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Abstract: Spatial statistical techniques can be an effective tool for analyzing patterns and autocorrelation in crash data, especially
weather-related crashes. Since weather is a geographic phenomenon, it tends to show distinct geographic patterns affecting certain
locations more than others. Accordingly, “weather-related” crashes may also display similar distinct patterns or clustering. The objective
of this research was to use spatial statistical techniques to identify significant patterns of weather-related crashes. Weather-related crashes,
defined as those crashes which occurred in adverse weather conditions, were analyzed using the Getis-Ord G

i
*�d� statistic. The statistic

reveals spatial patterns for weather-related crashes which are clustered at different locations depending upon weather conditions �snow,
rain, and fog�. The results also show geographic areas �counties� of statistically significant high and low relative crash rates for each
weather condition. Furthermore, the resulting patterns of crashes were validated by comparing counties of high and low crash rates with
areas of varying weather data. The establishment of this relationship between weather and crashes is imperative in identifying the
variables contributing to these crash types and the implementation of effective countermeasures for road weather safety audit purposes.
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Introduction

One of the most critical questions that traffic safety engineers face
is where to implement safety countermeasures such that the most
significant impact on safety can be achieved. The accurate iden-
tification of safety deficient areas on a broader scale for planning
purposes and on a local scale for highway safety treatments is the
key to a successful and comprehensive safety program.

Safety professionals realize that an important aspect of road
safety is weather and its contribution to crashes. Weather inevita-
bly affects road safety throughout the year in all climates through
snow, rain, fog, ice, sleet, or wind. The effects of these adverse
weather conditions on road safety are obvious in terms of reduced
pavement friction, reduced driver visibility, and deteriorated traf-
fic control device functions. For a traffic safety engineer or road
safety auditor, the first task is identifying a potential or existing
problematic area prior to addressing the root causes of crashes in
relation to weather interaction with roadway geometric features,
and traffic conditions.

In 2004, there were 6,181,000 reported vehicle crashes in the

1Research Assistant, Dept. of Civil and Environmental Engineering,
Univ. of Wisconsin-Madison, 2205 Engineering Hall, 1415 Engineering
Dr., Madison, WI 53706. E-mail: gkhan@wisc.edu

2Associate Researcher, Traffic Operations and Safety �TOPS�
Laboratory, Univ. of Wisconsin-Madison, 1214 Engineering Hall, 1415
Engineering Dr., Madison, WI 53706. E-mail: xqin@engr.wisc.edu

3Associate Professor, Department of Civil and Environmental
Engineering, University of Wisconsin-Madison, 1204 Engineering Hall,
1415 Engineering Drive, Madison, WI 53706 �corresponding author�.
E-mail: noyce@engr.wisc.edu

Note. Discussion open until October 1, 2008. Separate discussions
must be submitted for individual papers. To extend the closing date by one
month, a written request must be filed with the ASCE Managing Editor.
The manuscript for this paper was submitted for review and possible
publication on June 9, 2006; approved on October 3, 2007. This paper is
part of the Journal of Transportation Engineering, Vol. 134, No. 5, May

1, 2008. ©ASCE, ISSN 0733-947X/2008/5-191–202/$25.00.

JOURNA

Downloaded 14 Oct 2009 to 137.216.20.90. Redistribution subject to 
United States �NHTSA 2004�. About 16% of these crashes—
approximately 991,000—were determined to be “weather-related”
crashes as rain, sleet, snow, fog, ice, or some combination of
these were present at the time of crash. Weather-related crashes in
2004 resulted in nearly 5,000 fatalities and approximately
276,000 injuries. Crash statistics were fairly similar in 2003 with
just over 16% of all the crashes being weather related �NHTSA
2003�. Between 1995 and 2001, the percentage of injury and fatal
crashes related to adverse weather conditions was approximately
22% for both crash types �Goodwin 2002�. These figures translate
into a significant economic and social loss.

The transportation system in Wisconsin experiences all
weather types and is a prime example of the effects of adverse
weather on traffic safety. According to the Wisconsin Department
of Transportation �WisDOT�, approximately 1,430 persons were
killed on Wisconsin roadways from 1999 to 2002 and 116,790
were injured in crashes that took place during adverse weather
conditions. In the wake of the deadliest crash in Wisconsin history
on October 11, 2002, where dense fog led to a 50 vehicle crash
that left ten people dead and 39 injured, Wisconsin has imple-
mented a more aggressive and proactive approach to improving
weather-related traffic safety on state highways. One of the ac-
tions considered was to introduce a formal road weather safety
audits procedure into the WisDOT facilities development process,
symbolizing a pronounced step towards incorporating traffic
safety seamlessly into its project and program development.

Ideally, road weather safety audits should be performed at all
locations to assess the safety of the roadway system. Clearly, the
magnitude of this task makes it impossible. Therefore, weather
prone locations must be identified and prioritized so that audit
efforts can be focused on those locations in which weather is a
significant contributor to safety issues.

In this research, weather prone locations or clusters in the state
of Wisconsin were identified by considering historical weather-
related crashes. Normal techniques, such as plotting weather-
related crash rates or numbers cannot provide a clear picture of

the most weather prone locations �crash rate or frequency map�,
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nor does it provide reliable safety information because crash oc-
currence is a stochastic process with latent variables in error. An
innovative way to investigate patterns of high and low weather-
related crash locations in a quantifiable manner is through spatial
statistical techniques. Through spatial analysis, statistically sig-
nificant patterns can be recognized in the form of clustered or
nonrandom crash events. Moreover, the use of these techniques
can provide a measure to quantify the safety worthiness of
weather-prone areas for road safety audit focus and renewed
safety emphasis.

This research used spatial statistical techniques to identify
weather-related crash patterns. Spatial patterns were revealed
through spatial autocorrelation by observing clusters of areas with
similar attribute values—high or low crash rates given that
weather is a geographic phenomenon. Weather demonstrates
patterns which are influenced by geographic conditions and limi-
tations; hence, crashes related to weather should also display
similar patterns. The identification and prioritization of these lo-
cations is the first step towards closely analyzing the prevailing
conditions on roadways for the underlying causes of crashes.

Literature Review

Traditional road safety studies evaluate the impacts of various
parameters on safety performance, either qualitatively or quanti-
tatively, such as the influence of various geometric features on
crash occurrences �Shankar et al. 1995; Khattak and Knapp
2001a�. These studies often develop statistical models under the
assumption that crash events occurring in a specific space are
independent of each other. This assumption may hold true for
crashes happening in a small area where geographical conditions
are assumed to remain similar; the same cannot be said for
county—or statewide analysis areas. The presence of spatial
dependencies or spatial autocorrelation, where values at one lo-
cation are influenced by the presence of other values in its geo-
graphic proximity, often violates the assumption of independence
that is implicit in many statistical analyses. The failure to account
for spatial autocorrelation can lead to serious errors in statistical
analysis for geographic data because features lying in space in-
fluenced by geographical factors are bound to display some sort
of spatial dependencies �Getis and Ord 1992 Cressie 1993�.

Lack of spatial independence in geographic data has given rise
to statistical techniques that measures spatial autocorrelation in
data, which can be incorporated into modeling procedures to
eliminate errors and account for spatial dependencies. For crashes
that are influenced by weather or some other spatial phenomenon,
the spatial independence assumption is often violated. It is impor-
tant to analyze the spatial heterogeneity/homogeneity of these
data spread in space, especially when analyzing them from a geo-
graphical context to make correct assumptions about the nature of
the data and the analysis conducted �Cressie 1993�. Road crashes
can be analyzed from different spatial contexts to establish spatial
associations. The measurements of these spatial dependencies or
spatial autocorrelation integrated with geographic information
system �GIS� can help analyze spatial patterns and clusters in
crash data as well as help improve modeling procedures and error
estimates.

Several studies have been conducted to establish spatial pat-
terns in vehicle or pedestrian crashes for identification of critical
locations �Jones et al. 1996�. Kim and Yamashita analyzed spatial
patterns of pedestrian crashes in Honolulu, Hawaii using K-means

clustering techniques �Kim and Yamashita 2004�. These spatial
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patterns identified areas of high pedestrian crashes that were
present in light of various demographic features such as popula-
tion or land use. Similarly, Levine conducted a spatial analysis of
Honolulu crashes in the context of varying conditions and noted
the limitations of “blackspot” analysis in terms of describing the
location and causation of different types of crashes �Levine et al.
1995�. Flahaut carried out a study for black zones and found
several advantages in defining black zones �i.e., high crash fre-
quency locations� using spatial autocorrelation and kernel meth-
ods on road segments �Flahaut et al. 2003�.

These studies were conducted at segment, corridor, or intersec-
tion level at preselected locations. There were no specific studies
identified on a broader regional scale. The objective of the re-
search described in this paper was to identify focus areas in the
state as a first step and the second step would be to perform an in
depth and detailed level analysis in light of various contributing
factors. Additional information on the second step can be found in
the research work completed by the authors �Qin et al. 2006�.

As demonstrated in these microscopic-based research efforts,
it is logical to extend the use of spatial pattern recognition to
identify patterns in weather-related crashes.

There are two ways of assessing spatial patterns in geographic
data using spatial association:
• Global measures; and
• Local measures.

Global measures of spatial association analyze patterns on a
large scale to show whether data are clustered, dispersed, or ran-
domly distributed in space. Specifically, global measures show
the overall patterning of the data in the region under study. Some
examples of global measures methods are the Moran’s I index
and Getis–Ord General G statistic �Anselin 1995�. As the global
measures of spatial association can be used to test general pat-
terns in data, the identification of statistically significant patterns
of high �hot spots� or low �cold spots� attribute values within the
study area is also interesting and necessary.

The local measures of spatial association can quantify spatial
autocorrelation at a small scale which may be masked by global
measures. Both distance statistics, i.e., Getis–Ord Gi statistics and
local Moran’s I or local indicators of spatial association �LISA�
proposed by Anselin are well known types of local measures of
spatial association �Getis and Ord 1992; Anselin 1995; Ord and
Getis 1995�.

The calculation of spatial autocorrelation requires the identifi-
cation of an extent of the neighborhood surrounding an individual
location. The extent can be defined in terms of contiguity �bound-
ary based� or distance �band width� based. Additionally the nature
of the spatial relationships between that location and its neighbor-
ing localities based on which spatial associations are calculated is
required. The nature of the interaction can be defined as Euclidian
�shortest path�, network constrained �distances measured on road
surfaces�, cost, or inverse weighted distance.

This conceptualization of the spatial relationships is repre-
sented in a spatial weight matrix. In the most general form, a
first-order contiguity based weight assigns a value of 1 to all
neighbors bordering a particular location and assigns a value of 0
to nonbordering locations. Similarly for distance, all locations
within a specified distance band are assigned a value of 1 while
areas outside the cutoff distance are assigned a value of 0.
According to Flahaut, the choice of weighting matrix is never
objective because of the limitations in defining clear geographic
boundaries regarding the subject matter under study �Flahaut
et al. 2003�.
The choice of a spatial weight matrix is difficult due to the
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variable and unpredictable nature of weather events. Neverthe-
less, effort was made to ensure objectivity in this choice. Several
studies had considered spatial relationships described by spatial
weight matrices depending upon the nature and objective of the
study �Getis and Ord 1992; Anselin 1995; Ord and Getis 1995;
Flahaut et al. 2003�. For instance, the choice of a spatial weight
matrix can be dependent on some prior knowledge about the area
under study or a general idea of the interaction between neigh-
boring locations with regards to the subject matter. The choice of
spatial weight matrix is explained in detail in the “Methodology”
section.

In order to analyze the crash data, definitions had to be estab-
lished to properly define weather and nonweather-related crashes.
Furthermore, since different weather phenomenon show different
patterns throughout a year, it was also decided to further analyze
the weather crashes according to different weather types. Several
authors have defined weather-related crashes; however, these
studies used varying definitions �Andrey et al. 2003; Andrey and
Yagar 1993; Satterthwaite 1976; Khattak and Knapp 2001a,b;
Brodsky and Hakkert 1988�. According to the Federal Highway
Administration �FHWA�, weather-related crashes are defined as
crashes that occur in adverse weather �presence of rain, snow,
sleet, fog� or slick pavement conditions �wet, snowy, slushy, or
icy pavement� �Goodwin 2002�. The FHWA definition of
weather-related crashes was applied in this research.

Data Collection and Assembly

Three years of Wisconsin crash data �2000–2002� were obtained
to complete this research. Wisconsin crash data contain two sec-
tions regarding weather conditions at the time of the crash,
namely “weather condition” and “road condition.” Weather-
related crashes selected for this analysis included one or more of
the following three types of weather and/or road conditions:
1. Fog �crashes reported in foggy weather conditions�;
2. Snow �crashes reported in snowy weather conditions and/or

roads covered with snow�; and
3. Rain �crashes reported in rainy weather conditions and/or

wet pavement conditions�.
Assembling the data required an aggregation of crash data

within a geographic boundary. It was decided to aggregate the
data set of all crashes on a county level because it provided a
well-defined jurisdictional-based picture of the state in terms of
planning and programming of safety implementations. County
level analysis was the first step by which the over 19,000 seg-
ments of varying length throughout the state could be prioritized
for further microscopic analysis. Relative crash rates were defined
for each county as the percentage of individual weather-type
crashes divided by the total number of crashes. Relative crash
rates were used because crashes aggregated on a county level had
to be normalized by some measure of exposure to facilitate the
comparisons between counties. Traditional exposure values such
as volume and vehicles miles of travel �VMT� data were not
available for local roads.

It would be ideal to clearly identify and exclude all those
crashes where human factors �i.e., alcohol, age, etc.� are the only
cause of a weather-related crash. There are several studies in lit-
erature suggesting that between 70% and 90% of all crashes are
human error related, for example, a study sponsored by the Aus-
tralian Transport Safety Bureau Report in January 2006 suggests
that 75% of all crashes are human error related �Salmon et al.

2006�. However, there are certain locations where driver-error
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related crashes could become more prevalent under adverse
weather conditions as compared to nonadverse weather condi-
tions. In that case, ideally the problem should be addressed both
from the driver as well as weather standpoint. If the crashes are
driver-error related, then no clusters should be detected given the
random nature of these crashes. On the other hand, weather-
related crashes should cluster in weather-prone areas. It is much
easier to identify the commonalities in the environment and infra-
structure of weather-related crashes and take corrective measures
that make roads more forgiving rather than completely eliminate
human error.

Wisconsin is divided into 72 counties and covers a total land
area of approximately 150,000 km2 with almost its entire eastern
border alongside Lake Michigan. Wisconsin extends approxi-
mately 500 km from north to south and 400 km from east to west.
The weather patterns vary throughout the state in all directions
depending on the geographic proximity. Comprehensive weather
data were available and obtained from the National Weather Ser-
vice �NWS� Cooperative Observer Program �NWS COOP 2006�.

Figs. 1 and 2 present total annual snowfall and rainfall trends
generated from NWS COOP weather stations data. These continu-
ous weather maps were generated from point weather station data
using geostatistical interpolation techniques �Universal Kriging�
to cover all areas of the state �Qin et al. 2006�. As one would
expect, areas close to Lake Michigan experience more rainfall
than other regions of the state, whereas the northern regions of the
state close to Lake Superior experience greater snowfall through-
out the year.

To understand the magnitude of the weather-related crash
problem, Table 1 presents a summary of weather and nonweather-
related crashes for Wisconsin from 2000 to 2002. In Table 1, it is
evident that the frequency of rain-related crashes is the largest
among all weather-related crashes. The number of fog-related
crashes decreased in 2002 after being consistent for the previous
2 years.

Methodology

The objective of this research was to identify locations that expe-
rienced a significantly higher percentage of weather-related
crashes through pattern detection techniques and that the occur-
rence of these crashes was not a random or chance event. In order
to analyze patterns of spatially distributed features, overall re-
gional pattern measures can be visually interpreted through fre-
quency, mean, or proportion measurements on GIS-based maps.
Although the weather-related crashes could easily be plotted
statewide, creating a visualization-based map, the ability to visu-
ally discern spatial patterns and to identify hot spots was limited.
There was a need to identify statistical processes to provide a
quantifiable measure of spatial patterns rather than predefined
ranking or number based classifications because visual interpre-
tations alone cannot provide conclusive results. Spatial patterns
supported by statistically significant quantities, which describe
those patterns accurately, can resolve the issue by providing a
quantifiable method of analysis.

There are several statistical techniques available for analysis of
spatial patterns in an effort to identify clusters of high or low
attribute values. Some of these techniques have been mentioned
in previous sections. The primary reason behind using spatial sta-
tistical techniques is the fact that classical statistical procedures
�aspatial techniques� do not consider geographic proximity. Spa-

tial statistical techniques go one step further by incorporating the
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relationships between adjacent areas, or spatial autocorrelation,
which is inherent in geographically distributed data such as
weather-related crashes. Since adverse weather events are inevi-
tably focused in particular areas due to their dependence on geo-
graphic conditions and atmospheric proximities, crashes affected
by such weather events should therefore show similar patterns.
The use of spatial statistical techniques adds depth and signifi-
cance to the results since data are assumed to be independent.
With these requirements in mind, the Getis–Ord G

i
*�d� statistic

was used to analyze patterns of weather-related crashes on a
county level for Wisconsin �Ord and Getis 1995�.

Given the Getis–Ord G
i
*�d� statistic, the following set of hy-

pothesis was defined for this research: H0=weather-related
crashes display no clustered or dispersed patterns and are ran-
domly distributed across space; and Ha=weather-related crashes
show clustered patterns signifying that they are affected by
weather.

Fig. 1. Continuous surface for total
The above hypothesis is based on the premise that weather
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patterns concentrate in certain areas; therefore, crashes primarily
or partially caused by weather will also concentrate in those areas.
If crashes happening in adverse weather are caused by some other
reasons, their patterns would not correlate with weather patterns.
Instead of identifying the underlying causes or circumstances
such as traffic conditions, roadway geometrics, roadside hazards,
or human factors involved in weather-related crashes, the goal is
to identify areas that should be prioritized for efforts related to
improving traffic safety.

G
i
*�d� statistic is described by Ord and Getis �Ord and Getis

1995�. The statistic indicates the extent to which a location is
surrounded by a cluster of high or low values �Ord and Getis
1995�. G

i
*�d� statistic shows areas where higher or lower than

average values tend to be found near each other. The standardized
G calculates a single z-score value for each location in the study
area. A positive value indicates clustering of high attribute value

all amount in Wisconsin 2000–2002
snowf
locations and a negative value indicates clustering of low attribute
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value locations. The larger the absolute values, the more signifi-
cant the results are.

The G
i
*�d� statistic can be presented as follows

G
i
*�d� =

� j=1
N wij�d�xj − x̄� j=1

N wij�d�

S��N� j=1
N wij

2 �d� − �� j=1
N wij�d��2�

N − 1

�1�

where

Table 1. Total Crash Summary by Weather for Wisconsin 2000–2002

Year

Total weather crashes

Total nonweather crashes TotalFog Snow Rain

2000 1,061 24,687 19,066 103,018 152,649

2001 1,109 8,340 18,563 104,432 137,988

2002 610 12,227 15,535 108,868 141,445

Fig. 2. Continuous surfaces for tota
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x̄ =
� j=1

N xj

N
and S =�� j=1

N xj
2

N
− �x̄�2

G
i
*�d�=Getis–Ord G

i
*�d� z-score value including the value at site

i; xi=relative crash rate of site i; xj =relative crash rate of neigh-
boring locations to site i; d=fixed band radius around site i;
wij =spatial weight matrix for all sites j within distance d; and
N=number of weighted points, each representing relative crash
rate for each county.

In Eq. �1�, i=site with an attribute value xi where the G
i
*�d�

statistic is being calculated and xj =neighboring locations up to a
distance d with similar attribute values. For analysis, the attribute
values were multiplied by the spatial weight matrix, wij, that
defines which locations was included in the analysis and corre-
sponding weight. The sum of these observed values was sub-
tracted from the expected value, the sample mean. Then, this
difference was divided by the standard deviation to obtain stan-

all amount in Wisconsin 2000–2002
l rainf
dardized z-score, values for each site i. The z-score value from the
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result decided the statistical significance of the clustered pattern
of high or low attribute value. If there was spatial autocorrelation
and clustering of high or low values in and around site i, the
resulting value would be positive or negative depicting spatial
patterning. A positive z-score value represents clustering of high
values and a negative z-score represents clustering of low values
around site i.

The locations i and j in the above equation are depicted by the
geometric centroid of individual counties since the data were ag-
gregated at a county level. The attribute values used at these sites
were relative crash rates for each weather-type crash, which has
already been defined earlier.

In any type of analysis of spatial autocorrelation, one of the
most important questions is that of the conceptualization of spa-
tial association among the features, or the construction of the
spatial weight matrix W�d�. The value d is defined as the band
distance which decides the extent of the neighborhood during
calculations. In this research, that choice created a particular chal-
lenge as weather patterns or interactions are hardly consistent in
terms of their size or movements. Sometimes a weather condition
might only occur inside one county and will have no impact on
surrounding areas. Other times the situation could be exactly the
opposite and would occur in many counties at the same time.
Moreover, the movement of weather conditions from one county
to the other was not predefined. The spatial extent of weather
events from year to year is also not fixed nor were they consistent.
Because of such variability, a single decision about how weather
effects change over locations is impossible.

The proposed choice for this analysis was a fixed distance
band of 75,000 m with row-standardized weights �sum of row
quantities in spatial weight matrix equals one�. This distance band
was selected because the minimum distance at which all counties
had at least one neighbor was calculated to be 71,910 m. Any
distance greater than that would result in a larger number of
neighbors. Since at times, the influence of weather conditions
does not even stray outside the boundaries of a single county,
considering its effects on such a vast area was deemed rare and
unique. Therefore, it was decided that a distance of 75,000 m
would serve the best possible option.

Results

The results of Getis–Ord G
i
*�d� analysis of snow- rain- and fog-

related crashes for the 3-year period from 2000 to 2002 can be
seen in Figs. 3–5, along with a summary statistics of Wisconsin
counties provided in Table 2. These maps present a spatial clus-
tering of high and low attribute value �relative crash rates for
respective weather-related type crash� locations in different re-
gions of the state. The G

i
*�d� statistic gives negative spatial cor-

relation and positive spatial correlation as clustering of low and
high attribute values, respectively, as opposed to the general idea
of clustering of similar and dissimilar values �regardless of the
magnitude of the attribute value�. Each county is represented by a
standardized z-score value in four categories as calculated by the
G

i
*�d� statistic. The z-score values above +2 represents counties

that lie in a cluster of high attribute value �relative crash rate�
area, statistically significant at approximately 95% confidence
level. This means that if the attribute values of the counties are
randomly distributed among the 72 counties, the counties with a
z-score value above +2 would consistently �more than 95% of the

time� show above average percentage of weather-related crashes.
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These counties cluster together in particular regions of the state
and their location is consistent throughout the analysis period.
Moreover, their location also overlaps the weather patterns which
suggest weather influences crashes at these locations. On the
other hand, counties with a z-score between +2 and −2 represent
locations that may have a high or low relative crash rate value,
but are not part of a statistically significant spatial pattern or
cluster. There is a greater than 5% chance that such counties
having a high percentage of weather-related crashes could be the
result of unusual weather patterns or conditions for that particular
year. These counties should be isolated and should not overlap the
location of general weather patterns, and hence could be omitted
as chance locations.

The spatial patterns of weather-related crashes were compared
with annual snowfall and rainfall weather data in order to explain
the occurrence of these patterns and to validate them. Weather
data are presented in Figs. 1 and 2 in the form of continuous
weather surfaces for comparison purposes. Fig. 6 shows the rela-
tive crash rates by county for rain-related crashes as an example
to compare the patterns generated by simple plotting against sta-
tistically significant clusters. There are no clear or consistent pat-
terns shown in Fig. 6. Moreover, it is difficult to decide what the
cutoff number should be to identify rain-related crash prone areas.
The use of cluster detection techniques �Getis–Ord G

i
*�d�� solves

this problem by differentiating between statistically significant
clusters and chance locations.

The results of the Getis–Ord G
i
*�d� statistic present a very

clear and distinct spatial pattern of clustering for each respective
weather-related crash data analysis, thereby rejecting the null hy-
pothesis �H0�. Counties experiencing a higher percentage of
snow-related crashes cluster in the northern regions of the state as
shown in Fig. 3. The clusters tend to shift slightly between the
years, but are generally consistent in their locations. Fig. 1, rep-
resenting annual snowfall in centimeters, shows that the northern
regions of the state experience more snowfall than the southern
regions. Note that although the magnitude of snowfall changes
considerably between the years as a result of varying intensity of
winter for each year, the regions remain consistent.

Rain-related crashes also display spatial patterns of clustering
as shown in Fig. 4, although these patterns are not as consistent as
those for snow-related crashes. The patterns are mainly clustered
around the southeastern region of the state moving along the coast
of Lake Michigan. Over the years, the pattern extends northwards
but is limited to the region close to the lake. The total annual
rainfall surfaces in Fig. 2 show that between 2000 and 2001 the
southeastern and southern regions of the state experience more
rainfall than the northern regions. For 2002, the pattern of rainfall
shifts completely in almost an east-west direction with northwest-
ern and northeastern regions experiencing high and low rainfall,
respectively.

The spatial patterns for fog-related crashes are also clustered
predominantly in the southwest region of Wisconsin as shown in
Fig. 5. Because of a lack of a sufficient number of weather sta-
tions collecting fog data, a continuous estimated surface through
interpolation could not be generated. Moreover, since fog is a
localized phenomenon, generalization over a large area would be
incorrect. General knowledge indicates that fog tends to occur
more frequently in valleys, rolling terrain, depressions, and near
water bodies. Therefore, the patterns were overlaid with a hill
shade map generated from a 1 km by 1 km digital elevation
model �DEM� of Wisconsin. A hill shade map shows the nature of

terrain and the variations in it. It can be observed from the hill
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shade map that the southwestern region shows greater variations
and a rolling terrain as compared to the middle regions of the
state which are more flat.

Discussion

A case has been presented for the use of spatial statistical tech-
niques in analyzing crash data to examine spatial patterns in order
to prioritize locations for road weather safety improvements. The
results display statistically significant and consistent patterns of
clusters for crashes of individual weather types over a 3-year
period and justify the use of spatial statistical techniques. The
observed clusters for an individual weather type are a strong in-
dication that weather plays an important role in influencing
crashes at these locations, since crashes are generally considered
to be random events. The fact that a particular weather-type crash

Fig. 3. Clusters of snow-related crashes in W
displays consistent patterns and lies in an area experiencing more
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adverse weather establishes a strong connection between weather
and crashes at these locations. A comparison with relative crash
rates signifies that traditional crash rates or numbers cannot dis-
cern underlying spatial patterns detected by the use of spatial
statistical techniques.

Spatial correlation has been used as a tool in this research to
identify statistically significant locations. Although spatial corre-
lation can be attributed to correlated but unobserved effects be-
tween counties, it is not an issue here because the objective is to
identify weather-prone locations rather than the factors affecting
weather-related crashes. Regardless of the factors, if there is posi-
tive spatial correlation �clustering of high attribute values�, there
are bound to be similarities between counties, which will help
identify them as clusters of high crash locations. Negative spatial
correlation would indicate a marked difference in characteristics
between two counties �one having high and the other having low
crash rates� suggesting they are different from each other. Hence

sin calculated by Getis–Ord Gi
��d� statistic
iscon
those areas would not show up as clusters of high crash rates. It

L OF TRANSPORTATION ENGINEERING © ASCE / MAY 2008 / 197

ASCE license or copyright; see http://pubs.asce.org/copyright



does not necessarily mean that weather does not affect crashes in
the county with a higher percentage of weather-related crashes,
but it could also be chance occurrence in the case where the road
or other characteristics are similar between the two counties.

It is true that some drivers may change their driving behavior
as weather conditions change. This may reduce the risk in adverse
weather from a driver’s standpoint. If that is the case, then theo-
retically those areas would show a smaller percentage of weather-
related crashes and they would not be part of a cluster of high
crash locations. On the other hand, if certain locations experience
a higher percentage of weather-related crashes even with potential
behavior changes, it could suggest that the interaction of roadway
characteristics and adverse weather causes or contributes to the
crash occurrence. These locations have been identified through
this research for further in depth scrutiny into possible causal
factors and mitigation efforts.

The reason for spatial clusters of snow-related crashes in the

Fig. 4. Clusters of rain-related crashes in W
northern region is likely due to the fact that northern counties in
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Wisconsin experience more snowfall and snowstorm events.
Since the locations of these counties are also consistent over the
years, this presents a clear relationship between snow-related
crashes and snowfall.

Spatial patterns of rain related crashes indicate clustering in
the southeastern region of the state. This can be attributed to the
fact that weather data indicate greater rainfall in this region and
hence more frequent events. For 2000 and 2001, the statistically
significant counties showing a higher percentage of rain-related
crashes are near the region experiencing the most rainfall. How-
ever, for 2002, this is not the case. A possible explanation for this
may be the fact that the NWS COOP stations record precipitation
accumulated daily. Precipitation includes the summed accumula-
tion of rainfall and water equivalent of snowfall. Since it was
impossible to determine the amount of rainfall on days experienc-
ing rain mixed with snow, researchers included data for days on
which only rain occurred. Nevertheless, the resulting similarities

sin calculated by Getis–Ord Gi
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between areas showing a higher percentage of rain-related crashes
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and greater rainfall in 2000 and 2001 gives a strong indication of
rainfall affecting these crashes.

The spatial patterns for fog-related crashes clustered in the
southwest region because of the terrain with more valleys and
depressions. These frequent variations in the topology are ideal
locations for fog occurrences in the presence of moisture and
optimum temperature conditions. The overall results of the com-
parison between spatial patterns of weather-related crashes and
weather data present strong evidence to validate the spatial pat-
terns.

Conclusions

Weather-related crashes aggregated on a county level have been
analyzed to identify spatial patterning for different types of

Fig. 5. Clusters of fog-related crashes in W
weather-related crashes. Fig. 7 summarizes the counties which
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were calculated to be part of statistically significant clusters of
high attribute values, for all 3 years, for each type of weather-
related crash.

Based on the results and discussions presented, the alternative
hypothesis of weather-related crashes showing clustered patterns
is validated. This suggests that weather impacts the occurrence of
crashes at those particular locations. The fact that clusters of areas
experiencing a higher percentage of weather-related crashes over-
lap areas experiencing more rainfall or snowfall indicates that
weather has some role to play in the occurrence of these crashes.
If weather had no effect on these crashes, the observed patterns
would be of complete spatial randomness �no patterns or clusters
of similar attribute value locations� with no spatial autocorrela-
tion. Moreover, if these patterns were a result of some other
cause, they most likely would not be located in the same region
showing a greater amount of adverse weather. The use of spatial

sin calculated by Getis–Ord Gi
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statistical techniques as opposed to the use of crash rates and
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Table 2. Summary Weather-Related Crash Statistics of Wisconsin Counties

Year

Relative crash rate G
i
*�d� z-score

Mean Std. error Min Max Mean Std. error Min Max

2000

Snow 0.174 0.004 0.112 0.279 −0.146 0.179 −2.999 3.603

Rain 0.048 0.002 0.007 0.104 0.112 0.217 −1.727 5.209

Fog 0.009 0.001 0.000 0.027 −0.083 0.181 −2.304 5.561

2001

Snow 0.050 0.003 0.015 0.146 −0.221 0.247 −2.453 5.296

Rain 0.061 0.002 0.028 0.103 0.010 0.133 −1.948 2.408

Fog 0.011 0.001 0.000 0.029 −0.101 0.138 −2.351 3.199

2002

Snow 0.077 0.003 0.033 0.213 −0.138 0.219 −2.937 3.901

Rain 0.048 0.002 0.024 0.091 −0.020 0.205 −3.408 3.691

Fog 0.006 0.000 0.000 0.018 −0.051 0.152 −2.564 3.398
Fig. 6. Relative rain crash rates by Wisconsin county 2000–2002
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frequencies has also been justified through comparison with crash
rate maps.

The fact that positive spatial autocorrelation has resulted in
these observed patterns suggests that weather was a contributor to
the higher number of crashes in these areas. What further
strengthens this fact is the consistency in the location of these
spatial patterns over the 3-year analysis period. Since the statisti-
cally significant locations of high relative crash rate values are
consistent over the analysis period, this shows that weather im-
pacts crashes at these locations. Furthermore, the identity also
suggests that these counties should be the focal point of future
analysis and weather-based safety countermeasures. The statisti-
cally significant locations of high relative crash rate values can be
further analyzed to identify the underlying crash causal factors.

The results presented in this research provide a unique and
effective methodology to assess road weather safety on a broader
scale for planning and decision making purposes. This method
provides the first step towards localized analysis to identify spe-
cific locations in terms of road segments or corridors for weather
specific improvements and countermeasure implementation as
part of a comprehensive road weather safety audit. The Wisconsin
Department of Transportation is already working towards con-
ducting road safety audits in areas identified through this and
other subsequent research completed by the writers.

Notation

The following symbols are used in this paper:
d � fixed band radius distance measured in meters or

Fig. 7. Counties with Getis–Ord Gi
��d� z-score greater than 2

throughout 3 years
kilometers;
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Gi�d� � Getis–Ord Gi�d� statistic z-score value excluding
value at site i;

G
i
*�d� � Getis–Ord Gi�d� statistic z-score value including

value at site i;
N � number of weighted points, each representing

relative crash rate for each county;
wij � spatial weight matrix for all sites j within distance

d of site i;
xi � relative crash rate of site i; and
xj � relative crash rate of neighboring location j to

site i.
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