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Washington and Stewart (1, 4–6) summarized and recommended the
potential promise of the regression-tree-based method as a preliminary
analysis tool for identifying important variables and suggesting
approximate functional forms for parametric models. The recommen-
dation was adopted in a study conducted by Park and Saccomanno,
in which highway–railway grade crossing collision models were
sequentially developed on the basis of a tree-based data stratification
method (7 ).

In general, the outcomes of tree-based models are relatively simple
for a nonstatistician to interpret, which is of primary interest to
practitioners and engineers. The use of the tree-based model has
expanded quickly because of its availability as a function in more and
more statistical packages, including the classification and regression
tree (CART) or its counterparts S-plus (TREE, RPART), SYSTAT
(TREES), and R (TREE, RPART). A thorough understanding of the
underlying theories of the tree-based method seems to be lacking
in previous studies, however, which may prevent practitioners from
producing an optimal model and manipulating data appropriately.

Although not new to readers who are aware of the tree-based
method, a tree-based regression model can be constructed by recur-
sively partitioning data with such criteria as the total sum of the squared
error (SSE). In other words, the values of all the variables in the model,
either discrete or continuous, are selected to yield the maximum
reduction in the variability of the response. The algorithm exhaustively
searches all the variables as well as all the values for each selected
variable to obtain the optimal results. Unfortunately, the exhaustive
search can yield a bias in variable selection, and it tends to choose a
categorical variable as a splitter that has many distinct values.

For instance, if a categorical variable has n distinct values, there
are 2n−1 − 1 possible binary splits and they increase exponentially
with n. In this study, an unbiased tree-based regression model called
generalized unbiased interaction detection and estimation (GUIDE)
is introduced, which is known for the robustness of its variable
selection bias (8). Compared with the dominant use of the CART
model, GUIDE is relative new, but it holds promise for transportation
studies. The limited use of GUIDE is partially attributed to the lack
of its availability within statistical packages, but it has been success-
fully applied in developing winter snowstorm cost functions and
winter maintenance activities (9, 10). It is anticipated that the GUIDE
model will provide a new perspective for users of tree-based models
and will offer an advantage over existing methods. Users in trans-
portation should choose the appropriate method and utilize it to their
advantage.

Starting with a brief description of CART and GUIDE, this study
elaborates the theories behind the types of models with a focus on
the difference between the two algorithms in variable selection.
Following a case study of intersection crash data, the outcomes of
the two different tree-based regression models are compared and
analyzed. The results of a simulation model are included to illustrate
the negative impact resulting from inappropriate application of an
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Recently, there has been increasing interest in the use of classification
and regression tree (CART) analysis. A tree-based regression model can
be constructed by recursively partitioning the data with such criteria
as to yield the maximum reduction in the variability of the response.
Unfortunately, the exhaustive search may yield a bias in variable selec-
tion, and it tends to choose a categorical variable as a splitter that has
many distinct values. In this study, an unbiased tree-based regression
generalized unbiased interaction detection and estimation (GUIDE) model
is introduced for its robustness against the variable selection bias. Not
only are the underlying theoretical differences behind CART and GUIDE
in variable selection presented, but also the outcomes of the two different
tree-based regression models are compared and analyzed by utilizing
intersection inventory and crash data. The results underscore GUIDE’s
strength in selecting variables equally. A simulation shed additional light
on the resulting negative impact when an algorithm was inappropriately
applied to the data. This paper concludes by addressing the strengths
and weaknesses of—and, more important, the differences between—the
two hierarchical tree-based regression models, CART and GUIDE, and
advises on the appropriate application. It is anticipated that the GUIDE
model will provide a new perspective for users of tree-based models and
will offer an advantage over existing methods. Users in transportation
should choose the appropriate method and utilize it to their advantage.

Advancements in statistical science and the development of statisti-
cal software packages have led to tremendous development in high-
way safety studies. Significant efforts have been taken to improve
model usability and comprehension across the diverse population of
safety practitioners. Within the last decade, there has been increasing
interest in the use of classification and regression tree analysis.

Stewart illustrated the application of the classification tree to deter-
mine the subset of a collection of predictors that yielded the most
differentiated likelihood of drivers being either killed or seriously
injured when they hit guardrails (1). Karlaftis and Golias modeled
the relationship between crash rates and rural roadway geometries
by using a hierarchical tree-based regression (HTBR) model (2). A
similar approach was taken by Abdel-Aty et al. to analyze signal-
ized intersection safety performance, which highlighted individual
crash prediction models by crash types instead of total number of
crashes (3). Washington et al. promoted the application of HTBR by
extending these models to other transportation-related areas such as
trip generation and motor vehicle emissions (4–6). Coincidentally,
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algorithm to the data. In conclusion, the strengths and weaknesses
of—and, more important, the differences between—the two HTBR
models (CART and GUIDE) are addressed and advice is given on
the appropriate application.

POISSON REGRESSION TREE THEORY

Crash data are nonnegative, discrete count data that can be modeled by
the Poisson distribution when the equality of the mean and variance is
not violated or by negative binomial distribution when data over-
dispersion is present. In this study, the number of crashes, the response
variable Yi, is assumed to follow a Poisson distribution such as

where Yi is number of crashes at location i and µi is the expected
number of crashes.

The expected number of crashes µi can be expressed as the prod-
uct of traffic exposure and the exponential function of the potential
crash-contributing factors or other explanatory variables:

where

V = traffic exposure [for an intersection, million entering vehicles
(MEV); for a segment, million vehicle miles traveled],

Xi = (xi1, . . . , xik) = vector of predictor variables for location i, and
� = (β0, . . . , βk) = vector of unknown parameters.

When tree-based regression models or a generalized linear model
is fitted, MEV can be handled differently, either as an offset or a
predictor. If treated as an offset, as in this study, it is not used to
categorize an intersection or split tree; otherwise it will be consid-
ered as a splitter and the regression model structure will be changed
accordingly.

The linear relationship between the expected number of crashes and
the corresponding vector of predictors is obtained from the logarithm
transformation:

The maximum likelihood estimation of β0, β1, . . . , βk can be obtained
by maximizing the likelihood function L(µ; y) = Πn

i=1 e−µj µyi

i / yi! or,
equivalently, its log likelihood function (11):

Recursive Partition Method

The same notation to express the tree algorithm was adopted from
Breiman et al. (Table 1) (12). Both CART and GUIDE use the same
algorithm to partition data. When a data set is partitioned recursively,
it is necessary to select an appropriate splitter. If the predictor vari-
able xi is numerically ordered, the data set is partitioned by xi ≤ c,
and if xi is categorical, the data set is partitioned by xi ∈ A, where c
is a constant and A is a fixed subset of possible values of xi. The
method proceeds by an iterative search for the variable as well as its
specific value from all of the variables within all the possible levels
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or values in the model that result in the maximum reduction in vari-
ability of the dependent variable. The best splitter, s*, is determined
by deviance D or by squared error, where a squared error for a node t
is defined as follows:

where µ̂ is an estimation of mean or a sample mean y–. For generalized
linear models, the deviance is also called the log likelihood (ratio)
statistic, defined by D = 2 × (l(µmax; y) − l(µ̂; y)), where µmax is the
maximum likelihood estimate. In the Poisson case (13), deviance
can be simplified as

If the deviance for a node t is denoted D(t), the deviance for a 
tree T is

For a binary partitioning by a splitter s, a difference by s is defined as

where tL and tR are the left and right child nodes of t, respectively.
Finally, the best splitter, s*, is obtained by maximizing the 

difference:

where S is the set of all possible splitters.
The maximum reduction occurs at some s, a specific value of a

selected variable. When the data are split at s into two samples, these
remaining samples have much smaller variance in Y than does the
original data set. Thus, the reduction at node t is the greatest when
the deviances at nodes tL and tR are smallest.

GUIDE Variable Selection

The main difference between GUIDE and CART lies in how the split-
ter variables are selected. CART has adopted one of the most common
approaches for making this selection. It searches all possible axis-
orthogonal partitions and selects the split that decreases a statistic (an
important measure or an impurity measure is used) the most. However,
an exhaustive search such as this is biased toward variables with
more levels or split points (14, 15). The Bonferroni-adjusted test is
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TABLE 1 Tree Notation

Notation Meaning

t Node

T Tree
~
T Set of terminal nodes of T

⎟ ~
T⎟ Number of terminal nodes of T

Tt Subtree of T with root node t

{t} Subtree of Tt containing only the root node t



suggested to avoid this bias problem, but since it can be too conser-
vative, it tends to select variables with fewer levels or split points (16).
The selection methods used in CART and GUIDE are described
briefly in this section.

CART uses the following process for selecting a variable. First,
let xk be the kth predictor (k = 1, . . . , n). The best split of xk at node t
is selected as explained in the previous section; that is, Δxk(t) =
ΔD(s*, t) = maxs∈S ΔD(s, t). ΔD(s, t) is called an impurity measure.
CART then chooses the predictor with maximum Δxk(t) at node t.
The steps are applied to the child nodes recursively.

GUIDE has a different approach to variable selection. As its name
indicates, GUIDE is designed to be unbiased through its use of
residual analysis (chi-square tests). There are two main tests for
selecting a variable in GUIDE; one is a curvature test and another is
an interaction test. Figure 1 presents a hypothetical example. After
a Poisson model is fit for a numerically ordered variable, the residuals
are divided into four groups at the quartiles and cross-tabulated
with signs of residuals as rows and groups as columns. As shown in
Figure 1a, the quartile and sign divide the space into eight grid cells.
In Figure 1b, the p-value from the χ2-test can be calculated through
the contingency table, in which the number in each cell is the count
of the residuals in each grid cell of Figure 1a. The same steps can be
applied to categorical variables when categories are used as columns,
the same application as that using quartiles for continuous variables.
It is called a curvature test; the name comes from the shape of the
distribution of residuals in the plot.

The correlations among predictors are common and cannot be
overlooked. As the name suggests, the interaction test is responsible
for testing the intersection between variables. The residuals of each
pair of numerical variables are assigned to each of the four quadrants
divided by the sample medians of the paired variables as shown in
Figure 2a. As with the curvature test, the contingency table is gen-
erated in which the p-value from the χ2-test can be calculated on the
basis of how many observations with positive (or negative) residuals
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are located in each cell in Figure 2b. The same test applies to cate-
gorical variables and the mixture of categorical and numerical vari-
ables. If the smallest p-value is from a curvature test, the associated
predictor is selected. Otherwise, if the smallest p-value is from an
interaction test and they are categorical, the one with the smaller
curvature p-value is chosen, or if they are numerical, the one with
the smaller total SSE is chosen.

The widely different variable selection approaches provided in
CART and GUIDE yield different results, especially for a variable
with a large number of distinct variables. As explained earlier, the
exhaustive search in CART can yield a bias in variable selection and
tends to choose a categorical variable with many distinct values,
whereas GUIDE is designed to be more robust and unbiased in vari-
able selection, regardless of how many distinct values the variable
may have. The following case study and a simulation shed light on
how the two tree-based algorithms performed.

INTERSECTION CRASH CASE STUDY

A common practice of many highway safety research studies is to
develop a reliable classification criterion that can be used to categorize
similar sites into groups sharing similar attributes and consequences.
Traditional statistical methods are cumbersome to use or are of
limited utility in addressing these types of classification problems.
A tree-based regression method significantly improves the model
efficiency.

Explanatory Variable Analysis

Three years of Wisconsin intersection crash data (2001–2003) were
used in this study. For each intersection, the crash counts were
categorized by crash severity such as fatal, injury, and property
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damage only (PDO). The intersection file contained a lot of addi-
tional information that might be useful in explaining crash causes
and in estimating crash frequency by number of daily entering vehi-
cles, area type (rural or urban), and more important, geometric fea-
tures of the intersection such as number of legs, number of lanes,
existence of dividend or left lane, and so forth. These geometric char-
acteristics were categorized as one variable called GEOTYPE in
Figure 3 (17 ). The variables used in this study are shown in Table 2
and their descriptive statistics are summarized in Table 3.

Qin and Han 33

The count of fatal crashes is low compared with injury or PDO
crashes. For example, there were only 47 fatal counts from all
3,202 intersections, whereas there were 5,026 injury crashes and
7,721 PDO crashes in 2001; 2002 and 2003 data had similar sta-
tistics. The dominant crash types were either angle (44.6%) or
rear-end (32.4%) types. Small sample size posed an extra chal-
lenge to the validity of the conclusions drawn from statistical
analysis and inference, as discussed regarding other models such
as the Poisson–gamma model (18). Extra effort is needed in the

GeoCodes
T-Intersections Four-Legged Intersections
A: Two-Lane Major with No Left-

Turn Lane
H: Two-Lane Major with No Left-

Turn Lane

B: Two-Lane Major with Left-
Turn Lane

I: Two-Lane Major with Left-
Turn Lane (One or Both
Approaches)

C: Four-Lane Major Undivided
with No Left-Turn Lane

J: Four-Lane Major Undivided
with No Left-Turn Lane

D: Four-Lane Major Divided with
No Left-Turn Lane

K: Four-Lane Major Divided with
No Left-Turn Lane

E: Four-Lane Major Divided, 55+
55+

55+
55+

55+

mph Approach Speed, with 
Single or Dual Left-Turn
Lanes

L: Four-Lane Major Divided, 55+
mph Approach Speed, with 
Single or Dual Left-Turn
Lanes (One or Both
Approaches)

F: Four-Lane Major Divided with
Left-Turn Lane

M: Four-Lane Major Divided with
Left-Turn Lane (One or Both
Approaches)

G:  Four-Lane Major Divided with
Dual Left-Turn Lane

N: Four-Lane Major Divided with
Dual Left-Turn Lane (One or
Both Approaches)

Special Intersections

O:  Five or More Intersection
Approaches

Q: Four-Lane Major Undivided
with Left-Turn Lane (One or
Both Approaches)

Categories P and R exist but are not included in this tool
because no data were available for intersections of these types.
P = Roundabout
R = Four-Lane Major Undivided with Dual Left-Turn Lane
(One or Both Approaches)

FIGURE 3 Geometric category definitions (GEOTYPE) (17 ).



future to investigate the sensitivity of small sample size on tree-based
methods.

Since it is difficult to get a meaningful classification result with
an extremely low count, the study focused on the total number of
crashes for all years in the study. Another outstanding issue in traffic
safety studies is the missing information and how it is handled. 
A general discussion of statistical analysis with missing data has
been made by Little and Rubin (19), and Feelders discusses missing
data in tree-based methods (20). GUIDE and CART have different
approaches to handling missing data: GUIDE employs mean impu-
tation for a missing numerical variable and creates a new categorical
variable for a missing category (21), whereas CART uses surrogate
splits (12, 20).

The average annual crash frequency was calculated for each
individual intersection assigned a geometric category (GEOTYPE).
GEOTYPE represents a large variety of intersections whose safety
performance is determined by crash frequencies. Figure 4 shows that
intersection crashes vary drastically from a high point at GEOTYPE N
with average crashes of 50 to Types F, G, J, K, L, M, O, Q with
above-average numbers of crashes, to other types with fewer crashes.
An alternative approach is to replace GEOTYPE with four primary
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geometrics that include the number of intersection approach legs,
number of major roadway lanes, whether the major roadway had a
median or not, and the existence of a left-turn lane or lanes. The latter
grouping method is slightly undermined by not incorporating other
details such as speed limit and number of left-turn lanes, but it sim-
plifies intersection categories by not counting as many as 16 distinct
values in the GEOTYPE variable. The comparison between using
GEOTYPE and its substitute is provided in the next section.

Stratification Results

Since the exhaustive search adopted by CART is biased toward vari-
ables with more levels or split points (15) and GUIDE is more robust
in variable selection by design, the variable GEOTYPE, which has
16 distinct values excluding unknowns, may perform differently in
CART and GUIDE. It is of primary interest to investigate how the

TABLE 2 Description of Variables

Variable Description

TOT0103 Total number of crashes between 01–03

GEOTYPE Geometric type in Figure 3

AREATYPE Types of area (rural or urban)

ENTVEH Millions of annual entering vehicles (MEV)

TRFCNTL Types of traffic controls (3-way, 4-way, yield, flash, 
side, signal)

NUMLEG Number of intersection approach legs (3, 4, or unknown)

NUMLANE Number of major roadway lanes (2, 4, or unknown)

DIVIDED Existence of major roadway median

LEFTTURN Existence of left-turn lane(s)

TABLE 3 Summary Statistics of Variables

TOT0103

Min. 1

Mean 12

Max. 134

SD 14.17

ENTVEH (MEV)

Min. 0.53

Mean 14.73

Max. 89.87

SD 12.9

NUMLANE Sites

2 697

4 1,076

Unknown 1,429

AREATYPE Sites

Urban 1,152

Rural 2,050

DIVIDED Sites

Yes 788

No 985

Unknown 1,429

LEFTTURN Sites

Yes 1,086

No 687

Unknown 1,429

NUMLEG Sites

3 361

4 1,349

Unknown 1,492

TRFCNTL Sites

3-way 4

4-way 41

Flash 2

Side 2,147

Signal 1,005

Yield 3

Total 3,202
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FIGURE 4 Crashes by GEOTYPE (red solid line indicates average of crashes and question mark stands 
for missing or uncategorized data).



variable GEOTYPE gets selected in terms of both sequence and
splitting value in both algorithms.

Figure 5 shows that GEOTYPE is used as the first variable to
stratify intersection by crash rate (crash per MEV) in both GUIDE
Version 5.2 (21) and CART via rpart in the R package (22). The
splitting values, however, are different. In GUIDE, GEOTYPE is
divided by Group {A, B, C, D, F, G, K} and Group {E, H, I, J, L, M,
N, O, Q, S}, whereas CART splits the intersections by Group {A,
B, F, G} and Group {C, D, E, H, I, J, L, K, M, N, O, Q, S}. The two
algorithms largely disagree on Types C and D—a four-lane major
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undivided intersection with no left-turn lane and a four-lane major
divided intersection with no left-turn lane. From an engineering per-
spective, GUIDE is more reasonable because it groups intersections
of Types A, B, C, D, F, and G (which are T-intersections with at
least 9 conflict points) and of Types H, I, J, L, M, and N (which are
four-leg intersections with at least 32 conflict points). Another finding
is that GUIDE continues to stratify intersections by traffic control
for both child nodes from the first split, whereas CART only stratifies
the node (Node [2]) with a larger number of distinct values, suggest-
ing a variable selection bias. For the node partitioned by TRFCNTL,

(a)

(b)

TRFCNTL=3,4-Way, Side, Yield

N=1761
V=0.548

[1]
N=3202
V=0.688

[2]
N=1441
V=0.859

[3]

GEOTYP=E,H,I,J,L,M,N,O,Q, GEOTYP=?,A,B,C,D,F,G,K

[4]
N=762
V=0.950

[5]
N=679

V=0.757

TRFCNTL=3-Way, Signal TRFCNTL=4-Way, Flash,

Side, Yield

TRFCNTL=Flash, Signal

GEOTYP=E,H,I,J,L,N,O GEOTYP=M,Q

[6]
N=245
V=0.669

[7]
N=1516
V=0.528

[8]
N=477
V=0.818

[9]
N=202
V=0.613

[2]
N=1578
V=0.859

[1]
N=3202
V=0.688

GEOTYP=C,D,E,H,I,J,K,L,M,N,O,Q GEOTYP=?,A,B,F,G

[4]
N=788
V=0.950

TRFCNTL=3-Way, Signal TRFCNTL=4-Way, Flash, Side

[3]
N=1624
V=0.528

[5]
N=790
V=0.790

FIGURE 5 (a) GUIDE results and (b) CART results, including GEOTYPE as a predictor. (N � number of sites in group; 
V � average crash rate in group.)



both GUIDE and CART partition the intersection by Group {3-Way,
Signal} and Group (4-Way, Flash, Side). GUIDE continues to stratify
the node using GEOTYPE, but CART ceases to do so.

As suggested in the section on the explanatory variable analysis,
replacing the variable GEOTYPE (which contains 16 distinct values
with four primary geometric features) may mitigate the negative influ-
ence of variable selection bias. It would be of interest to investigate
whether the two algorithms perform consistently when decomposing
a complex variable with simple variables to identify if they are
exchangeable. Figure 6 illustrates the following observations:

• GUIDE and CART split the tree quite differently: GUIDE uses
TRFCNTL, whereas CART uses NUMLEG as the first splitter;
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• As for the second splitter, the two algorithms switched the
sequence of variables with the use of NUMLEG in GUIDE and the
use of TRFCNTL in CART; and

• GUIDE continues to split the tree using DIVIDED, but CART
stops at the traffic control.

The sequence of variables introduced into each model and their
relative importance can be produced via the tree-based method. Vari-
ables found to be significant were kept in the tree, and insignificant
variables were rejected from the tree. This procedure is considered
as the means to rate the importance of input factors (3). In GUIDE, the
variable TRFCNTL is more important in reducing data impurity
than is NUMLEG, but the sequence is reversed in CART. Moreover,

(a)

(b)

OtherLANE=4-Lane

V=0.811

[1]
N=3202
V=0.688

[2]
N=1049
V=0.876

[3]
N=2153
V=0.596

TRFCNTL=3,4-Way, Flash, Signal

[4]
N=712
V=0.927

LEGS=4-Legged LEGS=3-Legged, Other

[5]
N=337

V=0.766

LANE=2-Lane, Unknown

[8]
N=100
V=0.908

[9]
N=237
V=0.706

[6]
N=637

V=0.767

DIV=Divided DIV=Undivided, Unknown

[10]
N=219
V=0.683

[11]
N=418

[7]
N=1516
V=0.524

LEGS=3-Legged

[12]
N=295
V=0.606

[13]
N=1221
V=0.504

TRFCNTL=Side, Yield

LEGS=4-Legged LEGS=3-Legged, Other

3-Way, Signal, Flash 

V=0.688

[3]
N=1853
V=0.568

LEGS=3-Legged, OtherLEGS=4-Legged

V=0.790

[1]
N=3202

[4]
N=788
V=0.950

TRFCNTL=4-Way, Side, Yield

[2]
N=1349
V=0.852

N=790
[5]

FIGURE 6 Results for (a) GUIDE and (b) CART, including GEOTYPE as a predictor. (N � number of sites in group; 
V � average crash rate in group.)



the tree-based stratification method is regarded as a valid way to
account for control factors in collision prediction by selecting the ones
that reduce the impurities in the data (7 ). The variable DIVIDED
would be included in the model according to GUIDE but would be
rejected if the model were based on CART. From an engineering
perspective, even though TRFCNTL and NUMLEG may be equally
important to categorize intersections, traffic control type (signalized
and unsignalized intersections) is probably more popularly used than
the number of legs because the former directly reduces the number
of conflicts produced by the latter. Median presence is also an impor-
tant safety indicator and should be included in the prediction model
because it directly affects the sight distance at intersections, the
storage space for crossing vehicles, and the way vehicle cross
each other’s path. In summary, GUIDE’s results are preferable to
engineers’ judgment and more consistent with their expectations.

Besides all the above-mentioned differences, the final outcomes of
GUIDE and CART in Table 4 manifest that the terminal nodes gen-
erated by two different tree algorithms are arguably similar. Generally
speaking, GUIDE produces more precise categories than CART with
the typical nodes such as Nodes [3] and [5] with GEOTYPE and
Nodes [2] and [5] without GEOTYPE in CART. For other categories,
significant similarities were observed as well. Therefore, the relatively
new GUIDE algorithm can be cross-validated by the popularly used
CART, and the two tree algorithms can produce consistent results.

Comparisons Between GUIDE and CART

The stratification results were compared and analyzed from the engi-
neering perspective in the previous section, where GUIDE is more
favorable than CART. From a statistical point of view, the prediction
error, calculated as

Qin and Han 37

is one of the most important measures of model prediction perfor-
mance. Despite the fact that GUIDE produced more terminal nodes
than CART (5 by GUIDE and 3 by CART with GEOTYPE; 7 by
GUIDE and 3 by CART without GEOTYPE), the prediction errors
from GUIDE, with GEOTYPE (1011.13) or without GEOTYPE
(1016.23), are slightly smaller than those of CART (1011.93 with
GEOTYPE and 1031.9 without GEOTYPE). Therefore, GUIDE
predicted more accurately than CART with more stratification.

Even though the evidence from the intersection case demonstrates
that GUIDE outperforms CART from an engineering perspective and
a statistical standpoint, the final outcomes (terminal nodes) gener-
ated by both tree algorithms are arguably similar and the prediction
error margins are relatively small. The following simulation study
reveals a clearer and more convincing comparison between GUIDE
and CART, especially in the variable selection.

SIMULATION CASE STUDY

In the intersection case study, the results from GUIDE are different
from those from CART when the variable GEOTYPE (with 16 dis-
tinct values excluding unknowns) is treated as one of the splitters
(predictors). The outputs from both algorithms, however, are arguably
still similar, as is shown in Table 4. In the real world, many examples
use significantly more complex variables (such as mixed types) than
what is demonstrated here, and GUIDE exhibits superior performance
in variable selection under more complicated situations.

A simulated case was constructed to demonstrate the strength of
GUIDE’s fairness in variable selection. To create a similar situation
as the intersection crash data while following the same approach
used by Loh (8), the response variable Y was randomly sampled
as counting data from a uniform distribution and the independent
variables were generated as categorical data from multinomial dis-
tributions. There were three variables in the first simulation case: X1
(with 5 levels), X2 (with 10 levels), and X3 (with 20 levels). There
were two variables in the second simulation case: X1 (with 3 levels)
and X2 (with 20 levels). The difference between Simulations 1 and 2
was that the number of observations for each level of categories was
the same in Simulation 1, whereas they were different in Simulation 2
(which may be closer to more realistic situations).

For example, X1 in Simulation 1 had 1,000 observations from five
distinct levels, where the number of observations from each level was
approximately 200 (5 × 200 = 1,000). Similarly with X2, the number
of observations from each level was approximately 100 (10 × 100 =
1,000), and so on. In Simulation 2, X1 had 1,000 observations from
three distinct levels, but this time each level had a different number
of observations (approximately 200, 300, and 500 for each level).
Each simulation case was iterated 100 times and the number of times
that the variables were selected is shown for CART and GUIDE.
Numbers in parentheses indicate the number of levels.

No X1 X2 X3 
Simulation 1 Partition (5) (10) (20) Total

CART 36 2 3 59 100
GUIDE None 36 30 34 100

No X1 X2 
Simulation 2 Partition (3) (20) Total

CART 62 1 37 100
GUIDE None 55 45 100

D y y txx Tt T1

2= − ( )( )
∈∈ ∑∑ �

TABLE 4 Comparisons of Terminal Nodes

Cart Guide

With GEOTYPE

[4] Geotype 
{C,D,E,H,I,J,K,L,
M,N,O,Q} signal 
or 3-way

[5] Geotype 
{C,D,E,H,I,J,K,L,
M,N,O,Q} 
unsignalized or 
flash

[3] Geotype 
{A,B,F,G,?}

Without GEOTYPE

[2] 4-legged

[4] 3 legged 
unsignalized

[5] 3-legged 
signalized 

[4] Geotype {E,H,I,J,L,M,N,
O,Q} signal or 3-way

[8] Geotype {E,H,I,J,L,N,O}
unsignalized or flash

[9] Geotype {M,Q} unsignalized
or flash

[6] Geotype {A,B,C,D,F,G,K,?}
Signalized

[7] Geotype {A,B,C,D,F,G,K,?}
Unsignalized

[4] 4-legged 3 or 4-way, flash,
signal

[10] 4-legged side or yield
divided

[11] 4-legged side or yield 
undivided

[12] 3-legged unsignalized

[8] 3-legged 3 or 4-way, flash,
signal, 4-lane

[9] 3-legged 3 or 4-way, flash,
signal, 2-lane

[13] Other leg type unsignalized



From the simulation study, CART seems to be biased toward
choosing the variable with more levels as its first splitter, whereas
GUIDE tends to choose all the variables with likely probabilities.
For instance, in the result from Simulation 2, CART selects X3 as
its first splitter dominantly over X1 and X2, whereas GUIDE does
not show this bias toward X3. Moreover, CART fails to partition
variables 36 times out of 100 iterations in the first simulation case,
and in the second one, the result is even worse: CART fails to grow
the tree 62 times out of 100 iterations. This simulation study shows
that GUIDE might be preferable when there are several categorical
variables with different numbers of levels.

CONCLUSIONS

In the last decade, there has been increasing interest in the use of
classification and regression tree analysis. A tree-based regression
model can be constructed by recursively partitioning data by using
such criteria as to yield the maximum reduction in the variability of
the response. Unfortunately, such an exhaustive search may yield a
bias in variable selection and will tend to choose a categorical variable
as a splitter that has many distinct values. For instance, if a categorical
variable has n distinct values, there are 2n−1 − 1 possible binary splits,
which increases exponentially with n. In this paper, a new tree-based
regression model, GUIDE, was introduced for its robustness in
variable selection bias.

Several important findings were discovered from the intersection
crash data:

• When the variable GEOTYPE (which has 16 distinct values) is
included in the tree-based regression model, both CART and GUIDE
chose it as the first splitter but disagreed on the splitting value. From
an engineering perspective, GUIDE is more reasonable because
it separates most unsignalized intersection types from signalized
intersections.

• Variable selection bias can be detected in CART at the second
level, where CART is prone to select the node (Node [2]) with a larger
number of distinct values.

• When GEOTYPE is replaced with four simple geometric fea-
tures, each of which includes fewer distinct values, the sequence of
variables entering the model was different in CART and GUIDE.
Traffic control is chosen first in GUIDE and the number of legs is
chosen first in CART.

• Terminal nodes, the final categories generated by GUIDE and
CART, manifest that the outcomes of the two different tree-based
algorithms are arguably similar and consistent.

In addition to the intersection field, a simulation study demonstrated
that CART seems to be biased toward choosing the variable with
more levels as its first splitter, whereas GUIDE tends to pick all the
variables with likely probabilities. Furthermore, CART cannot suc-
cessfully grow or prune a tree in many of the simulation iterations.
The simulation study showed that GUIDE may be preferable when
there are several categorical variables with differing numbers of
levels. In summary, variable selection is the key to the tree-based
regression model because it not only determines the level of impor-
tance for each variable but also chooses the variable based on statis-
tical significance. As demonstrated through the intersection crash data
and a simulation study, the variable selection bias can be overcome
by GUIDE. CART, one of the most popular tree-based regression
algorithms, should be used with caution when the model includes
variables with many distinct values.
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