observed network cross K-function at the 95%
confidence level. If the line of observed values lies above the upper
5% line, the pattern is said to be statistically significant clustered. If the
observed line lies below the lower 5% line, the pattern is statistically
significant dispersion. If the observed line lies within the upper and
lower bound lines, there is no significant relationship between the
two point patterns and the points are distributed independently of each
other. A more thorough discussion of the network cross K-function
can be found in the literature (13).

RESULTS AND DISCUSSIONS
Local Moran’s | Analysis Results

The first step analyzed the safety performance of counties in terms
of ice-related crashes. The goal was to identify counties with similar
safety performances so that the results of local-level analysis conducted
for those counties could be compared. Ice-related crash rates as
defined in previous sections were calculated for each county in Wis-
consin on the basis of crash and winter VMT data for the three winter
seasons between 2003 and 2006. Table 1 presents winter VMT, the

TABLE 1 Results of Local Moran’s / Analysis for Selected Statistically Significant Counties in Northwest

and Southeast Regions in Wisconsin

Winter VMT Crash Rate
(in 100 millions, Ice Crashes Percentage of (X, by 100 million Local Moran’s
County for 3 years) (IG;, for 3 years) Ice Crashes (%) VMT) Moran’s | (I;) Z-Score
Northwest
Barron 7.774 122 26.64 15.69 0.16 2.02
Bayfield 3.069 56 23.93 18.24 0.19 2.22
Rusk 2.307 41 23.70 17.77 0.14 1.97
Washburn 3.715 70 19.83 18.84 0.22 2.60
Southeast
Kenosha 20.700 157 6.90 7.58 0.35 2.63
Ozaukee 12.958 37 4.12 2.86 0.64 5.92
Racine 22.953 152 5.62 6.62 0.48 3.50
Waukesha 57.315 258 5.36 4.50 0.602 5.51
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number of ice-related crashes, crash rates, the percentage of ice-related
crashes, and the results of local Moran’s | analysis for the selected
counties. The ice-related crash rates (per 100 million VMT) were
plotted on a map for visual interpretation, which is presented in Fig-
ure 2a. Although the figure presents a fair picture of how the crash
rates were distributed among the counties, it is difficult to discern
any consistent spatial patterns from this figure alone. Moreover, the
mapping of crash rates alone does not contain any statistical sig-
nificance as to which counties are more similar than others. Any area
clusters which display similar or dissimilar crash rates cannot be
visually discerned in the absence of any statistical evidence.

To increase the statistical sensitivity of the selection of counties with
similar ice-related crash rates, the local Moran’s | statistic was used.
The results of the local Moran’s | statistic are displayed in Figure 2b.
Counties with a Z score of greater than +1.96 represent locations that
are part of statistically significant clusters of similar ice-related crash
rates at a 95% confidence level, and vice versa. Figure 2b also includes
the actual value of ice-related crash rates for each county as represented
by dots the size of which is proportional to that county’s ice-related
crash rate, with larger dots representing higher rate values. Results
identified four clusters in different regions of Wisconsin that display
statistically significant similar ice-related crash rate values. These
regions are located roughly in the northwest, southeast, north-central,
and far-western regions of Wisconsin. Although there are some
counties located next to each other that display similar safety trends,
they are not part of a statistically significant cluster due to variabil-
ity in the ice-related crash rates in the overall proximity of those
counties.

The results of the local Moran’s | analysis were used to select
counties for which the network cross K-function analysis was con-
ducted, and to identify the relationship between ice-related crashes
and bridge locations. Although clusters in four different regions
(each consisting of between two and eight counties) were identified,
two regions with four counties each were selected for further analysis
because they were part of the biggest clusters yielding the greater
number of counties. Moreover, the geographic location of the clus-
ters would be a good representation of how winter weather varies
between the northern and southern parts of Wisconsin. The two
regions representing a total of eight counties were in northwest and
southeast Wisconsin (four counties in each region). The four north-
west counties are shown in Figure 2¢, and the four southeast counties
are shown in Figure 2d. It can be seen from Table 1 that although the
counties display varying ice-related crash and winter VMT trends,
their ice-related crash rates are quite similar. This provided the basis
for comparing counties’ winter maintenance strategies for counter-
ing ice-related crashes, especially in the form of proactive anti-icing
winter maintenance activities.

Network Cross K-Function Analysis Results

The network cross K-function analysis was conducted using the
SANET tool developed by Okabe et al. (14). The aim was to identify
clusters of ice-related crashes as well as to study the relationship
between ice-related crashes and the location of bridges in each county.
Figure 3 and Figure 4 show the results of network cross K-function
analysis for counties selected from, respectively, the northwest and
southeast region. For each county, there are two graphs showing the
results of incremental and cumulative cross K-function values up to
adistance of 1 km from either side of a bridge. On all of the 16 graphs
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in Figures 3 and 4, for all bridges in a particular county, the x-axis
shows the increasing distance away from a bridge location (in m).
On the eight left-side graphs in Figures 3 and 4, the y-axis shows the
number of crashes observed within each distance increment; on
the eight right-side graphs in Figures 3 and 4, the y-axis shows the
cumulative number of crashes. The graphs indicate the relationship
among bridge locations in individual counties and whether ice-related
crashes cluster significantly within 1 km of either side of the bridges.

Results from Northwest Counties

Figure 3 shows the results of the network cross K-function analysis
conducted for the four counties selected from the northwest region
of Wisconsin. Figures 3a and 3b (for Barron County) and Figures 3¢
and 3d (for Washburn County) display statistically significant cluster-
ing of ice-related crashes around bridge locations in those counties.
In particular, Barron County shows a high clustering as depicted by
the large spike in Figure 3a of the observed cross K-function line
within the first 100 meters. Conversely, Rusk County (as shown in
Figures 3e and 3f) and Bayfield County (as shown in Figures 39
and 3h), show no significant clustering of ice-related crashes around
bridge locations. For these two counties, although the observed
K-function line is above the mean line at certain distance increments
(which suggests a clustering tendency), the results are inconclusive
at a 95% confidence level.

The results of the K-function analysis for the northwest counties
suggest that bridge locations in Washburn and Barron Counties are
more prone to the occurrence of ice-related crashes than are the
locations in Rusk and Bayfield Counties. Given the similar safety
performance of these counties in the rates of ice-related crashes, as
seen in the crash-rate data listed in Table 1 for these four counties, the
differences in the occurrence of ice-related crashes at bridge locations
are clear. The results provide conclusive evidence that Washburn
and Barron Counties should focus additional maintenance attention
on bridge locations. Moreover, the results also provide an opportunity
for the counties’ personnel to compare and contrast their winter
maintenance activities in relation to bridge locations, to improve their
individual county’s results. Several reasons could account for the
differences in patterns, including differences in winter maintenance
techniques and priorities, specifically anti-icing versus deicing
strategies.

Results from Southeast Counties

Figure 4 shows the results of network cross K-function analysis
conducted for the four counties selected from the southeast region
of Wisconsin. Figures 4a through 4h show statistically significant
clustering of ice-related crashes around bridge locations in all four
counties selected in the southeast region. Clusters are close to the
bridges’ location: almost within the first 50 m on either side of the
bridges. Moreover, the clustering tends to become insignificant quickly
as distance from the bridges increases. These results are consistent
among all four counties, similar to the ice-related crash rates.

The results of the network cross K-function analysis for these
southeast counties suggest a significant relationship between the
occurrence of ice-related crashes and bridge locations. The results
provide conclusive evidence that Ozaukee, Waukesha, Racine, and
Kenosha Counties should focus additional maintenance efforts on
bridge locations to reduce the occurrence of ice-related crashes.
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FIGURE 3 Network Cross K-function results of statistically significant counties selected from the northwest
region of Wisconsin: (a, b) Barron, (¢, d) Washburn, (e, f) Rusk, and (g, h) Bayfield.
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CONCLUSIONS

This research demonstrates the innovative application, as well as
the usefulness, of integrating GIS-based data with advanced spatial
statistical techniques for the analysis of safety data for winter main-
tenance purposes. The use of network-based statistical methods such
as the cross K-function was the most significant improvement in this
research. As previously mentioned, most spatial statistical method-
ologies have been developed for data sets distributed in planar space.
The assumption of planar space is violated with crash data; hence, the
use of network-based methods takes on added significance, especially
when analyzing the microscopic-level components of a large-scale
system, as is the case when looking at individual features over several
counties.

The aforementioned procedures bring an added dimension of
accuracy to the analysis of safety data (which had been previously
missing) and can be particularly useful to support winter maintenance
decisions. The use of safety data when evaluating winter maintenance
alternatives provides a different perspective to decision making
on issues of winter maintenance, one that has not been previously
explored. The results of this research were not only based on visual
maps and interpretations, but they also incorporate the use of advanced
statistical methodologies. Analysis at the levels shown in this research
is rarely found in the literature. In fact, most studies available focus
their analysis at larger scales such as streets or county levels due to
data or computational limitations.

Research findings show patterns of ice-related crashes in relation
to bridges that are considered ice-prone locations and that are the
focus of counties’ winter maintenance activities such as anti-icing
and de-icing. This research adds to that knowledge by providing
statistical measurements that suggest that ice-related crashes cluster
around bridges at several locations. Thus, in those counties where
ice-related crashes cluster around bridge locations, winter maintenance
activities should be focused on bridges to improve safety. Results
that indicate bridges where ice-related crashes cluster as hotspots, will
enable stakeholders to focus their maintenance and safety improve-
ments at locations with those features that cause the clustering of
crashes. County winter maintenance personnel can use these results
to improve current winter maintenance policies and implement
proactive measures such as anti-icing at bridges. Moreover, the fact
that patterns of ice-related crashes were analyzed for counties in the
same region with similar ice-related crash rates provides a basis for
winter maintenance personnel to compare and assess the differences
in winter maintenance techniques.

Although this research was focused on applying methodologies
to identify crash clustering around bridges, the set and sequence of
procedures used in this research are not limited to analysis of weather-
related crashes. This methodology can be easily applied to other
types of crash data either by individual type or severity, against
different geometric features such as intersection locations and
segment midpoints. Tools used in this research are readily available
online and require only basic GIS knowledge and the use of ArcGIS
software.
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