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Injury severity and vehicle damage are two of the main indicators of the 
level of crash severity. Other factors, such as driver characteristics, road-
way conditions, highway geometry, environmental factors, vehicle type, 
and roadside objects, may also be directly or indirectly related to crash 
severity. All these factors interact in such complicated ways that it is  
often difficult to identify their interrelationships. The aim of this study was  
to examine the relationships between these contributors and the severity 
of single-vehicle crashes. Structural equation modeling (SEM) offers the 
opportunity to explore the complex relationships between variables by 
handling endogenous variables and exogenous variables simultaneously. 
Furthermore, SEM allows latent variables to be included in the model 
and bridges the gap between dependent and explanatory variables. In  
this study, the number of latent variables was defined by the under-
standing of collision force, kinetic energy, and mechanical process of a 
collision, as well as statistical goodness of fit that was based on available 
data. Three SEM models (one with one latent variable, one with two, 
and one with three) representing the hypothesized relationships between 
collision force, speed of a vehicle, and severity of a crash were devel-
oped and evaluated in an attempt to unravel the relationships between 
exogenous factors and severity of single-vehicle crashes. On the basis of 
goodness of fit and model predictive power, the model with two latent 
variables outperformed the other two. Additional insights about model  
selection were provided through the development and comparison of the 
three models.

Because, in large part, of the significant impacts of injuries, deaths, 
and economic losses from motor vehicle accidents, traffic safety 
continues to be the top priority on the national transportation agenda. 
AASHTO’s Strategy Highway Safety Plan, entitled Toward Zero  
Deaths: A National Strategy on Highway Safety, outlined a new road 
safety campaign focused on reducing fatal and severe-injury crashes. 
The campaign demands high levels of interagency cooperation 
between state departments of transportation and public safety, health, 
and other safety stakeholders (1). Under the collective improvements  
in highway engineering, vehicle technologies, driver education, 
and traffic enforcements, traffic fatalities in the United States have 
declined sharply. The number of single-vehicle fatal crashes in 
2009 was 18,748 compared with 23,445 in 1990, a 20% reduction 

in 20 years (2). To accelerate implementation of the Toward Zero 
Deaths plan, the critical factors contributing to fatal and severe 
crashes must be identified and effective safety countermeasures 
must move forward.

The use of statistical methodologies has become common in identi-
fying and analyzing the contributions of human, environmental, road-
way, and vehicle factors on crash severity (3). Among all methods, 
the discrete choice model has been employed extensively to show the 
relationship between injury severity and vehicle damage. Representa-
tive logistic and probit models have been developed to examine the 
relationship between both injury severity and vehicle damage and 
their contributing factors. The mixed logic model is a good alternative 
when data sets are heterogeneous, as this modeling technique has the 
flexibility to treat coefficients as random or fixed variables.

Despite different assumptions and model specifications, all these 
modeling methodologies attempt to incorporate all available fac-
tors into the model and build a direct relationship between inde-
pendent and dependent variables. However, this procedure may be  
problematic because the interrelationships among these factors can 
be intricate and therefore difficult to observe or verify (4). New mod-
eling techniques are needed to unravel the complex relationships 
between crashes and their contributing factors.

The complex causes of a crash may be resolved by structural 
equation modeling (SEM), which can handle complex relationships 
among endogenous variables (i.e., variables that can be regressed 
on other variables) and exogenous variables (i.e., variables that are 
simultaneously independent). Moreover, SEM can include latent 
variables that are expected to bridge the knowledge gaps between 
dependent and explanatory variables in the model (4).

The primary objective of this study is to identify the causal relation-
ships between exogenous factors and the severity of single-vehicle 
crashes by using structural equation models with different model 
structures. The secondary objective is to offer additional insights 
about model selection.

Literature Review

The discrete choice model is a popular choice for modeling the sever-
ity of a crash injury. This type of model can be treated as a nonordinal 
model by using the multinomial logistic or probit model (5–8). It can 
also be treated as an ordinal by using the ordered logistic or probit 
model (9–14).

However, both ordered and unordered logistic or probit models 
are fixed-parameter models in which each parameter is consistent 
across observations. The fixed-parameter models may not be rea-
sonable when the data sets are heterogeneous or unobserved factors 
exist. Researchers have attempted to use the heterogeneity models to 
account for the issue of heterogeneity of crash data. Malyshkina and 
Mannering used a Markov switching multinomial logistic model to 
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account for the possibility of unobserved factors that affect crash 
severity (15). Another appropriate alternative when the data sets 
are heterogeneous is the random-parameter (mixed) logistic model, 
as this approach has the flexibility to treat the parameters as fixed 
or random variables (5, 7, 16–19). Savolainen et al. summarized 
numerous discrete choice models currently used in modeling crash 
severity and provided additional insights about model assessment 
and selection (20).

Irrespective of the disparity between methodologies, the severity 
of personal injuries might not be the most honest variable when the 
severity of a crash is being examined because (a) the safety design 
of a vehicle can provide superior protection to the occupants by 
keeping intrusion into the passenger space to a minimum and (b) the 
resultant reported injury severity can be biased by the accident vic-
tim’s descriptions, complaints, and responses (21). Therefore, many 
researchers have attempted to use vehicle damage as an indicator of 
the magnitude of the collision or to combine vehicle damage with 
injury severity (21–23).

Although considering or incorporating vehicle damage into injury 
severity models is a step toward accurately and impartially identifying 
the impacts of factors on crash severity and heterogeneity models can 
overcome the issue of data heterogeneity, discrete choice models may 
not explicitly capture the interrelationships between variables when 
the factors interact in such complicated ways. Both logistic or probit 
models and heterogeneity models tend to impose direct relationships 
on the independent and dependent variables; in contrast, SEM can 
effectively establish multiple relationships between or within endog-
enous and exogenous variables simultaneously and incorporate latent 
variables into the model to bridge the gaps between them. In past 
research, SEM has been used to describe the index, quality, or level 
of service that is difficult to measure directly.

Kim et al. used SEM to test the number of crashes influenced by 
accessibility, which is not directly measured but implied via the 
latent variable defined as a factor influenced by road length, bus 
route length, number of intersections, and number of dead ends in a 
given area (3). They found that accessibility had the opposite effect 
on crash severity, in that increased accessibility reduces crash sever-
ity (3). Khattak and Targa applied SEM to examine the risk factors 
affecting severity of injuries caused by large trucks by introducing 
the latent variable truck rollover in single-vehicle crashes (24). In 
that case, truck rollover was not directly observed, but they suspected 
strong interrelationships between the occurrence of a rollover, injury 
severity, and other factors. The results showed that some factors, such 
as dangerous truck-driving behaviors, speeding, and reckless driv-
ing, can definitely cause severe injuries to occupants by increasing 
the probability of truck rollover (24).

Lee et al. used SEM to investigate “traffic accident size,” defined 
as the number of involved vehicles, the number of damaged vehicles, 
and the number of deaths, injuries, or both (4). The model suggested 
that road, driver, and environmental factors are strongly related to 
accident size and that roadway factors are significantly higher than 
driver and environmental factors. Schorr et al. used SEM to develop 
a collision propensity index for unsignalized intersections in Califor-
nia (25). They found that the three most populated counties in Cali-
fornia (Los Angeles, Orange, and San Diego) yielded low roadway 
safety; this finding is of great concern because nearly half the state’s 
population resides in these three counties.

SEM has also been used to predict people’s demeanors, attitudes, 
behaviors, and opinions. Hassan and Abdel-Aty used SEM to quantify 
the effect of young drivers’ behaviors, attitudes, and perceptions on 
crash involvement (26). The study identified that aggressive driving 
violations, in-vehicle distractions, and exceeding the speed limit sig-

nificantly increase the probability of involvement in crashes. Hamdar 
et al. applied SEM to develop a quantitative aggressiveness pro
pensity index for driver behavior at intersections (27). The index was 
treated as a latent variable and was intended to capture the propensity 
for aggressive driving at an intersection. The study demonstrated that 
drivers’ tendencies for driving aggressively in an intersection can be 
influenced by the number of heavy vehicles, the number of pedestri-
ans, traffic volume, and the like. Ambak et al. used SEM in Malaysia 
to predict a motorcyclist’s intention to use a helmet properly (28). 
The study illustrated that an increase in a motorcyclist’s positive atti-
tude, subjective norms, and perceived behavioral control can increase 
that person’s intention of properly using a helmet (28). Farag et al. 
examined the relationship between e-shopping and in-store shopping 
by means of an SEM model (29). The latent variables were posi-
tive in-store shopping attitude, positive e-shopping attitude, Internet 
experience, and the personal characteristic of being adventurous. The 
results showed that searching online positively affects the number of 
shopping trips and the frequency of shopping online. The research-
ers also found that time constraints had an indirect positive effect on 
online shopping and that searching online had an indirect negative 
effect on shopping duration.

Although all these SEM studies included latent variables and there-
fore succeeded in explaining the complexity of relationships between 
variables, none of those studies discussed the effect of the number of 
latent variables in relation to their meaning. The underlying relation-
ships may involve more than one latent variable because the latent 
variables cannot be directly observed or measured. The meaning and 
purpose of introducing a latent variable hinges on the effectiveness 
of measurement of the dependent variable.

Statistical Methodology

An SEM model tests and estimates the complicated relationships 
between variables through a combination of statistical methods and 
qualitative causal assumptions (30). Two types of variables are used 
in such a model: observed ones, which are directly collected or mea-
sured, and latent ones, which are not directly observed or measured 
(31). A structural equation model includes any combination of three 
types of statistical analysis methods: path analysis, confirmatory 
factor analysis, and hybrid. A path analysis models the directed 
dependencies among variables, equivalently to any form of mul-
tiple regression analysis, factor analysis, discriminant analysis, and 
the like. Confirmatory factor analysis is often used to test whether 
a hypothesized relationship structured between observed and latent 
variables is consistent. The hybrid model combines the path analysis 
model and the confirmatory factor analysis model (31–33).

Elements of SEM

In an SEM model, a variable can be both a dependent variable and 
an independent variable simultaneously. SEM can effectively dis-
tinguish direct, indirect, and total effects between variables through 
three major components, as shown in Figure 1 (4):

•	 A measurement model for the independent variable or exog-
enous variable (x-measurement model),
•	 A measurement model for the dependent variable or endog-

enous variables (y-measurement model), and
•	 A structural model between latent endogenous and exogenous 

variables.
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In both measurement models, the contribution of latent variables 
to observed variables can be measured; in the structural model, the 
hypothesized relationship between latent variables can be built on 
the basis of theoretical or empirical knowledge.

Combining the measurement and the structural components, SEM 
articulates the regression effects of exogenous or independent vari-
ables on endogenous or dependent variables, as well as the effects 
between endogenous variables, also called “autocorrelation.”

The measurement model can be expressed as a matrix format (4):
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The structural model can be expressed as

(2)B= + +h h Gj z

where the variables of SEM from Equations 1 and 2 are defined in 
Table 1 (4).

Model Development and Goodness of Fit

Coefficients of an SEM model are estimated by covariance analy-
sis. The differences between observations and predictions are min-

imized through iterations. In this study, STATA, Version 12, was 
used to develop the model, and the asymptotically distribution-
free method was used to estimate the coefficients to account for 
the violation of the multivariate normality assumption (34, 35).

SEM relies heavily on empirical assumptions that should be satis-
fied to ensure model accuracy. The causal relationships between the 
multiple variables should be specified a priori. The goal of doing 
so is to determine, on the basis of model performance, whether a 
hypothesized model is consistent with the data collected (35). The 
root mean square error of approximation (RMSEA) is usually used 
to test a model’s goodness of fit. A value of RMSEA less than .08 
indicates goodness of fit in a model (36), and smaller is better. 
RMSEA is described in Equation 3 as a function of a chi-square 
value and the degrees of freedom. Specifically, RMSEA measures 
the difference between observed and predicted values per degree of 
freedom (36).
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where

	 M	=	degrees of freedom,
	 χM	=	chi-square test of model, and
	 N	=	sample size.
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FIGURE 1    Example of SEM (see Table 1 for variable definitions).

TABLE 1    Elements of SEM

Model Variable Description

Measurement x q × 1 column vector of observed exogenous variables
y p × 1 column vector of observed endogenous variables
ξ n × 1 column vector of latent exogenous variables
η m × 1 column vector of latent endogenous variables
δ q × 1 column vector of measurement error terms for observed variables x
ε p × 1 column vector of measurement error terms for observed variables y
Λx The matrix (q × n) of structural coefficients for latent exogenous variables to their observed indicator variables
Λy The matrix (p × m) of structural coefficients for latent endogenous variables to their observed indicator variables

Structural Γ The matrix (m × n) of regression effects for exogenous latent variables to endogenous latent variables
B The coefficient matrix (m × m) of direct effects between endogenous latent variables
ζ m × 1 column vector of error terms

Note: The βs (components of B matrix) and the γs (components of Γ matrix) are magnitudes of expected changes after a unit increases in η or ξ.  
Similarly, λs (components of Λ matrix) are expected changes of observed variables with respect to a unit change in the latent variable.
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Another criterion provided by STATA to evaluate the model’s 
goodness of fit is the Akaike information criterion (AIC) formulated 
in Equation 4.

AIC 2 2ln (4)k L( )= −

where k is the number of parameters in the model and L is the max-
imum likelihood value for the estimated model. A model with a 
smaller AIC value performs better.

Model Hypothesis

The hypothesized relationships between latent variables can be 
materialized in the structural component of an SEM. The latent vari-
able is unobserved and is used to connect two observed variables if 
an indirect relationship between them is suspected. The nature and 
number of latent variables may affect the goodness of fit as well as 
the goodness of logic of the models. Three latent variables are pro-
posed here: two are causal factors to the level of injury severity, and 
one is the indexing variable for injuries. The two causal factors are 
vehicular travel speed (speed) and force of collision (force). Gener-
ally, speed and force are believed to contribute directly to injuries 
sustained by accident victims. The indexing latent variable is crash 
severity (crashsvr), which represents the overall severity of a crash, 
as it accounts for both the severity of personal injury and vehicle 
damage.

An SEM model was developed for each latent variable. The first 
model contains speed and force, both of which contribute to the third 
latent variable, crashsvr. The second model includes both speed and 
force without crashsvr. The third model includes only speed as a 
latent variable. All three latent variables are associated with respec-
tive observed variables. For example, a driver’s choice of speed may 
be affected by weather, light, pavement conditions, or a combination 
of those factors. Speed is also restricted by the roadway geometries 
and affected by a driver’s characteristics, such as age and gender. 
According to Newton’s second law, the force acting upon an object 
equals the product of the acceleration rate and mass. Therefore, the 
latent variable force can be associated with vehicle type (a proxy 
for vehicle weight), the roadside object being struck, and speed. All  
the speculated relationships between variables are presented later in 
a directed acyclic graph in the section on results.

Data Collection and Analysis

Single-vehicle crashes were used in this study because of their sim-
plicity compared with multivehicle crashes. A single-vehicle crash 
is defined as a collision between a vehicle and one or more animals, 
pedestrians, bikes, or fixed obstacles (37). In 2008 and 2009, 2,286 
single-vehicle crashes occurred in Wisconsin, accounting for 16.2% 
of all crashes. When the KABCO scale from the Model Minimum 
Uniform Crash Criteria was applied to all those single-vehicle 
crashes (38), 1,216 (53.2%) crashes were O (no apparent injury); 
919 (40.2%) crashes were either Type B (suspected minor injury) or 
C (injury possible); and 151 (6.6%) were either Type K (fatal injury) 
or A (suspected serious injury). For vehicle damage, based on the 
Wisconsin Motor Vehicle Accident Report Form (39), 706 (30.9%) 
were none (no damage) or minor (cosmetic damage); 683 (29.9%) 
were moderate (broken or missing parts); 755 (33.0%) were severe 
(salvageable or total loss); the rest (6.2%) were missing values.

Crash data elements were classified into five categories: driver 
characteristics, highway characteristics, environmental factors, vehi-
cle types, and types of struck objects. Human factors include driver’s 
age and gender. Highway characteristics include highway geom-
etry, which is based on an officer’s opinion. Environmental factors 
include weather, light, and roadway surface condition. Vehicle types 
are ranked from low to high on the basis of vehicle weight. Object 
types are the kind of obstacle struck by a vehicle, including a pedes-
trian, a bicyclist, an animal, or a fixed object. The descriptions of the 
variables are listed in Table 2.

Results

Directed acyclic graphs (Figures 1 through 5 here) illustrate the direct 
and indirect relationships between observed and latent variables, 
with the coefficients next to the arrow. To interpret a parameter, a 
positive value means a positive influence on the resulting outcome, 
and a negative value means a negative influence on the resulting 
outcome. The magnitude of impact is measured by the value.

Path Analysis Model

To serve as a benchmark, path analysis was performed only where 
observed variables were included. The authors assumed that both 
injury severity and vehicle damage were directly influenced by human 
factors, environmental factors, highway characteristics, the object 
that the vehicle struck, and vehicle types. The results with an accept-
able goodness of fit measured by RMSEA (= .065) are illustrated in 
Figure 2. Only 11 variables were statistically significant. The others 
were not sufficiently effective to quantify either the injury severity or 
vehicle damage. The reason for this situation may be that some vari-
ables affect crash outcomes in an indirect fashion. Unobserved factors 
cannot be identified by using the path analysis model but can be effec-
tive models in SEM. The rest of this section presents the SEM models 
with one, two, and three latent variables in an attempt to unravel the 
complex relationships between the observed factors.

SEM with Three Latent Variables

In the SEM model with three latent variables (Figure 3), speed was 
set as a latent exogenous variable that explains the travel speed 
of the involved vehicle. Force and crashsvr were treated as latent 
endogenous variables that, respectively, represent the kinetic energy 
and the severity index, which is categorized by injury severity and 
vehicle damage.

As Figure 3 shows, high speed positively influences the force of 
a collision when a crash occurs. Both high speed and strong crash 
collision force could positively influence the overall severity of a 
crash, which can be observed as an increased probability of injury 
severity and vehicle damage.

The indirect impact between variables can be explained by the 
multiplicative relationship. For example, both horizontal and vertical 
alignment may decrease injury severity and vehicle damage through 
reduced vehicle speed. Similarly, compared with normal circum-
stances, inclement weather, poor pavement surface conditions, and 
poor lighting conditions decrease both injury severity and vehicle 
damage through reduced vehicle speed. Apparently, this finding 
would not be available if speed had not been introduced as the latent 
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variable. On the contrary, to conclude that inclement weather, poor 
pavement conditions, and poor lighting conditions reduce injury 
severities may be fallacious when only the direct effects are pres-
ent. Similarly, for vehicle type, heavy vehicles can decrease crash 
severity through decreasing travel speed but increase crash severity 
through increasing the force of a collision.

SEM with Two Latent Variables

In the SEM model with two latent variables, speed and force were 
treated as latent endogenous and exogenous variables, respectively. 
As Figure 4 shows, vehicle speed and collision force have a positive 
impact on injury severity and vehicle damage. Except for object type, 

TABLE 2 Description of Selected Variables

Variable Description, Variable Type Frequency Percentage

Driver Characteristics

Age Driver age, ordinal na na
  1   Young (<25) 1,010 44.2
  2   Middle (25–55) 1,037 45.4
  3   Old (>55) 238 10.4

Gender Driver gender, binary na na
  1   Female 747 32.7
  2   Male 1,539 67.3

Highway Characteristics

Roadhor Horizontal curve, dummy 531 23.2

Roadvert Vertical curve, dummy 502 22.0

Environmental Factors

Wthrcond Weather condition, categorical na na
  Clear   Clear 1,753 76.7
  Windy   Windy 6 0.2
  Rain   Rain 203 8.9
  Snow   Snow 292 12.8
  Sleet   Sleet or hail 19 0.8
  Fog   Fog 13 0.6

Lgtcond Lighting condition, categorical na na
  Day   Day 1,144 50.0
  Without   Night without street light 825 36.1
  Light   Night with street light 317 13.9

Roadcond Road surface condition, categorical na na
  Dry   Dry 1,414 61.9
  Wet   Wet 344 15.0
  Snow   Snow or slush 380 16.6
  Ice   Ice 148 6.5

Vehicle Types

Vehtype Vehicle type, ordinal na na
  1   Passenger car 1,802 85.1
  2   Light truck 240 11.3
  3   Heavy truck 75 3.6

Objects

Objhit Object type vehicle hit on, categorical na na
  Other   Other objects (bike or pedestrian or animal) 1,621 71.0
  Pole   Pole (traffic sign or utility pole 122 5.3
  Guardrail   Guardrail 102 4.5
  Medbar   Median barrier 115 5.0
  Tree   Tree 272 11.9
  Ditch   Ditch 37 1.6
  Bridge   Bridge (parapet or pier or rail) 17 0.7

Injury Severity

Injsvr Level of injury severity, ordinal na na
  1   O 1,216 53.2
  2   E + C 919 40.2
  3   K + A 151 6.6

Vehicle Damage

Vehdmg Level of vehicle damage, ordinal na na
  1   None or minor 706 30.9
  2   Moderate 683 29.9
  3   Severe 755 33.0
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FIGURE 3    SEM model with three latent variables (*significant at 5% level; LL 5 26,180.0;  
RMSEA 5 0.1; AIC 5 12,475.9).

FIGURE 2    Path analysis model [*significant at 5% level; log likelihood (LL) 5 210,055.3; 
RMSEA 5 0.065; AIC 5 20,178.6; boldface italic 5 coefficient related to injury severity; 
other coefficients = related to vehicle damage].
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the interrelationships between the observed independent variables, 
latent variables, and dependent variables are consistent with the SEM 
model that has three latent variables. The results of the SEM model 
with three latent variables show that hitting a tree decreases collision 
force compared with hitting a utility pole. But in the SEM model 
with two latent variables, hitting a tree increases the collision force 
compared with hitting a utility pole. The finding of the SEM model 
with two latent variables is logically sound and consistent with the 
findings in a previous study conducted by Qin et al., in which the 
findings were related to the use of a breakaway design for roadside 
utility poles (21). Comparing the results of the first two SEM models, 
the one with two latent variables offers more reasonable explanations 
than the one with three latent variables.

SEM with One Latent Variable

In the SEM model with one latent variable, speed was treated as 
a latent exogenous variable because the magnitude of a collision 
force may be subject to variations such as the weight of the subject, 
the deformation of the vehicle compartment, the vehicle’s safety 
design, or speed. Moreover, the collision force is proportional to 
the speed. Hence, speed as the sole latent variable is used in an 
attempt to explain the intriguing relationships between observed 
variables. Figure 5 presents some results similar to those of other 
SEM models in that speed increases the possibility of more severe 
injury and vehicle damage; horizontal and vertical curves reduce 
speed because of limited slight distance; snowy weather, snowy 
pavement, and poor lighting conditions reduce speed; and heavy 

vehicles travel at a lower speed. But some other statistically signifi-
cant variables are puzzling: rainy weather and wet and icy pavements 
increase speed. These counterintuitive coefficients are cautions that 
the selection of the number of latent variables as well as definition 
of the relationship between observed and latent variables may affect 
the regression results. In this model, the object type was not included 
because no direct relationship exists between vehicle speed and the 
object that the vehicle is striking.

Model Comparison

Despite many similarities between the results from the three SEM 
models, each model presents a unique perspective and understand-
ing of the way that the factors interact and the ways that they affect 
injury severity and vehicle damage. Some factors have consistent 
impacts across the three SEM models. The SEM models with both 
one and three latent variables have some counterintuitive coefficients 
that are quite difficult to explain. The SEM model with the two latent 
variables speed and force seems to have the most meaningful results.

According to the statistical goodness of fit, the path analysis 
model has the lowest RMSEA but the highest AIC value. The SEM 
with two latent variables outperforms others, as the model has the 
lowest RMSEA and AIC values. Results of model comparison are 
shown in Table 3.

From the information available, the SEM with two latent vari-
ables is recommended as the best model for predicting crash severity 
because it achieves acceptable RMSEA and the lowest AIC value, 
with most variables being statistically significant at the 5% level.
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Vehicle damage
Vehdmg

Roadvert Gender Roadhor Age

Wthrcond_clear (base) 
Wthrcond_windy (0.02) 
Wthrcond_rain (0.18*) 
Wthrcond_snow (–0.8*)
Wthrcond_sleet (0.03) 
Wthrcond_fog (0.03) 

Lgtcond_day (base) 
Lgtcond_light (–0.15*) 
Lgtcond_without (–0.02*) 

Roadcond_dry (base) 
Roadcond_wet (0.22*)
Roadcond_snow (–0.87*) 
Roadcond_ice (0.04) 

Vehtype 

objhit_pole (base)
objhit_other (0.6*) 
objhit_guardrail (–0.23*)
objhit_medbar (–0.54*) 
objhit_tree (0.34*) 
objhit_ditch (–0.32) 
objhit_bridge (–0.08) 

0.99*

0.02*

0.11*

0.02*

0.08*
0.14*

–0.06*

–0.10* –0.09* 0.09* –0.01

FIGURE 4    SEM model with two latent variables (*significant at 5% level; LL 5 24,567.7;  
RMSEA 5 0.08; AIC 5 9,269.5).
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Conclusions and Recommendations

Traffic safety is an important issue affecting the service capability 
and efficiency of the nation’s highways, and reducing injuries and 
deaths has always been the first priority among researchers and agen-
cies. Among all highway crash types, the single-vehicle crash is one 
that occurs most frequently, even for states and areas with low traffic 
volume. To reduce the severity of single-vehicle crashes, the causes 
of crash severity must be explored and relevant countermeasures 
implemented to mitigate crash risk.

Crash severity issues have been extensively studied over the past 
several decades, and a variety of statistical methodologies (e.g., 
logistic and probit models) have been used to identify the relation-
ships between independent factors and crash severities. Although 
both logistic and probit models can directly explain the impacts of 
indicator factors on crash severities, they might fail to unravel the 
complex interrelationships between the variables by overlooking 
unobserved factors. SEM is appealing in that the hypothesized 
causal relationships can be constructed through latent variables in a 
structural model. The relationship between latent and observed vari-
ables can also be conveniently established by using the measurement 
model. SEM combines both the structural and measurement models 
in one modeling process. Moreover, in an SEM model, a variable 
can be both dependent and independent simultaneously. Therefore, 
SEM can effectively distinguish direct, indirect, and synergic effects 
between variables and thus more accurately capture the underlying 
relationships between factors.

Determining the number of latent variables and defining their rela-
tionships with the observable variables are critical steps in an SEM 
model. In this study, SEM models with one, two, and three latent 
variables were developed and compared. The comparison shows that 
the SEM model with two latent variables (speed and force) had the 
best statistical goodness of fit and the most statistically significant 
variables at a significance level of 5%.

The SEM results revealed that vehicle speed can positively influ-
ence collision force, and both vehicle speed and collision force can 
significantly increase injury severity and vehicle damage. Males are 
more likely to drive faster than females, and older drivers tend to 
drive slower than younger drivers, although this variable is not sig-
nificant in any of the three at the 5% level. When compared with nor-
mal roadway conditions, adverse surface and lighting characteristics 
decrease both injury severity and vehicle damage because vehicle 
speed is reduced. In addition, the crash severity of heavy vehicles may 
be decreased because of their slower traveling speed, but it can also 
be increased because of vehicle weight. The authors anticipate that 
the results of this study can unravel complex relationships between 
injury severity, vehicle damage, and contributing factors via differ-
ent SEMs and offer additional insights about the model choices for 
safety analysis.

Irrespective of the consistent impacts of the factors among the three 
models, selection of the latent variables was subjectively hypothe-
sized by theory and empirical research. To validate the hypothesis of 
the model, future work on the collection of data related to latent vari-
ables is recommended. Furthermore, the underreporting issue could 
significantly affect the model because the assumption about a random 
sample of crash data is biased without consideration of the under-
reporting issue related to crash severity level (7). Future research is 
recommended to estimate the magnitude of the underreporting issue 
and to address the impact of underreporting on model accuracy.
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TABLE 3    Model Performances

Model RMSEA AIC
Number of 
Variables

SEM
  Three latent variables 0.1 12,475.9 20
  Two latent variables 0.08   9,269.5 20
  One latent variable 0.1 16,465.7 12

Path analysis 0.065 20,178.6 11

Latent variable 
Speed 

Injury severity
Injsvr

Vehicle damage 
Vehdmg

Roadvert GenderRoadhor Age 

Wthrcond_clear (base) 
Wthrcond_windy (0.02) 
Wthrcond_rain (0.14*) 
Wthrcond_snow (–0.68*) 
Wthrcond_sleet (0.03) 
Wthrcond_fog (0.03) 

Lgtcond_day (base) 
Lgtcond_light (–0.07*) 
Lgtcond_without (–0.004) 

Roadcond_dry (base) 
Roadcond_wet (0.19*) 
Roadcond_snow (–1.00*) 
Roadcond_ice (0.12*) 

Vehtype 

0.15*

0.11*

–0.02*

–0.02* –0.06* 0.06* –0.01

FIGURE 5    SEM model with one latent variable (*significant at 5% level; LL 5 28,184.9;  
RMSEA 5 0.1; AIC 5 16,465.7).
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