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Abstract: As part of the Wisconsin road weather safety initiative, the objective of this study was to microscopically assess the factor effects
on the severities of multivehicle-involved crashes on high-speed roadways during rainfall utilizing a sequential logistic regression approach.
Research began by considering interstate freeways in Wisconsin. Weather-related factors considered in the research included estimated rain-
fall intensity, water film depth, temperature, wind speed and direction, and the car-following distance at the time of crash. With each crash
observation, weather data were obtained through the three most adjacent weather station locations and the inverse-squared distance method.
Nonweather factors such as roadway geometries, traffic conditions, collision manners, vehicle types, and driver and temporal attributes were
also considered. Sequential logistic regression was applied to predict multivehicle crash severities in ascending (forward) and descending
(backward) orders, respectively. The final model was selected on the basis of a combination of model performance, parameter significance,
and prediction accuracies. The backward sequential logistic regression model produced the most desirable results for predicting crash
severities in rainy weather in which deficiency of car following, wind speed, the first harmful spot, vehicle types, temporal, and at-fault
driver-related actions at the crash moment were found to be statistically significant. These findings can be used to provide quantitative
support of road weather safety improvements via weather warning systems, highway infrastructure enhancements, and traffic management.
DOI: 10.1061/(ASCE)TE.1943-5436.0000300. © 2012 American Society of Civil Engineers.
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Introduction

Road pavement surfaces become wet by precipitation with
0.01 in./h or more precipitation (Kokkalis and Panagouli 1998).
The mean number of wet days is 120 days per year in the United
States (U.S. Environmental Protection Agency 2006), which im-
plies that approximately 33% of a year is under the effect of
poor-weather conditions. This wet weather is known as one of
the significant contributing factors to roadway safety. On the basis
of the Bureau of Transportation Statistics (BTS 2006), approxi-
mately 12% of all motor vehicle fatal crashes on U.S. highways
occurred in the adverse weather conditions from 1999–2006.

Specifically, average annual proportion of fatal crashes in rainy
weather, on wet-pavement surface during rainfall, to total fatal
crashes was 7.6%, which is the highest rate among all kinds of
adverse weather conditions.

Wisconsin crash rate is consistent with the national data. From
1999–2006, Wisconsin fatal crashes that occurred in rainy weather
are the most frequent of all fatal crashes that occurred in any

other adverse weather conditions (Wisconsin Department of
Transportation 2006). When considering severe crashes with inju-
ries and fatalities that occurred on Wisconsin highways, 3,296 in-
jury and fatal crashes on wet pavement during rainfall are reported
by the Wisconsin Traffic Crash Facts during the same period. The
number of Wisconsin severe crashes with human injuries and fatal-
ities is also greatest in rainy weather conditions than all kinds of
inclement weather conditions during the same period. Specifically
on Wisconsin interstate highways, multivehicle crashes occurred
more frequently than single-vehicle crashes in rainy weather.
During this 8-year period, 899 multivehicle crashes occurred on
Wisconsin interstate highways in rainy weather, approximately 1.5
times more than the number of single-vehicle crashes (Wisconsin
Department of Transportation 2006).

Weather is frequently cited and found to affect the severe
crashes in the past studies. The previous studies have been pri-
marily focused on predicting the crash count or frequency by injury
severity. As a result, corresponding weather variables were often
employed in an aggregate format. For example, Shankar et al.
(1995) explored the relationship between weather variables and
overall highway crash frequency using a negative binomial model.
In their study, maximum and average daily rainfall, monthly rainy
days, and rainfall-horizontal curve interaction were significant to
either increases or decreases in rear-end, sideswipe, fixed-object,
and overturn collisions. Specifically, maximum daily rainfall,
monthly rainy days, and rainfall-horizontal curve interaction were
found to decrease rear-end collisions whereas average daily rainfall
was identified to increase rear-end collisions.

Caliendo et al. (2007) investigated the effect of rain-related
factors on the frequency of multilane road crash occurrence by
comparing Poisson, negative binomial and negative multinomial
regression models. As a result, wet-pavement surfaces caused by
rain precipitation were found to be a highly significant variable
to increase severe crashes. The association between the number
of crashes and weather conditions was also identified in an urban
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freeway crash analysis in a study by Kopelias et al. (2007). The
authors utilized a standard linear regression model to estimate
the frequency of crash occurrence by injury severity and then com-
bined all the crash frequency estimates by severity weighting fac-
tors. According to their findings, wetpavement was found to
significantly increase crash frequency.

Disaggregate models are an effective alternative approach to
quantify factor impact on injury severities because it reveals more
detailed and specific information. The outcomes in a disaggregate
approach are usually determined by the purpose of the study and
the data availability. Weather, particularly rain-derived factors, can
affect multivehicle crash severities differently by collision type.
Shankar et al. (1996) estimated a nested logit model of crash
severity on Washington rural interstate highways. In their study,
wet-pavement rear-end crash indicator was found to increase the
likelihood of possible injuries, capturing the effect of rear-end
crashes occurring in rainy weather. They explained that rainy
weather conditions made it difficult for drivers to see the vehicles
in front of them, resulting in rear-end crashes. Similarly, a wet and
slippery road surface was found to contribute to rear-end crashes
significantly at signalized intersections compared to a dry road sur-
face (Yan et al. 2005). In a study by Duncan et al. (1998), the in-
teraction between wet pavement and pavement grade was also
found to significantly increase all injury propensities. The authors
used an ordered probit model to identify variables significantly
influencing the levels of injury in truck-passenger car rear-end in-
volvements on divided roadways.

Special attention has been given to vehicle types for multive-
hicle crash severity prediction. In the study by Duncan et al.
(1998) wet grade was found to increase injury severity of passenger
car occupants in truck-passenger car rear-end crashes. The study
provided a possible explanation that injury severity in the rear-
end crashes was influenced by following factors: attributes of the
passenger car driver, the speed and braking differential between the
truck and the car, the unique visibility limitations of the truck, and
differences in the size and other performance characteristics be-
tween trucks and passenger cars. Haque et al. (2009) utilized a
binary logit model to differentiate between at-fault and not-at-fault
cases to identify the motorcyclist-related factors in their study. In
the study, motorcyclists were more likely to be victims than at-fault
in multivehicle crashes, and wet-road surface was found to increase
the likelihood of at-fault crashes at nonintersections.

Rain-related effects on multivehicle crash severities have been
identified along with roadway characteristics. Khorashadi et al.
(2005) divided driver injury severity in large truck-involved crashes
into four levels in their study: no injury, complain of pain, visible
injury, and severe/fatal injury. Then, they explored the differences
between the driver injuries using multinomial logit analysis. In their
study, rainfall was found to increase the likelihood of complaint of
pain injury only in urban area. The severities of head-on crashes
that occurred on Connecticut two-lane roads were also predicted
by utilizing ordered probit model in a study by Deng et al.
(2006). In their study, it was found that a wet-roadway surface
and narrow road segments were significantly related to more severe
crashes.

Driver attributes such as age or gender also play important roles
in injury severity associated with weather conditions. Hill and
Boyle (2006) investigated the fatality and incapacitating injuries
to occupants of passenger vehicles using a logistic regression
model in their study. Their study showed that crashes in adverse
weather conditions with rain, snow, or fog increased the risk of se-
vere injuries to females that were 55 and older. According to their
study, the result may reflect an inability to cope with poor-weather

conditions, in part attributed to a lack of exposure resulting from
avoiding such conditions when possible.

Though numerous studies have been conducted in hopes of
identifying the contributing factors to crash severities in which
wet roadway and rainy weather were considered (Shankar et al.
1995; Dissanayake and Lu 2002; Golob and Recker 2003;
Donnell and Mason 2004; Yau 2004; Savolainen and Tarko 2005;
Abdel-Aty and Pemmanaboina 2006; Qin et al. 2006; Yau et al.
2006; Caliendo et al. 2007; Kopelias et al. 2007; Khan et al. 2008).
Nevertheless, the specific impacts of wet roads during rainfall were
not specifically considered. This study identifies a variety of sig-
nificant predictors that contribute to more serious multivehicle
crashes using crashes occurred on wet-pavement surface during
rainfall only.

Data Collection

The study area consisted of approximately 75 mi of southeastern
Wisconsin highway segments including I-43, I-94, I-43/94, and
I-43/894. The study area is shown in Fig. 1.

In the study area, average annual daily traffic and vehicle miles
traveled were higher than any other interstate highway segments
between 2004 and 2008. Generally, sufficient and microscopic data
collection should be conducted to obtain reliable modeling results.
Correspondingly, all of the following databases were commonly
available in the study area to collect sufficient amount of detailed
data, which can lead the reliable modeling of crash severity.

Multivehicle crashes occurring in rainy weather were obtained
from Wisconsin Department of Transportation (WisDOT) crash
database. In addition to controlling rainy weather condition, the
crash data used in this study were filtered through several criteria
to ensure data homogeneity: wet pavement, multivehicle involved,
interstate highways divided by barriers, no construction zones,
no hit-and-run crashes, and no pedestrian involved in a crash.
Consequently, 535 crashes were retrieved in the study area from
2004–2008. Crash data set included variables indicating severity,
roadway geometries, driver demographics, collision types, vehicle
types, pavement conditions, and temporal and weather information.

In this study, fatal (Type K), incapacitating injury (Type A), and
nonincapacitating injury (Type B) crashes were combined as the
highest level of crash severity to obtain a meaningful sample size
(Federal Highway Administration 2005). Possible injury (Type C)
crashes were separated as the second highest level of crash severity
because they were invisible injuries with drivers’ pain complaints.
Property damage only (PDO) crashes made up the lowest level of
crash severity. Crash frequency and severity codes are provided in
Table 1.

State Trunk Network (STN) highway log from WisDOT con-
tains roadway geometric attributes, including the number and lane
width for travel lane and shoulder as well as pavement surface.
Using the STN highway milepost information, the geometric attrib-
utes were linked to crash data set.

Traffic detector data in southeast Wisconsin are collected every
30 s and archived in a data portal application called V-SPOC. The
data can be aggregated up to 5, 10, and 15 min. In this study, aver-
age vehicle volume, speed, and occupancy data in 5-min intervals
were obtained for 1 h prior to each crash. The associated standard
deviation within 1 h prior to the crash was also collected to account
for the difference in density between crashes and detector locations
in the study area.

The objective of this study is to examine the impacts of various
factors on injury severity of multivehicle crashes during rainfall.
Comparing to dry weather conditions, rain-derived factors are addi-
tionally considered in the examination. Accordingly, one of the
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most important tasks was to collect microscopic data of rainy
weather at the time of crash. Given the limited weather data sources
with minute-base measurements, a website operated by Weather
Underground, combined with local road weather information

system, was used. From there, 6 airport weather stations and 10
private weather stations were identified as the most reliable and
real-time weather data source for this study.

Weather-Related Parameters

Data collected from selected weather stations included temperature,
wind speed/direction, rainfall precipitation, and duration. Real-time
weather data at specific crash locations were rarely observed be-
cause in most cases the weather stations are not located sufficiently
near to the crash location. In this study, the real-time weather data at
the crash location were approximated by interpolating between the
nearest three weather stations. Average distance between each crash
location and one-weather station closest to the crash location was
found to be 2.6 mi. The data interpolation was applied to rainfall
intensity and wind speed because they show special and temporal

Fig. 1. Study area for injury severity of multivehicle crash in Wisconsin 2004–2008 (image courtesy Google Maps, © 2011 Google)

Table 1. Multivehicle Crash Frequency in Rainy Weather

Injury severity
Number
of crashes

Sequential logistic regression

Forward format Backward format

Stage 1 Stage 2 Stage 1 Stage 2

Fatal/incapacitating/

nonincapacitating

injury

46 1 1 1 —

Possible injury 147 1 0 0 1

PDO 342 0 — 0 0
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variation. Water film depth and deficiency of car-following distance
(DCD) were estimated by the interpolated hourly rainfall precipi-
tation, traffic, and road geometry data.

Because of the deficiency of actual weather data at the crash
location, one closest weather station data, particularly rainfall in-
tensity and wind speed were compared with the interpolated data
created from three weather stations. As a result, weather data
between interpolated and one-weather station measurements were
similar within the range of 2.6-mi distance between the crash
location and the closest weather station. However, the difference
in weather data between interpolated weather stations and one-
weather station tended to increase when each crash occurred far
from the nearest weather station. This tendency was found to be
consistent in wind speed data measurements. Results imply that
weather data interpolation with several weather stations may be
effective to approximate actual weather condition at a crash loca-
tion as the distance between the crash location and the closest
weather station increases.

Rainfall intensity is defined as rainfall precipitation divided by
the duration, which reflects visibility on highways in rainy condi-
tions. The average measurement interval of rainfall precipitation
was 15 min. Compared to the weather data used in the previous
studies, 15-min interval was a more precise measure of the real-
time rainfall intensity at the crash moment.

The water film between the tire and pavement surface leads to
a lower coefficient of friction. The depth of water film can be cal-
culated through the following empirical equations (Russam and
Ross 1968):

D ¼ 0:046ðWS0IÞ1=2=S1=5 ð1Þ

S ¼ ðS2l þ S2cÞ1=2 ð2Þ

where D = water film depth (mm/h); I = rainfall intensity (mm/h);
S0 ¼ S=Sc; Sl = longitudinal slope (%); Sc = slope of pavement
cross section (%); and W = width of pavement (m).

In this study, there was no visibility data directly measured.
Alternatively, deficiency of DCD was considered as a surrogate
measure to the risk of having a multiple-vehicle crash. The
DCD is defined as the difference between the minimum safe stop-
ping distance (SSD) for a following vehicle and the actual distance
between the lead and following vehicles. DCD is calculated by the
following formula:

DCD ¼ SSD� AVG ð3Þ
SSD = minimum safe stopping distance; AVG = average vehicle

gap. The AVG is calculated by subtracting average vehicle length
from distance headway which is an inverse of density obtained
from traffic detector data (Roess et al. 2004). The SSD is the mini-
mum distance required to stop a vehicle and is determined by the
following formula (AASHTO 2004):

SSD ¼ 1:47Vt þ 1:075V2=a ð4Þ
where V= vehicle speed (mi/h); t = brake reaction time (s); and
a = deceleration rate (ft=s2).

Kokkalis and Panagouli (1998) studied the coefficient of wet-
pavement friction in great detail and developed the relationship
among friction force, vehicle speed, and water film depth. Using
pavement surface material information from Wisconsin STN high-
way log, a deceleration rate was applied to Eq. (4). In addition, 2.5
exceeding the 90th percentile of reaction time for all drivers was
used for brake reaction time to encompass the capabilities of most
drivers (AASHTO 2004).

Strictly speaking, the vehicle speed in Eq. (4) should be indi-
vidual vehicular speeds, so the gap is between each pair of vehicles.
Considering the varying responding times of the police officers,
average 5-min traffic speeds for an hour prior to a crash occurrence
were used to offset the deviation and that was the most reliable
resource available to this study as the prevailing real-time traffic
conditions at the crash moment.

As a result of data collection from several data sources, explana-
tory variables and the associated category coding used are shown in
Table 2. Driver-related variables such as alcohol/drug use, safety
belt use, etc. came from the WisDOT crash data set.

To estimate unknown weather data, a study regarding the
comparison of several interpolation methods concluded that the
inverse-squared distance method was stable and appropriate for
the localized field with short-spatial correlation length scale and
large variability (Patrick and Stephenson 1990). The minimum
number of weather stations to apply the inverse-squared distance
interpolation is three (Press et al. 2007). Therefore, in this study,
the inverse-squared distance interpolation was utilized to estimate
localized weather data for the crash.

Methodology

To model discrete outcome data, several modeling techniques such
as traditional ordered probability, multinomial and nested logit
models can be considered, but the application to the data set varies
from one to another because of their limitations. Crash severities
are inherently ordered multiple discrete outcomes. The multinomial
and nested logit models do not account for the ordering of
crash severities (Abdel-Aty 2003; Milton et al. 2008; Wang and
Abdel-Aty 2008). The traditional ordered probability approaches
also impose a critical restriction that regression parameters have
to be the same for different response outcomes, so called propor-
tional odds assumption. Supportively, the corresponding parameter
restriction imposed by the traditional ordered probability approach
were also addressed in past studies (Eluru and Bhat 2007; Wang
and Abdel-Aty 2008).

Alternatively, a generalized version of the ordered logit model
was used to relax the proportional odds assumption (Eluru et al.
2008). However, the generalized ordered response model with sep-
arate parameter coefficients across the ordered response levels is
anticonservative and recommended only to conclude that the pro-
portional odds assumption is valid (Peterson and Harrell 1990).
Even though the generalized ordered logit model allows a separate
coefficient for each predictor, the set of significant predictors is
invariant over all the crash severity comparisons.

In our study, there are two important issues: (1) a variety of
predictors particularly related to rainy weather across different in-
jury severity levels and (2) prediction accuracy for crashes with
apparently visible injuries. On the basis of the modeling issues,
it is appropriate to choose sequential logistic regression because
it not only accounts for the inherent order of crash severities but
also allows different sets of regression parameters to be independ-
ently considered in the model specification. To achieve that, the
sequential logistic regression describes severities via a series of
standard logistic regression in a coherent manner. On the basis
of the S-shaped cumulative density function for the logistic regres-
sion, the probability of a certain outcome in the standard logistic
regression is found with the following formula (Kleinbaum and
Klein 2002):

PðYÞ=ð1� PðYÞÞ ¼ EXPðαþ βXÞ ð5Þ
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Table 2. Explanatory Variables Used in Crash Severity Prediction Model

Variable Min. Max. Mean Category coding

At-fault driver’s sex — — — Female=1 versus Male=0

Alcohol or drug — — — Under alcohol/drug effect=1 versus Sobriety=0

Safety belt — — — Use of safety belt=1 versus Nonused=0

At-fault driver’s action — — — Going straight=1 versus Others=0

Lane change/merging/overtaking=1 versus Others=0

Negotiating curve=1 versus Others=0

Slowing or stopped=1 versus Others=0

Curve direction — — — Curve to the right=1 versus Others=0

Curve to the left=1 versus Others=0

Injury transport — — — Injured people transported to hospital=1 versus Others=0

Terrain — — — Horizontal curve=1 versus Others=0

Vertical curve=1 versus Others=0

Horizontal/vertical curve=1 versus Others=0

Tangent/flat=1 versus Others=0

First harmful spot — — — Ramp/gore=1 versus Others=0

Shoulder/outside shoulder=1 versus Others=0

Median=1 versus Others=0

On roadway=1 versus Others=0

Pavement surface — — — Asphaltic cement plant mix/rigid base=1 versus Others=0

Lighting condition — — — Daylight=1 versus Others=0

Dusk/dawn/dark=1 versus Others=0

Night but street light=1 versus Others=0

Crash type — — — Median related=1 versus Others=0

Noncollision=1 versus Others=0

Fixed object=1 versus Others=0

First harmful collision — — — Sideswipe=1 versus Others=0

Rear end=2 versus Others=0

Others=3 versus Others=0

At-fault driver’s vehicle — — — Car=1 versus Others=0

Truck(straight)/truck-tractor=1 versus Others=0

Motorcycle=1 versus Others=0

Time of day — — — Peakhour (6-8 a.m. and 3-5 p.m.)=1 versus Offpeak=0

Day of week — — — Tuesday/Thursday=1 versus Others=0

Monday/Friday=1 versus Others=0

Saturday/Sunday= 1 versus Others=0

Quarter of year — — — December to February=1 versus Others=0

March to May=1 versus Others=0

June to August=1 versus Others=0

September to November=1 versus Others=0

Wind direction — — — North=1 versus Others=0

East=2 versus Others=0

South=3 versus Others=0

West=4 versus Others=0

At-fault driver’s age 16 87 35 —
Number of vehicles 2 5 2 —
Number of lanes 1 4 3 —
Lane width (ft) 12 18 12 —
Shoulder width(ft) 0=0a 13=16 7=11 —
Speed limit (mi/h) 35 65 55 —
Average 5-min VOL 5 172 94 —
Average 5-min SPD 1 91 48 —
Average 5-min OCC (%) 0.45 49.11 13.00 —
S:D5: of VOL 0.94 69.46 9.78 —
S.D. of SPD 0.32 63.29 5.88 —
S.D. of OCC 0.10 18.23 3.02 —
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where PðYÞ = probability of response outcome; Y = response var-
iable; α = intercept parameter; β = vector of parameter estimate;
and X = vector of explanatory variable.

An interpretation of the logistic regression model uses the odds
and the odds ratio of an event. The odds of an event is a ratio of the
probability that the event will occur divided by the probability that
it will not. The odds ratio is a ratio of the predicted odds for a 1-unit
change in Xi with other variables in the model held constant.

In this study, a series of standard logistic regression concept
is applied at two stages to fit the sequential logistic regression
model. At the second stage, a subsample is used after removing
observations of a certain crash severity used in the previous stages
(Maddala 1983). To explore whether there is an impact in the
development of the sequential structure, forward and backward
formats are conducted in the following way:

Forward format:
• Stage one: PDO versus others
• Stage two: Possible injuries versus fatal/incapacitating/

nonincapacitating injuries
Backward format:

• Stage one: Fatal/incapacitating/nonincapacitating injuries ver-
sus others

• Stage two: Possible injuries versus PDO
Combining the fact that the sum of crash severity probabilities

over the two stages of each format is one with Eq. (5), the prob-
abilities of crash severity levels can be written as follows.

Forward format:

Stage 1: ð1� PÞ=P1 ¼ EXPðα1 þ βX1Þ ¼ h1 ð6Þ

Stage 2: P3=P2 ¼ EXPðα2 þ βX2Þ ¼ h2 ð7Þ

P1 ¼ 1=ð1þ h1Þ ð8Þ

P2 ¼ h1=ð1þ h1Þð1þ h2Þ ð9Þ

P3 ¼ h1h2=ð1þ h1Þð1þ h2Þ ð10Þ

Backward format:

Stage 1: P3=ð1� P3Þ ¼ EXPðα1 þ βX1Þ ¼ I1 ð11Þ

Stage 2: P2=P1 ¼ EXPðα2 þ βX2Þ ¼ I2 ð12Þ

P1 ¼ 1=ð1þ I1Þð1þ I2Þ ð13Þ

P2 ¼ I2=ð1þ I1Þð1þ I2Þ ð14Þ

P3 ¼ I1=ð1þ I1Þ ð15Þ
where P1 = probability of PDO; P2 = probability of possible injury;
and P3 = probability of fatal/incapacitating/nonincapacitating
injury.

Model Performance Measures

Likelihood ratio (LR) test and parameter estimate significance are
typical measures of model performance and these measures were
synthetically considered to select an optimal model in this study.

The LR test reveals whether or not a global null hypothesis for a
specific model should be rejected. In other words, an estimated
model containing at least one nonzero parameter coefficient is bet-
ter than a constant only model when p-value of LR test is less than a
conventional criterion. For this study, all of the two stage models
are combined to estimate some injury severity levels through each
format of the sequential logistic regression. Correspondingly, the
parameter estimate significance at both stages is one of the most
important criteria to measure a model performance.

In addition, prediction accuracy classification standard logistic
regression model classifies an observation as an event if the esti-
mated probability of the observation is greater than or equal to a
given cutpoint. Otherwise, it is classified as a nonevent. In the stat-
istical term, sensitivity measures the proportion of actual events that
are also predicted to be such. Similarly, specificity measures the
proportion of actual nonevents that are also predicted to be such.
The overall predictive power of a model depends on the proportion

Table 2. (Continued.)

Variable Min. Max. Mean Category coding

DCD (ft) 0 3825 153 < 50 ¼ 1 versus Others=0

(50, 225) =1 versus Others=0

> 225 ¼ 1 versus Others=0

Wind speed (km/h) 0.0 43.9 9.0 < 2:6 ¼ 1 versus Others=0

(2.6, 13.5) =1 versus Others=0

> 13:5 ¼ 1 versus Others=0

Temperature (ºC) 0.1 29.4 11.0 < 5:0 ¼ 1 versus Others=0

(5.0, 17.0) =1 versus Others=0

> 17:0 ¼ 1 versus Others=0

Water film (mm/h) 0.00 0.45 0.06 < 0:02 ¼ 1 versus Others=0

(0.02, 0.10) =1 versus Others=0

> 0:10 =1 versus Others=0

RI (mm/15 min) 0.00 8.96 0.26 < 0:05 ¼ 1 versus Others=0

(0.05, 0.30) =1 versus Others=0

> 0:30 ¼ 1 versus Others=0
aLeft shoulder width/right shoulder width.
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of correctly predicted observations (i.e., the sum of sensitivity and
specificity). In addition, there are two rates for incorrectly classified
observations: false positive rate and false negative. The false pos-
itive rate is the ratio of the number of nonevents incorrectly

classified as events to the total events whereas the false negative
rate is a ratio of the number of events incorrectly classified as non-
events to the sum of total nonevents.

Even though the predictive power of a model can be measured
for all severity levels, in traffic safety studies, sensitivity and false
negative rate are normally emphasized for high-crash severities be-
cause of their enormous economic loss. Hence, in this study, a
model that produces high sensitivity and low false negative rate
at the classification stages for fatal/incapacitating/nonincapacitat-
ing injuries will be considered as a good one.

The prediction accuracy in a model can be different and is de-
termined by a probability cutpoint. More severe crashes (events) do
not frequently occur compared with less severe crashes (none-
vents). From this perspective, the probability cutpoint may be de-
termined by practical consideration. Because desirable prediction
models should fit the field data well, probability cutpoints used
in this study were determined by overall trends of actual event pro-
portions in the field data. Because of insufficient samples in the
high-injury levels, a bootstrap sampling method called jackknife
procedure was applied. Each time, one observation was withheld
from the data set used for building the model. The restricted model
was then compared to the model using the full data set. The process
repeated until all the observations were tested. As a result of the
jackknife procedure, high- and similar prediction accuracies be-
tween an estimated model and the model in the validation process

Table 3. Event Proportion in Study Area

Year

Forward format Backward format

Stage 1 Stage 2 Stage 1 Stage 2

1999 0.35 0.20 0.07 0.30

2000 0.35 0.20 0.07 0.30

2001 0.37 0.19 0.07 0.32

2002 0.32 0.20 0.07 0.28

2003 0.30 0.22 0.06 0.25

2004 0.35 0.19 0.07 0.31

2005 0.34 0.28 0.10 0.27

2006 0.32 0.19 0.06 0.28

2007 0.35 0.24 0.08 0.29

2008 0.38 0.27 0.10 0.30

Minimum 0.32 0.19 0.06 0.25

Maximum 0.38 0.28 0.10 0.32

Average 0.34 0.22 0.08 0.29

Standard deviation 0.02 0.03 0.01 0.02

Coefficient of variation 0.07 0.16 0.19 0.07

Table 4. Forward Format of Multiple Sequential Logistic Regression

Stage 1

LR test

Chi-square D.F. Pr obability > Chi-square

40.5099 6 < 0:0001

Analysis of maximum

likelihood estimates

Parameter Estimate Standard error Odds ratio Pr obability > Chi-square

Intercept 1 1.8666 0.7135 — 0.0089

Safety belt �1:6353 0.6835 0.195 0.0167

Median-related crash 0.9213 0.4105 2.513 0.0248

DRV 2 �1:0483 0.3133 0.351 0.0008

SDV �0:0595 0.0224 0.942 0.0079

DRV 4 �1:1587 0.3734 0.314 0.0019

SDV*DRV 4 0.0654 0.0315 1.068 0.0376

Prediction accuracy

(Pcut-off ¼ 0:34)

Overall sensitivity Specificity FP FN

% % % % %

Estimated model 59 59 59 54 29

Cross-validation 58 59 58 55 30

Stage 2

LR test

Chi-square D.F. Pr obability > Chi-square

19.6940 3 0.0002

Analysis of maximum

likelihood estimates

Parameter Estimate Standard error Odds ratio Pr obability > Chi-square

Intercept �0:9280 0.2959 — 0.0150

DCD 1 0.9487 0.3882 2.582 0.0145

OCC �0:0506 0.0244 0.951 0.0378

Curve to the left 1.4631 0.9264 4.319 0.1043

Prediction accuracy

(Pcut-off ¼ 0:22)

Overall Sensitivity Specificity FP FN

% % % % %

Estimated model 71 54 76 58 16

Cross-validation 70 54 77 58 16
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suggest the estimated model is not overly influenced by the
data used.

Results and Discussion

Exploratory data analysis (EDA) was conducted to effectively re-
duce the number of variables of interest because of large volume of
data collected in the study. First of all, a logistic regression was
performed to choose an individual predictor related to the crash
severity. Weather parameters were tested either as a continuous
or a discrete variable. Using all of predictors chosen by the single
predictor selection, PROC LOGISTIC in SAS 9.1 (SAS Institute
1995) was used to estimate sequential logistic regression models
with a significance level of 0.10 in which backward elimination
with two-way interaction was conducted for each multiple model.
The reason for the use of backward elimination is that the full var-
iable set is calculated in the backward elimination procedure, being
able to handle multicollinearity (Chatterjee et al. 2000). Because
the predicted crash severity is a probability, it has to be classified
into either the most severe injuries, possible injuries, or PDOs by
some thresholds called cutpoints. The event probability cutpoints
can be determined by the actual proportions of severe crashes
(event). In this study, the 10-year average event proportions in
Table 3 were used to establish the event probability cutpoints.

Comparing the multiple logistic regression models by goodness
of fit, parameter significance, prediction accuracies, and cross-
validation, the more appropriate logistic regression model for crash

severity estimation was selected between forward and backward
sequential logistic regression models.

Table 4 shows the results of the forward format of a multiple-
sequential logistic regression. As shown from the LR test, the
global null hypothesis is rejected, indicating the estimated models
are better than constant only model. All of the explanatory variables
are statistically significant.

At Stage 1, the likelihood of possible injury crashes decreased
when at-fault driver wore safety belt, which is consistent with gen-
eral expectation. Meanwhile, median-related crash type was likely
to increase crash severity. Interestingly, large standard deviation
of vehicle volume (SDV), changing lanes/merging into traffic/
overtaking (DRV 2), and slowing/stopping (DRV 4) by at-fault
driver were found to decrease the likelihood of possible injury
crashes. Conversely, interaction of large standard deviation of
vehicle volume and at-fault driver’s slowing/stopping was likely
to increase the possible injury crashes in rainy weather.

At Stage 2, deficiency of DCD less than 50 ft (DCD 1) and exist-
ence of curve to the left were likely to increase the most severe
crashes including fatal/incapacitating/nonincapacitating injuries.
Conversely, the likelihood of the most severe crashes decreases
as vehicle occupancy increases.

Table 5 shows the results of the backward format of a multiple-
sequential logistic regression. Small P-values in the LR test at both
stages reveal that the selected models with all of the significant
explanatory variables are better than the global null models.

At Stage 1, the odds ratio of wind speed effect on the highest
crash severity was found to be slightly less than 1, indicating 1 unit

Table 5. Backward Format of Multiple Sequential Logistic Regression Model

Stage 1

LR test

Chi-square D.F. Pr obability > Chi-square

33.5406 4 < 0:0001

Analysis of maximum

likelihood estimates

Parameter Estimate Standard error Odds ratio Pr obability > Chi-square

Intercept 1 �2:9251 0.3299 — < 0:0001

DCD 1 0.9358 0.3321 2.549 0.0048

DRV 1 1.1142 0.3543 3.047 0.0017

DRV 3 2.0090 0.5569 7.456 0.0003

Wind speed �0:0544 0.0246 0.947 0.0272

Prediction accuracy

(Pcut-off ¼ 0:08)

Overall Sensitivity Specificity FP FN

% % % % %

Estimated model 67 72 66 83 4

Cross-validation 67 72 66 84 4

Stage 2

LR test

Chi-square D.F. Pr obability > Chi-square

26.2685 4 < 0:0001

Analysis of maximum

likelihood estimates

Parameter Estimate Standard error Odds ratio Pr obability > Chi-square

Intercept �0:3052 0.1747 — 0.0806

DRV 2 �0:8120 0.3399 0.444 0.0169

Median-related crash 1.3261 0.4231 3.766 0.0017

Passenger car �0:6111 0.2071 0.543 0.0032

Monday/Friday �0:4691 0.2168 0.626 0.0305

Prediction accuracy

(Pcut-off ¼ 0:29)

Overall Sensitivity specificity FP FN

% % % % %

Estimated model 62 50 67 61 24

Cross-validation 62 50 67 61 24
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of wind speed increment is likely to decrease the fatal/incapacitat-
ing/nonincapacitating injury crashes. It is plausible that high wind
speed may reduce drivers’ visibility or may accelerate the water
evaporation as well so that pavement can dry fast. Conversely,
DCD deficiency less than 50 ft (DCD 1) was found to be likely
to increase the most severe crashes significantly, which is consis-
tent with the result at the second stage of the forward format. Com-
pared to other significant factors, the impacts of driver-related
factors on the highest crash severity were found to be stronger. Ne-
gotiating curve by at-fault driver was found to much more increase
the likelihood of the most severe crashes than straight driving on
travel lane even though both drivers’ actions were likely to increase
the most severe crashes.

At Stage 2, the odds ratio for at-fault driver’s action two (DRV
2) was less than 1. In other words, the likelihood of possible injury
crashes decreases when at-fault driver changes lanes, merges, and
overtakes in the rainfall. Comparatively small size of at-fault
driver’s vehicle, such as passenger car and Monday/Friday, were
also found to decrease the likelihood of possible injury crashes.
Conversely, median-related crash type was likely to increase the
possible injury crashes, which is consistent result with the result
of forward format.

Comparing two formats of the sequential logistic regression, the
backward sequential logistic regression model is more effective es-
pecially in predicting the highest level of crash severity in terms of
higher sensitivity and lower false negative rate. The prediction ac-
curacies in cross-validation step are more similar to the estimated
accuracies in the backward format than the ones in the forward for-
mat. In addition, weather-related factor such as wind speed and de-
ficiency of car-following influenced by rainfall precipitation are
explicitly and significantly identified in the backward format.
Therefore, the backward sequential logistic regression is consid-
ered as more desirable for this study.

Conclusions

In previous studies, the rainy weather-related factors lacked the ac-
curacy and sophistication to reflect the impact of real-time pave-
ment surface conditions and visibility on crash severities. For
instance, wet or dry pavement surface, average annual rainfall pre-
cipitation, and even hourly rainfall are not sufficient to capture the
real-time rainy weather conditions prior to or during the crash oc-
currence. Using high-resolution data, this study assessed rainfall
effects on the severities of multivehicle crashes on Wisconsin in-
terstate highways. To comprehensively characterize weather condi-
tions and their effects on crash occurrences, this study used several
novel variables at the time of crash, in particular, 15-min rainfall
intensity, water film depth, and deficiency of DCD. In addition,
estimated or measured weather factors were interpolated between
three weather stations by inverse-squared interpolation method for
each crash location.

An appropriate modeling technique, sequential logistic regres-
sion, was employed to predict crash severities because of its flex-
ibility to estimate variant predictor effects and effectiveness in
different stages. The backward format of sequential logistic regres-
sion model outperformed the forward format in predicting crash
severity levels, especially visible injuries including fatal/incapaci-
tating/nonincapacitating injuries. The weather determinants identi-
fied in the backward format include deficiency of DCD and wind
speed. In many circumstances, especially when weather parameters
affect driver behavior through the DCD, visibility, road geometries,
and maneuver actions may lead to various crash consequences.
Especially under the rainfall, the road geometric characteristics

may affect the drivers’ maneuver actions which cause severe
crash occurrences on high-speed roadway. Because of the low-
road-surface friction under the rainfall, drivers may be in trouble
in safe cornering on horizontal curves, which can lead to more
severe crash occurrences on the high-speed roadway.

For a more comprehensive safety management strategy, the
resultant findings in this study can also be combined with a crash
frequency model to provide quantitative support on improving
road weather safety via weather warning systems, highway facility
improvements, and traffic operations enhancements.
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Notation

The following symbols are used in this paper:
a = deceleration rate in feet per squared seconds;
D = water film depth in millimeters per hour;

DCD = deficiency of car-following distance;
DCD 1 = deficiency of car-following distance that is less than

50 ft;
DRV 1 = going straight on travel lane by at-fault driver prior to

the crash moment;
DRV 2 = changing lanes, merging into traffic, and overtaking by

at-fault driver prior to the crash moment;
DRV 3 = negotiating curve by at-fault driver prior to the crash

moment;
DRV 4 = slowing or stopping by at-fault driver prior to the crash

moment;
I = rainfall intensity in millimeters, per hour;

OCC = average vehicle occupancy measured by 5-min intervals
for 1 hour prior to the crash moment in percent;

P1 = probability of PDO;
P2 = probability of possible injury;
P3 = probability of fatal/incapacitating/nonincapacitating

injury;
PDO = PDO crash;
PðYÞ = probability of response outcome;

RI = 15-min rainfall intensity interpolated between three
weather stations in millimeters per 15 min;

Sc = slope of pavement cross-section in percent;
Sl = longitudinal slope in percent;

S.D. = standard deviation;
SDV = standard deviation of average 5-min vehicle volume at

the crash locations;
SPD = average vehicle speed measured by 5-min intervals for 1

hour prior to the crash moment in miles per hour;
SSD = stopping sight distance in feet;

t = brake reaction time in seconds;
V = vehicle speed measured by 5-min intervals in miles per

hour;
VOL = average vehicle volume measured by 5-min intervals for

1 hour prior to the crash moment in vehicles per 5 min;
W = width of pavement in meters;
X = vector of explanatory variable;
Y = response variable;
α = intercept parameter; and
β = vector of parameter estimate.
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