Variable Selection Issues in
Tree-Based Regression Models
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Recently, there has been increasing interest in the use of classification
andregression tree (CART) analysis. A tree-based regr ession model can
be constructed by recursively partitioning the data with such criteria
as to yield the maximum reduction in the variability of the response.
Unfortunately, the exhaustive search may yield abiasin variable selec-
tion, and it tendsto choose a categorical variable as a splitter that has
many distinct values. In this study, an unbiased tree-based regression
gener alized unbiased inter action detection and estimation (GUIDE) model
isintroduced for itsrobustness against the variable selection bias. Not
only aretheunderlying theor etical differencesbehind CART and GUIDE
in variable selection presented, but also the outcomes of thetwo different
tree-based regression models are compared and analyzed by utilizing
inter section inventory and crash data. Theresultsunder score GUIDE's
strength in selecting variablesegually. A simulation shed additional light
on theresulting negativeimpact when an algorithm wasinappropriately
applied to the data. This paper concludes by addressing the strengths
and weaknesses of—and, moreimportant, thediffer encesbetween—the
two hierarchical tree-based regression models, CART and GUIDE, and
adviseson theappropriateapplication. It isanticipated that the GUIDE
model will provideanew per spectivefor usersof tree-based modelsand
will offer an advantage over existing methods. Usersin transportation
should choose the appropriate method and utilizeit to their advantage.

Advancementsin statistical science and the development of statisti-
cal software packages have led to tremendous devel opment in high-
way safety studies. Significant efforts have been taken to improve
model usability and comprehension acrossthe diverse popul ation of
safety practitioners. Within the last decade, there has been increasing
interest in the use of classification and regression tree analysis.
Stewart illustrated the application of the classification treeto deter-
mine the subset of a collection of predictors that yielded the most
differentiated likelihood of drivers being either killed or seriously
injured when they hit guardrails (1). Karlaftis and Golias modeled
the relationship between crash rates and rural roadway geometries
by using a hierarchical tree-based regression (HTBR) model (2). A
similar approach was taken by Abdel-Aty et al. to analyze signal-
ized intersection safety performance, which highlighted individual
crash prediction models by crash types instead of total nhumber of
crashes (3). Washington et al. promoted the application of HTBR by
extending these model sto other transportation-related areas such as
trip generation and motor vehicle emissions (4-6). Coincidentally,
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Washington and Stewart (1, 4-6) summarized and recommended the
potential promise of theregression-tree-based method asapreliminary
analysis tool for identifying important variables and suggesting
approximate functional formsfor parametric models. Therecommen-
dation was adopted in a study conducted by Park and Saccomanno,
in which highway—railway grade crossing collision models were
sequentially developed on the basis of atree-based data stratification
method (7).

In general, the outcomes of tree-based modelsarerelatively smple
for a nonstatistician to interpret, which is of primary interest to
practitioners and engineers. The use of the tree-based model has
expanded quickly because of itsavailability asafunctionin moreand
more statistical packages, including the classification and regression
tree (CART) or its counterparts S-plus (TREE, RPART), SYSTAT
(TREES), and R (TREE, RPART). A thorough understanding of the
underlying theories of the tree-based method seems to be lacking
in previous studies, however, which may prevent practitionersfrom
producing an optimal model and manipulating data appropriately.

Although not new to readers who are aware of the tree-based
method, atree-based regression model can be constructed by recur-
sively partitioning datawith such criteriaasthetotal sum of the squared
error (SSE). In other words, thevalues of al thevariablesinthemodel,
either discrete or continuous, are selected to yield the maximum
reductioninthevariability of theresponse. Thea gorithm exhaustively
searches all the variables as well asall the values for each selected
variableto obtain the optimal results. Unfortunately, the exhaustive
search canyield abiasin variable selection, and it tendsto choose a
categorical variable as a splitter that has many distinct values.

For instance, if acategorical variable has n distinct values, there
are 2! — 1 possible binary splits and they increase exponentially
with n. Inthisstudy, an unbiased tree-based regression model called
generalized unbiased interaction detection and estimation (GUIDE)
is introduced, which is known for the robustness of its variable
selection bias (8). Compared with the dominant use of the CART
model, GUIDE isrelative new, but it holds promisefor transportation
studies. The limited use of GUIDE is partialy attributed to the lack
of itsavailability within statistical packages, but it has been success-
fully applied in developing winter snowstorm cost functions and
winter maintenance activities (9, 10). It isanticipated that the GUIDE
model will provide a new perspective for users of tree-based models
and will offer an advantage over existing methods. Usersin trans-
portation should choose the appropriate method and utilizeit to their
advantage.

Starting with abrief description of CART and GUIDE, this study
elaborates the theories behind the types of models with afocus on
the difference between the two algorithms in variable selection.
Following a case study of intersection crash data, the outcomes of
the two different tree-based regression models are compared and
analyzed. Theresultsof asimulation model areincludedtoillustrate
the negative impact resulting from inappropriate application of an
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algorithm to the data. In conclusion, the strengths and weaknesses
of—and, more important, the differences between—the two HTBR
models (CART and GUIDE) are addressed and advice is given on
the appropriate application.

POISSON REGRESSION TREE THEORY

Crash dataare nonnegative, discrete count datathat can be modeled by
the Poisson distribution when the equality of the mean and varianceis
not violated or by negative binomia distribution when data over-
dispersionispresent. Inthisstudy, the number of crashes, theresponse
variableY;, is assumed to follow a Poisson distribution such as
Y, ~ Poisson(y;) i=12...,n )]
where Y, is number of crashes at location i and | is the expected
number of crashes.

The expected number of crashes |; can be expressed as the prod-
uct of traffic exposure and the exponential function of the potential
crash-contributing factors or other explanatory variables:

W= V*@(p(ﬁo+ﬁlxi1+"'+[3kxik) &

where

V = traffic exposure [for an intersection, million entering vehicles

(MEV); for asegment, million vehicle milestraveled],
Xi= X, -, ;) = vector of predictor variablesfor locationi, and
B = (Bo, - - -, Px) = vector of unknown parameters.

When tree-based regression models or ageneralized linear model
isfitted, MEV can be handled differently, either as an offset or a
predictor. If treated as an offset, asin this study, it is not used to
categorize an intersection or split tree; otherwise it will be consid-
ered asasplitter and the regression model structure will be changed
accordingly.

Thelinear relationship between the expected number of crashesand
the corresponding vector of predictorsis obtained from the logarithm
transformation:

lOg(Hi): |Og(v)+Bo+B1Xi1+"'+BkXik (€)]

Themaximum likelihood estimation of B, B4, - - - , Bk can be obtained
by maximizing the likelihood function L(i; y) = IT, e '/ yi! or,
equivaently, itslog likelihood function (11):

(i y) =, log(k )= X 1 =2 w!

Recursive Partition Method

The same notation to express the tree algorithm was adopted from
Breiman et a. (Table1) (12). Both CART and GUIDE use the same
algorithmto partition data. When adataset is partitioned recursively,
it is necessary to select an appropriate splitter. If the predictor vari-
able x is numerically ordered, the data set is partitioned by x, < c,
and if x is categorical, the data set is partitioned by x, € A, wherec
is a constant and A is a fixed subset of possible values of x. The
method proceeds by aniterative search for the variable aswell asits
specific value from all of the variableswithin all the possible levels
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TABLE 1 Tree Notation

Notation Meaning

t Node

T Tree

T Set of terminal nodes of T

[Tl Number of terminal nodes of T

T, Subtree of T with root node t

{t} Subtree of T, containing only the root node t

or valuesin the model that result in the maximum reduction in vari-
ability of the dependent variable. The best splitter, s*, isdetermined
by deviance D or by sguared error, where asquared error for anodet
isdefined asfollows:

D(t)=Y,  (va—h) (4)

where [lisan estimation of mean or asample meany. For generalized
linear models, the deviance is also called the log likelihood (ratio)
statistic, defined by D = 2 x (I(Hnac; ) = (5 Y)), Where s is the
maximum likelihood estimate. In the Poisson case (13), deviance
can be simplified as

D=2x {Z;yi Iog(%) =3 (- ﬁ)}

If the deviance for a node t is denoted D(t), the deviance for a
treeTis

D(T)=3. D)= X, (%= (5
For abinary partitioning by asplitter s, adifference by sisdefined as
AD(s,t)=D(t)-D(t,)-D(tg) (6)

wheret, and t are the left and right child nodes of t, respectively.
Finally, the best splitter, s*, is obtained by maximizing the
difference:

AD(s", t)=max_sAD(s, t) )

where Sisthe set of al possible splitters.

The maximum reduction occurs at some s, a specific value of a
selected variable. When the dataare split at sinto two samples, these
remaining samples have much smaller variance in Y than does the
original data set. Thus, the reduction at nodet is the greatest when
the deviances at nodest, and tg are smallest.

GUIDE Variable Selection

Themain difference between GUIDE and CART liesin how the split-
ter variables are selected. CART hasadopted one of the most common
approaches for making this selection. It searches al possible axis-
orthogonal partitions and selects the split that decreases a statistic (an
important measure or animpurity measureisused) themost. However,
an exhaustive search such as this is biased toward variables with
more levels or split points (14, 15). The Bonferroni-adjusted test is
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FIGURE 1 Curvature test of residuals in GUIDE: (a) four groups (A, B, C, and D)
with the quartiles (325%, 350%, @75%) and (b) contingency table of residuals.

suggested to avoid this bias problem, but since it can be too conser-
vative, it tendsto select variableswith fewer levelsor split points (16).
The selection methods used in CART and GUIDE are described
briefly in this section.

CART uses the following process for selecting a variable. First,
let %, be thekth predictor (k=1, ..., n). Thebest split of x, a nodet
is selected as explained in the previous section; that is, Ax(t) =
AD(s*, t) = max.. s AD(s, t). AD(s, t) is called an impurity measure.
CART then chooses the predictor with maximum Ax(t) at node t.
The steps are applied to the child nodes recursively.

GUIDE hasadifferent approach to variable selection. Asitsname
indicates, GUIDE is designed to be unbiased through its use of
residual analysis (chi-square tests). There are two main tests for
selecting avariablein GUIDE; oneisacurvaturetest and another is
an interaction test. Figure 1 presents a hypothetical example. After
aPoisson model isfit for anumerically ordered variable, theresiduals
are divided into four groups at the quartiles and cross-tabulated
with signs of residual s as rows and groups as columns. Asshownin
Figure 1a, the quartile and sign divide the spaceinto eight grid cells.
In Figure 1b, the p-value from the y*-test can be cal culated through
the contingency table, in which the number in each cell is the count
of theresidualsin each grid cell of Figure 1a. The same steps can be
applied to categorical variableswhen categoriesare used ascolumns,
the same application asthat using quartilesfor continuous variables.
It is called a curvature test; the name comes from the shape of the
distribution of residualsin the plot.

The correlations among predictors are common and cannot be
overlooked. Asthe name suggests, the interaction test isresponsible
for testing the intersection between variables. The residuals of each
pair of numerical variables are assigned to each of the four quadrants
divided by the sample medians of the paired variables as shown in
Figure 2a. Aswith the curvature test, the contingency tableis gen-
erated in which the p-value from the x*-test can be calculated on the
basis of how many observationswith positive (or negative) residuals

arelocated in each cell in Figure 2b. The same test applies to cate-
gorical variables and the mixture of categorical and numerical vari-
ables. If the smallest p-valueisfrom acurvature test, the associated
predictor is selected. Otherwise, if the smallest p-value is from an
interaction test and they are categorical, the one with the smaller
curvature p-value is chosen, or if they are numerical, the one with
the smaller total SSE is chosen.

The widely different variable selection approaches provided in
CART and GUIDE yield different results, especially for avariable
with alarge number of distinct variables. As explained earlier, the
exhaustive searchin CART canyield abiasin variable selection and
tends to choose a categorical variable with many distinct values,
whereas GUIDE is designed to be more robust and unbiased in vari-
able selection, regardless of how many distinct values the variable
may have. The following case study and a simulation shed light on
how the two tree-based al gorithms performed.

INTERSECTION CRASH CASE STUDY

A common practice of many highway safety research studiesis to
develop areliable classification criterion that can be used to categorize
similar sitesinto groups sharing similar attributes and consequences.
Traditional statistical methods are cumbersome to use or are of
limited utility in addressing these types of classification problems.
A tree-based regression method significantly improves the model
efficiency.

Explanatory Variable Analysis

Threeyears of Wisconsin intersection crash data (2001-2003) were
used in this study. For each intersection, the crash counts were
categorized by crash severity such as fatal, injury, and property

Xi + ‘
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FIGURE 2 Interaction test of residuals in GUIDE: (a) divide (X;, X2) space into
4 quadrants (A, B, C, D) at the sample medians (X4, X2) and (b) cross tabulate

data with signs of residuals.
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damage only (PDO). The intersection file contained a lot of addi-
tional information that might be useful in explaining crash causes
and in estimating crash frequency by number of daily entering vehi-
cles, areatype (rural or urban), and more important, geometric fea-
tures of the intersection such as number of legs, number of lanes,
existence of dividend or |eft lane, and so forth. These geometric char-
acteristics were categorized as one variable called GEOTYPE in
Figure 3 (17). The variables used in this study are shownin Table 2
and their descriptive statistics are summarized in Table 3.

33

The count of fatal crashesislow compared with injury or PDO
crashes. For example, there were only 47 fatal counts from all
3,202 intersections, whereas there were 5,026 injury crashes and
7,721 PDO crashes in 2001; 2002 and 2003 data had similar sta-
tistics. The dominant crash types were either angle (44.6%) or
rear-end (32.4%) types. Small sample size posed an extra chal-
lenge to the validity of the conclusions drawn from statistical
analysis and inference, as discussed regarding other models such
as the Poisson—gamma model (18). Extra effort is needed in the

FIGURE 3 Geometric category definitions (GEOTYPE) (17).

GeoCodes
T-Intersections Four-Legged Intersections
A: |Two-Lane Major with No Left- | ————————"— H: [Two-Lane Major with No Left- |
Turn Lane | Turn Lane I
| |
| —_
|
\
|
|
B: [Two-Lane Major with Left- —— I: |Two-Lane Major with Left- |
Turn Lane = ‘ — Turn Lane (One or Both |
| Approaches) —_ g — P
‘ |
I
|
|
C: |Four-Lane Major Undivided | ————————————— X J: |Four-Lane Major Undivided
with No Left-Turn Lane | —/————— ————— with No Left-Turn Lane | |
!t | —— ==
| I | ,,,,, f———
D: |Four-Lane Major Divided with| ———————————— K: |Four-Lane Major Divided with .
No Left-Turn Lane No Left-Turn Lane | } |
| :
| |
_l | ,7
E: |Four-Lane Major Divided, 55+ L: |Four-Lane Major Divided, 55+ |
mph Approach Speed, with | - -—---—- ————— —55+ mph Approach Speed, with |
Single or Dual Left-Turn 55+ ﬂ Single or Dual Left-Turn EYY— — oSS 55+
Lanes Lanes (One or Both 55+ e —
| | Approaches) | | |
F: |Four-Lane Major Divided with | =—————— —_— M: |Four-Lane Major Divided with i
Left-Turn Lane =Y Left-Turn Lane (One or Both | | |
I | Approaches) BT
| I
_| | Ii
G: [Four-Lane Major Divided with| ———————————— N: |Four-Lane Major Divided with |
Dual Left-Turn Lane NN NN Dual Left-Turn Lane (One or | I |
i ialw P il i Both Approaches) | SS— —
|| prroaches) S —
Special Intersections
O: [Five or More Intersection ! Categories P and R exist but are not included in this tool
Approaches | : because no data were available for intersections of these types.
— P = Roundabout
I R = Four-Lane Major Undivided with Dual Left-Turn Lane
(One or Both Approaches)
Q: [Four-Lane Major Undivided
with Left-Turn Lane (One or
Both Approaches) T::"—— e
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TABLE 2 Description of Variables
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TABLE 3 Summary Statistics of Variables

Variable Description TOTO0103 AREATYPE  Sites NUMLEG  Sites
TOT0103 Total number of crashes between 01-03 Min. 1 Urban 1152 3 361
GEOTYPE Geometric typein Figure 3 Mean 12 Rural 2,050 4 1,349
AREATYPE  Typesof area(rural or urban) Max. 134 Unknown 1,492
ENTVEH Millions of annual entering vehicles (MEV) SD 14.17
TRFCNTL Types of traffic controls (3-way, 4-way, yield, flash, ENTVEH (MEV) DIVIDED Sites TRFCNTL  Sites
side, signal) Min. 053  Yes 788 3-way 4
NUMLEG Number of intersection approach legs (3, 4, or unknown) Mean 14.73 No 985 4-way 41
NUMLANE Number of major roadway lanes (2, 4, or unknown) Max. 89.87 Unknown 1,429 Flash 2
DIVIDED Existence of mgjor roadway median sD 12.9 Side 2147
LEFTTURN Existence of |eft-turn lane(s) NUMLANE Sites LEFTTURN Sites S|gna| 1,005
2 697 Yes 1,086 Yield 3
4 1,076 No 687
futureto investigate the sensitivity of small samplesize on tree-based Unknown 1,429 Unknown 1,429 Total 3,202

methods.

Sinceit is difficult to get a meaningful classification result with
an extremely low count, the study focused on the total number of
crashesfor al yearsin the study. Another outstanding issuein traffic
safety studies is the missing information and how it is handled.
A general discussion of statistical analysis with missing data has
been made by Little and Rubin (19), and Feelders discusses missing
datain tree-based methods (20). GUIDE and CART have different
approaches to handling missing data: GUIDE employs mean impu-
tation for amissing numerical variable and creates anew categorical
variable for amissing category (21), whereas CART uses surrogate
splits (12, 20).

The average annual crash frequency was calculated for each
individual intersection assigned ageometric category (GEOTY PE).
GEOTY PE represents alarge variety of intersections whose saf ety
performanceisdetermined by crash frequencies. Figure 4 showsthat
intersection crashesvary drastically fromahigh point at GEOTY PEN
with average crashes of 50 to Types F, G, J, K, L, M, O, Q with
above-average numbers of crashes, to other typeswith fewer crashes.
An alternative approach isto replace GEOTY PE with four primary

geometrics that include the number of intersection approach legs,
number of major roadway lanes, whether the major roadway had a
median or not, and the existence of aleft-turn lane or lanes. The latter
grouping method is slightly undermined by not incorporating other
details such as speed limit and number of |eft-turn lanes, but it sim-
plifiesintersection categories by not counting asmany as 16 distinct
values in the GEOTY PE variable. The comparison between using
GEOTY PE and its substitute is provided in the next section.

Stratification Results

Sincethe exhaustive search adopted by CART isbiased toward vari-
ableswith morelevelsor split points (15) and GUIDE ismore robust
in variable selection by design, the variable GEOTY PE, which has
16 distinct values excluding unknowns, may perform differently in
CART and GUIDE. Itis of primary interest to investigate how the
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variable GEOTY PE gets selected in terms of both sequence and
splitting value in both algorithms.

Figure 5 shows that GEOTY PE is used as the first variable to
stratify intersection by crash rate (crash per MEV) in both GUIDE
Version 5.2 (21) and CART viarpart in the R package (22). The
splitting values, however, are different. In GUIDE, GEOTYPE is
divided by Group{A, B, C,D, F, G,K} and Group{E, H, I, J,L, M,
N, O, Q, S}, whereas CART splits the intersections by Group {A,
B,F, G} and Group{C,D,E,H,I,J L,K,M,N, O, Q, S}. Thetwo
algorithms largely disagree on Types C and D—a four-lane major
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undivided intersection with no left-turn lane and a four-lane major
divided intersection with no left-turn lane. From an engineering per-
spective, GUIDE ismore reasonable because it groupsintersections
of Types A, B, C, D, F, and G (which are T-intersections with at
least 9 conflict points) and of TypesH, I, J, L, M, and N (which are
four-leg intersectionswith at least 32 conflict points). Another finding
isthat GUIDE continues to stratify intersections by traffic control
for both child nodesfrom thefirst split, whereas CART only stretifies
thenode (Node[2]) with alarger number of distinct values, suggest-
ing avariable selection bias. For the node partitioned by TRFCNTL,

GEOTYP=E,H,I,J,LM,N,0Q

TRFCNTL=3-Way, Sj

TRFCNTL>
Side, Yield

gnal {-Way, Flash,

[4]

GEOTYP=

?,A

D,F.GK

TRFCNTL=Flash, Sig CNTL=3,4-Way, Side, Yield

(7]
N=1516
V=0.528

GEQTYP=M,Q

(9]
N=202
V=0.613

(@)

4. M,N,0,Q GEQTYP=?,AB,F,G

(31
N=1624
V=0.528

-Way, Flash, Side

5]
N=790
V=0.790

N=762
V=0.950
GEOTYP=E,H,IJ.LN,
[8]
N=477
V=0.818
GEOTYP=C,D,EH,I1,J,
TRFCNTL=3-Way, Sighal ~ TRFCNTL
[4]
N=788
V=0.950
FIGURE 5

V = average crash rate in group.)

(b)

(a8) GUIDE results and (b) CART results, including GEOTYPE as a predictor. (N = number of sites in group;
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both GUIDE and CART partition theintersection by Group { 3-Way,
Signal} and Group (4-Way, Flash, Side). GUIDE continuesto stratify
the node using GEOTY PE, but CART ceasesto do so.

As suggested in the section on the explanatory variable analysis,
replacing the variable GEOTY PE (which contains 16 distinct vaues
with four primary geometric features) may mitigate the negativeinflu-
ence of variable selection bias. It would be of interest to investigate
whether the two algorithms perform consistently when decomposing
a complex variable with simple variables to identify if they are
exchangesble. Figure 6 illustrates the following observations:

e GUIDE and CART split thetree quite differently: GUIDE uses
TRFCNTL, whereas CART uses NUMLEG asthefirst splitter;

TRFCNTL=3,4-Wa)

LEGS=4-Legge| LBEGS=3-Legged, Other

[4]
N=712
V=0.927

LANE=4-Lane LANE=2-Lane, Unknown

DIV=Dividéd

Transportation Research Record 2061

e As for the second splitter, the two algorithms switched the
sequence of variables with the use of NUMLEG in GUIDE and the
useof TRFCNTL in CART; and

e GUIDE continuesto split thetree using DIVIDED, but CART
stops at the traffic control.

The sequence of variables introduced into each model and their
relativeimportance can be produced viathe tree-based method. V ari-
ables found to be significant were kept in the tree, and insignificant
variables were rejected from the tree. This procedure is considered
asthemeansto rate theimportance of input factors (3). In GUIDE, the
variable TRFCNTL is more important in reducing data impurity
thanisNUMLEG, but the sequenceisreversedin CART. Moreover,

LEGS=4-Leggee

DIV=Undivided, Unknown LEGS=3-

(8] [9] [10] [11] [12] [13]
N=100 N=237 N=219 N=418 N=295 N=1221
V=0.908 V=0.706 V=0.683 V=0.811 V=0.606 V=0.504

(a)
LEGS LEGS=3-Leyged, Other
(2]
N=1349
V=0.852
TRFCNTL=4-Way, Side, Yi€ld Signal, Flash
[4] [5]
N=788 N=790
V=0.950 V=0.790

(b)

FIGURE 6 Results for (a) GUIDE and (b) CART, including GEOTYPE as a predictor. (N = number of sites in group;

V = average crash rate in group.)
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the tree-based stratification method is regarded as a valid way to
account for contral factorsin collision prediction by selecting the ones
that reduce the impurities in the data (7). The variable DIVIDED
would be included in the model according to GUIDE but would be
rejected if the model were based on CART. From an engineering
perspective, eventhough TRFCNTL and NUMLEG may be equally
important to categorizeintersections, traffic control type (signalized
and unsignalized intersections) is probably more popularly used than
the number of legs because the former directly reduces the number
of conflicts produced by thelatter. Median presenceisalso animpor-
tant safety indicator and should be included in the prediction model
because it directly affects the sight distance at intersections, the
storage space for crossing vehicles, and the way vehicle cross
each other’ s path. In summary, GUIDE’ sresults are preferable to
engineers’ judgment and more consistent with their expectations.
Besidesall the above-mentioned differences, thefinal outcomes of
GUIDE and CART in Table 4 manifest that the terminal nodes gen-
erated by two different tree dgorithms are arguably similar. Generally
speaking, GUIDE produces more precise categoriesthan CART with
the typical nodes such as Nodes [3] and [5] with GEOTY PE and
Nodes[2] and [5] without GEOTY PE in CART. For other categories,
significant similaritieswere observed aswell. Therefore, therelatively
new GUIDE algorithm can be cross-validated by the popularly used
CART, and the two tree a gorithms can produce consistent resullts.

Comparisons Between GUIDE and CART

The stratification resultswere compared and analyzed from the engi-
neering perspective in the previous section, where GUIDE is more
favorablethan CART. From astatistical point of view, theprediction
error, calculated as

TABLE 4 Comparisons of Terminal Nodes

Cart Guide
With GEOTY PE
[4] Geotype [4] Geotype{E,H,I.JL.M,N,
{CD,EH,I.JK,L, 0,Q} signa or 3-way
M,N,O,Q} signal
or 3-way
[5] Geotype [8] Geotype {E,H,I,JL,N,O}
{C,D,EH,I,.JK,L, unsignalized or flash
M,N,0,Q} [9] Geotype {M,Q} unsignalized
unsignalized or or flash
flash
[3] Geotype [6] Geotype{A,B,C,D,F,GK,?}
{ABFG?%} Signalized
[7] Geotype{A,B,C,D,F.GK,?}
Unsignalized
Without GEOTY PE
[2] 4-legged [4] 4-legged 3 or 4-way, flash,
signal
[10] 4-legged side or yield
divided
[11] 4-legged side or yield
undivided
[4] 3legged [12] 3-legged unsignalized
unsignalized
[5] 3-legged [8] 3-legged 3 or 4-way, flash,
signalized signa, 4-lane
[9] 3-legged 3 or 4-way, flash,
signal, 2-lane

[13] Other leg type unsignalized
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is one of the most important measures of model prediction perfor-
mance. Despite the fact that GUIDE produced more terminal nodes
than CART (5 by GUIDE and 3 by CART with GEOTY PE; 7 by
GUIDE and 3 by CART without GEOTY PE), the prediction errors
from GUIDE, with GEOTY PE (1011.13) or without GEOTY PE
(1016.23), are dlightly smaller than those of CART (1011.93 with
GEOTYPE and 1031.9 without GEOTY PE). Therefore, GUIDE
predicted more accurately than CART with more stratification.

Even though the evidence from theintersection case demonstrates
that GUIDE outperforms CART from an engineering perspective and
a statistical standpoint, the final outcomes (terminal nodes) gener-
ated by both tree algorithms are arguably similar and the prediction
error margins are relatively small. The following simulation study
revealsaclearer and more convincing comparison between GUIDE
and CART, especidly in the variable selection.

SIMULATION CASE STUDY

In the intersection case study, the results from GUIDE are different
from those from CART when the variable GEOTY PE (with 16 dis-
tinct values excluding unknowns) is treated as one of the splitters
(predictors). The outputsfrom both a gorithms, however, arearguably
till similar, asisshownin Table 4. Intherea world, many examples
use significantly more complex variables (such as mixed types) than
what isdemonstrated here, and GUIDE exhibits superior performance
in variable selection under more complicated situations.

A simulated case was constructed to demonstrate the strength of
GUIDFE'sfairnessin variable selection. To createasimilar situation
as the intersection crash data while following the same approach
used by Loh (8), the response variable Y was randomly sampled
as counting data from a uniform distribution and the independent
variables were generated as categorical datafrom multinomial dis-
tributions. Therewerethreevariablesin thefirst simulation case: X1
(with 5 levels), X2 (with 10 levels), and X3 (with 20 levels). There
weretwo variablesin the second simulation case: X1 (with 3 levels)
and X2 (with 20 levels). The difference between Simulations 1 and 2
wasthat the number of observationsfor each level of categorieswas
the samein Simulation 1, whereas they were different in Smulation 2
(which may be closer to more realistic situations).

For example, X1in Simulation 1 had 1,000 observationsfrom five
distinct levels, where the number of observationsfrom each level was
approximately 200 (5 x 200 = 1,000). Similarly with X2, the number
of observationsfrom each level was approximately 100 (10 x 100 =
1,000), and so on. In Simulation 2, X1 had 1,000 observations from
three distinct levels, but thistime each level had a different number
of observations (approximately 200, 300, and 500 for each level).
Each simulation case wasiterated 100 times and the number of times
that the variables were selected is shown for CART and GUIDE.
Numbersin parentheses indicate the number of levels.

No X1 X2 X3
Smulation1l  Partition  (5) (10) (20) Total
CART 36 2 3 59 100
GUIDE None 36 30 34 100
No X1 X2
Simulation 2 Partition (©)] (20) Total
CART 62 1 37 100

GUIDE None 55 45 100
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From the simulation study, CART seems to be biased toward
choosing the variable with more levels as its first splitter, whereas
GUIDE tends to choose al the variables with likely probabilities.
For instance, in the result from Simulation 2, CART selects X3 as
its first splitter dominantly over X1 and X2, whereas GUIDE does
not show this bias toward X3. Moreover, CART fails to partition
variables 36 times out of 100 iterations in the first simulation case,
and in the second one, the result is even worse: CART failsto grow
the tree 62 times out of 100 iterations. This simulation study shows
that GUIDE might be preferable when there are several categorical
variables with different numbers of levels.

CONCLUSIONS

In the last decade, there has been increasing interest in the use of
classification and regression tree analysis. A tree-based regression
model can be constructed by recursively partitioning data by using
such criteriaasto yield the maximum reduction in the variability of
the response. Unfortunately, such an exhaustive search may yield a
biasin variable selection and will tend to choose acategorica variable
asasplitter that has many distinct values. For instance, if acategorical
variablehhasn distinct values, thereare 2™ — 1 possible binary splits,
whichincreases exponentially with n. Inthis paper, anew tree-based
regression model, GUIDE, was introduced for its robustness in
variable selection bias.

Several important findings were discovered from the intersection
crash data:

e Whenthevariable GEOTY PE (which has 16 distinct values) is
included in thetree-based regression model, both CART and GUIDE
choseit asthefirst splitter but disagreed on the splitting value. From
an engineering perspective, GUIDE is more reasonable because
it separates most unsignalized intersection types from signalized
intersections.

e Variable selection bias can be detected in CART at the second
level, where CART isproneto select thenode (Node[2]) with alarger
number of distinct values.

e \When GEOTY PE is replaced with four simple geometric fea-
tures, each of which includes fewer distinct values, the sequence of
variables entering the model was different in CART and GUIDE.
Traffic control is chosen first in GUIDE and the number of legsis
chosen first in CART.

e Terminal nodes, the final categories generated by GUIDE and
CART, manifest that the outcomes of the two different tree-based
algorithms are arguably similar and consistent.

In additionto theintersection field, asimulation study demonstrated
that CART seems to be biased toward choosing the variable with
more levelsasitsfirst splitter, whereas GUIDE tendsto pick all the
variableswith likely probabilities. Furthermore, CART cannot suc-
cessfully grow or prune atree in many of the simulation iterations.
The simulation study showed that GUIDE may be preferable when
there are several categorical variables with differing numbers of
levels. In summary, variable selection is the key to the tree-based
regression model because it not only determinesthe level of impor-
tancefor each variable but also chooses the variable based on statis-
tical significance. Asdemonstrated through theintersection crash data
and asimulation study, the variabl e selection bias can be overcome
by GUIDE. CART, one of the most popular tree-based regression
algorithms, should be used with caution when the model includes
variables with many distinct values.
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