Conditional Quantile Analysis for Crash Count Data
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Abstract: Crashes are important evidence for identifying deficiencies existing in highway systems, but they are random and rare. The
investigation of the nature of the problem normally draws on crashes collected over a multiyear period and from different locations to obtain
a sizable sample. Hence, the issue of data heterogeneity arises because the pooled data originated from different sources. Data heterogeneity
has to be addressed to obtain stable and meaningful estimates for variable coefficients. A desirable method of handling heterogeneous data is
quantile regression (QR) because it focuses on depicting the relationship between a family of conditional quantiles of the crash distribution
and the covariates. The QR method is appealing because it offers a complete view of how the covariates affect the response variable from the
full range of the distribution, which is of particular use for distributions without symmetric or normal forms (i.e., heavy tails, heterosce-
dasticity, multimodality, etc.). Crash data possess some of the properties that quantile analysis can handle, as demonstrated in an intersection
crash study. The compelling results illustrate that conditional quantile estimates are more informative than conditional means. The findings
provide information relative to the effect of traffic volume, intersection layout, and traffic control on crash occurrence. DOI: 10.1061/(ASCE)
TE.1943-5436.0000247. © 2011 American Society of Civil Engineers.
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Introduction

Crash data are important and valuable source for traffic safety re-
search because they measure the safety performance of an entity
and disclose the relationship between a crash and its cause. Crashes
are rare events, so often individual locations do not have adequate
data for drawing a valid and explicit conclusion. To obtain a large
sample, crash data are often pooled from a wide range of geo-
graphic locations and at different times in order to enhance the
analysis. Data collected at the same time and location may exhibit
similarities, whereas data collected at different times and locations
may exhibit markedly different characteristics. As a result, although
panel data have several advantages over the cross-sectional or time-
series data, they may contain considerable heterogeneity. Hetero-
geneity means that the variance of the dependent variable changes
from observation to observation; it may change as the independent
variable changes. The variance of the observed dependent variable
may be higher or lower than expected, indicating that the data are
overdispersed or underdispersed. The accuracy of the estimates is
compromised by not considering data heterogeneity. Furthermore,
the statistics used to test the hypothesis under the Gauss-Markov
assumption are no longer valid.

Data heterogeneity implies that data may originate or be col-
lected from different sources. If so, generalized linear modeling re-
lying on the conditional mean across different values of the
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independent variables to describe the data central tendency is less
efficient because of the violation of homogeneity. The distribution
of data therein becomes more important and informative than just
the mean and the variance. Quantiles offer a more complete view
of data from a broad spectrum. With the quantile regression (QR)
methodology, it is possible to know the impact of the regressors on
each quantile of the distribution. The major goal of this paper is to
introduce an alternative modeling approach—quantile regression—
to handle the heterogeneity issue in crash count data and to dem-
onstrate the resulting disparity in crash trends.

Literature Review

Crash count data are usually overdispersed for a variety of reasons,
including omission of important variables, link function misspecifi-
cation, and structured error term. In fact, crash data overdispersion
results from Bernoulli trials with unequal probability of independent
events, or crashes (Lord et al. 2007). The different modeling alter-
natives suggested for accounting data over dispersions are as follows:

« Capturing heterogeneous crash count data by means of finite
mixture regression models (Park and Lord 2009).

« Adopting a well-defined mean function (Mitra and Washington
2007) or improving the structure of the dispersion parameter 0]
by replacing a fixed value with a varying one (Miaou and Lord
2003; Miranda-Moreno et al. 2005; Geedipally and Lord 2008).
Most of the crash count models developed over the past two

decades depend on generalized linear models (GLM). These are

appealing because they provide relatively simple solutions for mod-
eling a wide spectrum of data without the restriction of a multivari-
ate normal distribution. The most representative GLMs in the
discipline of traffic safety studies are Poisson and Poisson-gamma.

These models have been used extensively for various data sets,

many of which are imperfect in satisfying the modeling require-

ments. Several limitations impede GLMs from modeling compli-
cated data in an effective fashion. First, GLMs involve
restrictive distributional assumptions. Specifically in the classic
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GLM framework, the distribution of data must belong to the expo-
nential family. In reality, few data sets follow the distributional as-
sumptions exactly. Second, GLMs require correctly specified link
function. Misspecification of link functions can lead to the loss of
efficiency in parameter estimates (e.g., Chiou and Miiller 1998;
Mitra and Simon 2007). Third, homogeneity is often assumed
when fitting GLMs. Violation of the homogeneity assumption
can undermine the accuracy of parameter and standard error esti-
mates (Palmer et al. 2007). The proposed alternatives, such as
quasi-likelihood methods to tackle these problems, only serve as
partial solutions, and their finite sample performance can be unsat-
isfactory (Nelder and Lee 1992). Additionally, GLMs focus mainly
on extracting a single trend to summarize the data. They provide
little information about a conditional distribution for which features
depending on the independent variables other than location of the
distribution (mean) are missing. In situations where the assumption
of homogeneity is met, conditional means generally serve as decent
summary statistics of the central tendency. However, in situations
where heterogeneity is present, conditional means give an incom-
plete summary.

The distribution of data can be reviewed by looking at quantiles,
which are points at regular intervals in the cumulative distribution
function (CDF) of a random variable. The median is probably the
most well known quantile measure; it describes the value separating
a population in half (i.e., 0.5 quantile). Both the median and mean
are often used to describe the central tendency of data; however,
they differ substantially in terms of robustness. Specifically, the
mean is extremely sensitive to outliers and skewness in a distribu-
tion. Hence, it may not always be the best measure of central ten-
dency. Relating quantiles of the dependent variable with the
independent covariate facilitates the origination of QR methodol-
ogy. The groundbreaking work of estimating conditional quantile
functions by Koenker and Bassett (1978) has inspired the prolific
growth and development of QR in areas such as econometrics,
social science, finance, and public health. In finance, QR has been
applied to modeling value at risk (VAR) because market returns
often follow a heavy-tailed distribution. The conditional means
are often inadequate, but QR models are more appropriate for
tracking the change in distribution over time (Taylor 1999). In so-
cial economics, especially studies of the factors affecting the wage
structure, quantile regression has been widely used (Fizenberger
et al. 2001; Gonzalez and Miles 2001; Garcia et al. 2001). For in-
stance, Nielson and Rosholm (2001) studied the determinants of
wages in Zambia with special emphasis on the public-private sector
wage gap. Their paper nicely presented the differential trends in the
entire wage distribution across education and age groups. Machado
and Mata (2001) conducted research on returns to education in
Portugal. They found that returns to education were higher at high
quantiles. In addition, the difference in the returns at the top and
bottom of the wage distribution increased during the study period.
Buchinsky (2001) discovered that returns to education for women
varied across quantiles, age groups, and cohorts in the United States
through a study over a period of two decades. Similar, in public
health, recent studies have applied QR to examine the effect of
health care reform (Winkelmann 2006) and prenatal care utilization
(Wehby et al. 2009).

Compared to these research areas, transportation research still
has not fully embraced QR. Publication involving this methodol-
ogy is sparse. The few pioneering studies include a paper by
Hewson (2008), which explored the application of a quantile
smoother for speed data, and a paper by Qin et al. (2010), which
utilized QR to determine crash risk—prone locations. Given the data
issues existing in transportation studies, QR can be a potentially
useful tool.

Methodology

Before introducing the QR methodology, it is necessary to recall
the state of the practice for crash count models. Crash frequency
is often assumed to follow a Poisson distribution, as in Eq. (1):

Nilp; ~ Poisson (1;)  and log(p;|X; = X;3 + ¢ (1)

where N; = number of crashes at site i; j1; = expected number of
crashes at site i; X; = vector of the covariates of site i; B = vector of
the unknown parameters for covariates; ; = random error; and
exp(g;) ~ Gamma (¢, ¢).

The exponential form of the random error follows a single-
parameter gamma distribution, which accounts for the data hetero-
geneity across the sites. Hence, after considering the random error
g, the marginal distribution of N; becomes a Poisson-gamma dis-
tribution, also a negative binomial distribution. Because a negative
binomial distribution is not restricted by the assumption of equal
variance and mean applied to Poisson, it is more appropriate for
data with overdispersion. For this type of model, Eq. (1) clearly
indicates that the relationship between the conditional mean crashes
1] X; and the covariates is the core interest of the regression model.

On the other hand, QR is interested in estimating conditional
quantiles. It is extremely useful for the data that exemplify irregular
distributions such as overdispersion, underdispersion, heavy tail
or compressed tail of the distribution, or even multimodality.
The explicit investigation of the stochastic relationship among
the dependent variable and covariates regards QR as a more inform-
ative empirical analysis. The rest of this section introduces the con-
cepts of quantiles, quantile regression and its estimation, and a
jittering algorithm that converts step functions of CDF to a continu-
ous CDFE.

Quantiles

Let p be a number between 0 and 1. The 100p percentile of the
distribution of a continuous random variable X denoted by n(p)
is defined in Eq. (2).

p=Fatp) = [ ip)f(y)dy 2)

In general, the p-percentile of the distribution of any random
variable X can be written as the inverse function of its CDF evalu-
ated at p. Formally, the pth quantile of X with cumulative distribu-
tion function F on i with 0 < p <1 is defined as Eq. (3):

n(p) = F~'(p) =inf{y: F(y)2p} whereO0<p<1 (3)

Note that 7(0.5) is the median, the 95th percentile is denoted
as 7(0.95), and the commonly used first and third quartiles are
similarly represented as 7(0.25) and 7(0.75), respectively.
Here, 7(p) can be interpreted as the threshold that splits the possible
values of X in two groups such that P(X <7n(p))=p
and P(X > n(p)) =1 —p.

Quantile Regression Model

Like the mean that minimizes the sum of square errors, the median
of a random sample {y;,y,,...,y,} of a random variable Y is the
minimal of the sum of absolute deviations. Therefore, the general
pth sample statistics quantile given X, ny (p|X) may be solved as an
optimal solution to minimizing a weighted average of the samples
whose values are larger or equal to 7y (p|X) and the samples whose
values are less than or equal to ny (p|X) (Koenker 1978), as formu-
lated in Eq. (4).
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Fig. 1. Quantile regression function

min| D, pbi—m(@IX)|
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+ Y (=p)y — (X (4)
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The graphic presentation of Eq. (4) is shown in Fig. 1.

Following Fig. 1, the bracket in Eq. (4) can be simplified as
2 p (1) =22 p(p — I (<0))s Where = y; —ny(p|X). If the pth
sample statistics quantile ny (p|X) is a linear function of the param-
eters of interest, it can be solved efficiently by linear programming
methods. Because crash count has to be nonnegative, a logarithmic
transformation is imposed on the quantiles. The log transformation
allows comparison of the QR estimates with the conditional mean
estimates obtained in Eq. (1). Note that the quantiles are equivalent
with respect to any monotone increasing transformation such as
logarithmic transformation, so the transformed random variable
Thog(v) (P1X) is equal to log[ny(p|X)] (Koenker and Hallock
2001) in Eq. (5).

logmY(pX)] = X;8 + €i (5)

where p = 100p percentile, such as 95th percentile, 5S0th percentile
(median), etc.; ny(p|X;) = response variable corresponding to 100p
percentile; 3 = k-dimensional vector of unknown parameters of the
covariates Xj; and ¢; = random error term.

Hence, the optimization problem becomes solving the estimates
for Bs in Eq. (6).

Bp) = argmin| Y p, (v — X;8)] (6)

BeRk

For any quantile p between 0 and 1, B(p) is called the pth re-
gression quantile, which minimizes the sum of weighted absolute
residuals. As a special case, the sample median minimizes the sum
of the absolute errors of the sample set when p = 0.5.

Smooth Quantile for Counts with Jittering Algorithm

Although generation of quantiles is possible from either discrete or
continuous data, a potential issue arises when estimating condi-
tional quantiles with count data. The problem originates from
the conjunction of a nondifferentiable objective function and a dis-
crete dependent variable (Machado and Santos Silva 2005). To ap-
ply QR to count data, the proposal for smoothing approaches can be
roughly categorized into discretization and jittering. Introduction of
a latent variable classifies a discrete variable between two continu-
ous values defined by the latent variable. This approach is similar to
the ordinal logistic regression model. In this model, the order of a

multilevel outcome is determined by an underlying latent variable
to be estimated. One obvious shortcoming of this approach is that it
introduces a new parameter for each observation, which makes it
computationally inefficient. This study employs the jittering
method, which constructs a continuous variable whose conditional
quantiles have a one-to-one relationship with the conditional quan-
tiles of the counts of interest. This requires imposing an artificial
relationship on the data.

Because observed count data Y have a discrete distribution,
Ny (p|X) is not a continuous function of the parameters of interest.
By adding a uniformly distributed random variable U between 0
and 1 to Y, a new variable Z = U + Y can be created, resulting
in a conditional quantile function that is continuous in p. More im-
portantly, Z’s conditional quantiles 7,(p|X) have the one-to-one
relationship with 7y (p|X), the conditional quantiles of the counts
Y described in Eq. (7). The reason for adding a uniform distribution
to the count data is that the new variable Z has a boundary. More-
over, compared to other distributions and jittering algorithms, the
uniform distribution is more computationally efficient.

ny(pIX) = [nz(pX) + 11 (7)

where [a|represents the ceiling function, meaning the next largest
integer.

Estimation of Coefficients and Confidence Intervals

In general, considering QR as a linear programming problem can
help it solve efficiently with various optimization methods such as
simplex algorithm, interior point method, smoothing algorithm,
and their derivations (Chen 2005). Simplex algorithm is the most
popular algorithm, but it is computationally demanding. The
processing time increases considerably as the size of data increases.
The interior algorithm developed as an alternative for handling
large data sets (i.e., n > 10°) has proved superior compared to
the simplex algorithm. The smoothing algorithm, on the other
hand, is a heuristic approach that aims to improve the estimate
through numerous iterations. The SAS QUANTREG procedure im-
plements all three algorithms, and QUANTREG also provides three
methods for estimating confidence intervals for the coefficients:
sparsity, rank, and resampling. The sparsity method is the most di-
rect and fastest method, but it can have problems with data that are
not independently and identically distributed. The rank method
uses the simplex algorithm and is computationally expensive.
The resampling method uses bootstrap but is not suitable for small
data sets. Koenker and Hallock (2001) proved that the discrepan-
cies between these competing methods are slight. The SAS pro-
cedure document (Chen 2005) has details of these algorithms.

Data Description

This paper reconsiders a study conducted by Knapp et al. (2005) of
the impact of intersection geometric design and traffic control on
intersection crashes . Crash data for 1,770 intersections in Wiscon-
sin were collected along with other features. This paper models the
total number of crashes between 2001 and 2003 at the intersections
based on various intersection attributes. Intersections are catego-
rized by area type (AREATYPE) including rural and urban; traffic
control (TRFCNTL) including four-way stop, two-way stop, sig-
nalized, and other; and geometric features of the intersection.
The geometric features include the number of intersection approach
legs (LEGS), the number of through lanes on the major roadway
approach (LANE), the presence of a median on the major roadway
(DIVIDED), and the presence of left-turn lanes (LEFTTURN).
Millions of annual entering vehicles (ENTVEH) for the traffic
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Table 1. Descriptive Statistics for Variables

Continuous variables Description Mean S. dev. Range
CRASHES Total 3-year number of crashes 16.05 16.69 [0, 134]
ENTVEH Million of annual entering vehicles 6.96 4.77 [0, 29.88]
Categorical variables Description Values Frequency Proportion (%)
AREATYPE Types of area Rural 581 32.82
Urban 1189 67.18
LEGS Number of intersection approach legs 3 380 21.47
4 1390 78.53
DIVIDED Existence of major roadway median Yes 819 46.27
No 951 53.73
TRFCNTL Types of traffic controls (all-way, two-way, other, signal) All-way 40 2.26
Side 947 53.50
Signal 780 44.70
Other 3 0.17
LANE Number of major roadway lanes 2 722 40.79
4 1048 59.21
LEFT-TURN Existence of left-turn lanes Yes 1054 59.55
No 716 4045
Table 2. Quantile Regression Coefficient Estimates
Quantile 0.25
Parameter Estimate Std. error 95% CI t value Pr > |
INTERCEPT 1.0236 0.084 0.8588 1.1884 12.18 < 0.0001
ENTVEH 0.7785 0.0431 0.694 0.8629 18.08 < 0.0001
LEG 3-LEGGED —0.4332 0.0683 —0.5671 —0.2992 —6.34 < 0.0001
TRFCNTL 4-WAY —1.5097 0.3896 —2.2737 —0.7456 —3.88 0.0001
OTHER —0.173 3.1534 —6.3577 6.0118 —0.05 0.9563
SIDE —0.496 0.0546 —0.603 —0.3889 -9.08 < 0.0001
Quantile 0.5
Parameter Estimate Std. error 95% CI t value Pr > |1
INTERCEPT 1.346 0.0696 1.2096 1.4825 19.35 < 0.0001
ENTVEH 0.7857 0.0352 0.7167 0.8546 22.35 < 0.0001
LEG 3-LEGGED —0.2957 0.0546 —0.4028 —0.1886 —5.41 < 0.0001
TRFCNTL 4-WAY —0.5717 0.2752 —1.1115 —0.0319 —2.08 0.0379
OTHER —0.2745 2.3237 —4.8319 4.2829 =0.12 0.906
SIDE —0.3646 0.0404 —0.4439 —0.2852 —9.01 < 0.0001
Quantile 0.75
Parameter Estimate Std. error 95% CI t value Pr > ¢
INTERCEPT 1.871 0.0828 1.7086 2.0334 22:6 < 0.0001
ENTVEH 0.7035 0.0348 0.6352 0.7718 20.2 < 0.0001
LEG 3-LEGGED —0.2562 0.0508 —0.3557 —0.1566 =505 < 0.0001
TRFCNTL 4-WAY —0.5482 0.1891 —-0.919 —0.1774 -29 0.0038
OTHER —0.1345 3.847 —7.6798 7.4107 —0.03 0.9721
SIDE —0.3821 0.0511 —0.4823 —0.2819 —7.48 < 0.0001
Quantile 0.95
Parameter Estimate Std. error 95% CI 1 value Pr > [
INTERCEPT 2.6406 0.1589 2.329 2.9523 16.62 < 0.0001
ENTVEH 0.5483 0.0643 0.4223 0.6744 8.53 < 0.0001
LEG 3-LEGGED —0.2983 0.0712 —0.438 —0.1586 —4.19 < 0.0001
MEDIAN DIVIDED 0.1418 0.0649 0.0146 0.2691 2.19 0.029
TRFCNTL 4-WAY —0.6026 0.4024 —1.3917 0.1866 =15 0.1344
OTHER —0.8286 20.6819 —41.3922 39.7351 —0.04 0.968
SIDE —0.3677 0.0738 —0.5124 —-0.223 —4.99 < 0.0001

Note: Baseline is signalized, undivided four-legged intersections, and the coefficients for this type of intersections are zero.
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exposure is the only continuous variable. Table 1 summarizes the
statistics for key variables.

Results and Discussion

The relationship between crash count quantiles and explanatory
variables was estimated by using a simplex algorithm, and the con-
fidence intervals were computed for each estimated coefficient
using the resampling method in SAS QUANTREG because of
the moderate sample size. Table 2 shows the estimated coefficients
and 95% confidence intervals for statistically significant variables
(5% level of significance) at the 25th, 50th, 75th, and 95th percen-
tiles of crash count distribution. Specifically, quantile 7(0.25) is the
predicted 25th percentile of crash frequency, conditional upon the
variables and their given values. Therefore, it presents a broader
view of the variables related to intersections with low, intermediate,
and high numbers of crashes. In other words, instead of assuming
the coefficients are fixed across all the sites, some or all of them are
allowed to vary to account for heterogeneity attributable to unob-
served factors.

Intercept

-0.2

LEGS 3-LEGGED

-0.4 -

-0.6 -
1 i i T i

T
00 0.2 04 06 08 1.0
Quantile

ENTVEH

The variables of DIVIDED and LEFTTURN are omitted from
the table because they are not statistically significant. Baseline data
are signalized, and undivided four-legged intersections and the co-
efficients for this type of intersection are zero. In general, the over-
all patterns of the estimated coefficients at each quantile are similar
in terms of the number of statistically significant variables and the
signs of individual parameters. The overall results are rather con-
sistent with previous studies: the number of crashes increases with
the increase in traffic exposure (ENTVEH); three-legged intersec-
tions are safer than four-legged intersections, provided other var-
iables remain equal; and unsignalized intersections, including
four-way stop and two-way stop controls, have fewer crashes than
their signalized counterparts if other variables remain equal. A
closer examination of the magnitude of the estimated coeffi-
cients reveals similarities and differences among quantiles. First,
ENTVEH is less likely to affect safety in the high tail than in
the low tail. A unit increase of a million annual entering vehicles
at an intersection may lead to 2.17 crashes at the 25th percentile or
1.73 crashes at the 95th percentile. This suggests that any signifi-
cant traffic volume increase at locations with a historically low
number of crashes may trigger a considerable surge in crashes
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Fig. 2. Quantile plots for variable coefficients
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Table 3. Negative Binomial Regression Coefficient Estimates

Parameter Estimate Std. error 95% CI t value Pr> |1
INTERCEPT 1.5297 0.0654 1.4015 1.6578 547.35 < 0.0001
ENTVEH 0.7379 0.0311 0.6769 0.799 561.57 < 0.0001
LEG 3-LEGGED —0.3144 0.0426 —0.398 —0.2309 54.43 < 0.0001
TRFCNTL 4-WAY —0.6508 0.1233 —0.8925 —0.409 27.84 < 0.0001
OTHER —0.3907 0.4685 —1.309 0.5276 0.7 0.4043

SIDE —0.3867 0.0397 —0.4645 —0.3089 94.9 < 0.0001

Note: Baseline is signalized, undivided four-legged intersections, and the coefficients for this type of intersections are zero.

compared with the sites already experiencing a high number of
crashes. Highway designers or planners may need to act more cau-
tiously and proactively with projects that intend to increase the
capacity of the roadway or intersection. Secondly, for the number
of intersection approaches, three-legged intersections have fewer
crashes than four-legged intersections at any quantile level. The
difference, however, displays a concave shape, with the 25th per-
centile being the lowest. Various intersection traffic controls dem-
onstrate substantial variation. Intersections controlled by four-way
stops have the lowest number of crashes, but the effect dwindles
and eventually reaches a plateau near the 50th percentile. Intersec-
tions controlled by two-way stops are relatively stable, and their
value fluctuates between —0.4 and —0.6. The disparities among
different quantiles for different traffic controls imply that these fac-
tors are not equally correlated to a low, a moderate, or a high crash
count. When evaluating traffic control design at an intersection, its
crash history has to be considered along with the projected traffic
demand. For example, when weighing a signalization project for an
intersection, the site crash history should be reviewed in detail be-
cause more crashes may be expected when converting an intersec-
tion with a low crash history than a high crash history.

Fig. 2 depicts the quantile regression results of the parameters in
quantile plots. The solid line represents the estimates of the coef-
ficient for percentiles between 0.05 to 0.95, and the shaded area
between the two dashed lines describes a 95% stepwise confidence
band. A narrow band suggests a small variance for the estimated
coefficient, which displays a stronger influence on the crash fre-
quency. Superimposed on each plot is a horizontal dash line that
represents the mean estimate of the coefficient using a negative
binomial regression model. Table 3 lists the coefficient estimates
along with statistical inferences obtained by the SAS GENMOD
procedure.

The position of the mean estimate in relation to the quantile es-
timate unambiguously indicates that the mean, the location param-
eter, is insufficient to explain the variation of the response variable.
As can be found in the quantile plot for ENTVEH, the conditional
mean estimate intersects the quantile plot around the 80th percen-
tile, suggesting an overestimate of the number of crashes. For three-
legged intersections, a clear concave shape can be observed below
the 50th percentile, and the quantile estimates fluctuate around the
mean estimate above the 50th percentile of the crash distribution.
Traffic control inarguably affects the intersection operation and
safety. Compared with signalized intersections, unsignalized ones
have fewer crashes, other variables being equal. The values of mean
coefficients for four-way stop and two-way stop control are near the
median, but they are unable to illustrate the changes in the low tail
of the distribution. This implies that warranting a signal control to
an unsignalized intersection already experiencing many crashes
may not drastically increase crash count. Although the quantile plot
is more indicative compared to a mean estimate, like any statistical
model and its results, it needs to be combined with other data

collection and engineering studies for appropriate decision-making.
For example, the decision of warranting a signalized intersection or
changing signalized intersections to other control types needs to
include crash severity and prevailing traffic conditions, such as traf-
fic mix, turning movements, pedestrian activities, etc.

Conclusions

A common practice in highway safety studies is to combine data
from different locations and at different times to increase sample
size for a more statistically valid analysis. This, however, raises
the issue of data heterogeneity that may potentially make the
parameter estimates unstable and less efficient. The QR method
provides an alternative approach to cope with heterogeneity data.
Compared to the current crash count models using GLM, such as
Poisson or negative binomial regression, QR can effectively depict
the varying effects of covariates on crash frequency at different lev-
els of its distribution. In this study, 1,770 intersections with a three-
year crash history and corresponding geometric characteristics and
traffic controls were analyzed using the QR models. The effort was
focused on understanding how the crash contributing factors influ-
enced results at various quantiles of crash distribution, from low
to high.

The overall results are rather consistent with previous studies in
which the traffic exposure (ENTVEH) has a positive effect on crash
frequency; intersections with three legs and four-way stop control
have the lowest crash count if other variables remain equal. A
closer examination of factor effects at various quantile levels leads
to new findings that can be disguised by a conditional mean-based
regression analysis. Traffic exposure tends to be less likely to affect
safety in the high tail than the low tail, suggesting that any signifi-
cant increase in traffic demand at locations with low crash history
may experience a surge in crashes. Three-legged intersections ap-
pear to be safer than four-legged intersections, but the difference
seems to follow a concave shape at the low tail, with the 25th per-
centile as the lowest. Similarly, unsignalized intersections have
fewer crashes than signalized intersections when other variables
are equal. The disparities, however, are more appreciable at the
low tail than the high tail of the crash distribution. This implies
that warranting a signal control to an unsignalized intersection
already experiencing many crashes may not drastically increase
crash count.

In summary, quantile-based regression analysis seeks to extend
the ideas of estimating the conditional mean to estimating condi-
tional quantiles of the response variable, which is expressed as a
link function of a series of covariates. Covariates can influence
the conditional distribution of the response in many ways. Explicit
investigation of these effects using QR can provide a much more
complete view of the stochastic relationship between variables and,
therefore, a more indicative empirical analysis. Furthermore, given
the flexibility of QR, efforts can be directed to crash diagnosis on
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the high quantile of the distribution if the locations with an abnor-
mally high number of crashes are of particular interest to safety
stakeholders.
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