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In this article, the authors present an innovative approach for signalized intersection performance measurement using probe
vehicle trajectory data, focusing on queue length estimation. Critical points, defined as the data points representing the
changes in vehicle dynamics, are the keystone of the methodology. The author then present a threshold-based critical point
extraction algorithm, which has the potential to reduce the communication cost in future real-time probe data collection
application. A shockwave-based method using the critical points to detect the signal timing provides the basis for cycle-
by-cycle performance measurement. The authors propose a queue length estimation method as a case study for signalized
intersections. This approach was tested by simulation and Next Generation Simulation Project data. Results indicate
promising outcome of the trajectory-based method.
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INTRODUCTION

Arterial performance measurements are essential for
advanced traffic management systems and advanced traveler
information systems. Although nearly 40% of the nation’s
vehicle-miles traveled occurs on arterials, real-time arterial
performance measurement systems are not as mature as their
freeway counterparts. Two of the biggest challenges are (a)
arterial traffic conditions are more complicated than the ones
on freeways because of the periodic interruptions from traffic
signals, random friction from crossing traffic on minor streets,
and so forth; and (b) current traffic data collection systems
deployed on arterials are insufficient for measuring real-time
operational performance (Balke, Charara, & Parker, 2005).

Given these challenges, recent research development is fo-
cused on providing real-time performance measure, including
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and Development (863) Program of China (Grant No. 2011AA110404 and
2011AA110405).

Address correspondence to Yang Cheng, University of Wisconsin–Madison,
1206 Engineering Hall, 1415 Engineering Drive, Madison, WI 53706. E-mail:
cheng8@wisc.edu

(a) investigating the relation between performance measures
and traffic/control conditions and (b) developing new data col-
lection technologies and data sources. For example, in the first
area, an analytical travel-time estimation model (Skabardonis
& Geroliminis, 2008) uses inductive loop detector data (ag-
gregated in 20 or 30 s) and signal timing as the model in-
put. The model carefully calculates the delay as the sum of
signal delay, queuing delay, and oversaturation delay. By the
same token, other work uses stochastic theories (Geroliminis
& Skabardonis, 2005; Viti & van Zuylen, 2009) or artificial
intelligence methods (Cheu, Lee, & Xie, 2001; Robinson &
Polak, 2005). Growing interests in the second area develop
along with the emerging and advancement of traffic probe tech-
nologies; new data sources and high-resolution data become
available, such as individual vehicle arrival data from advanced
signal control devices (Balke et al., 2005; Liu, Ma, Wu, & Hu,
2008), vehicle reidentification data (Coifman, 2002; Liu, Oh,
Oh, Chu, & Recker, 2001; Ritchie, Jeng, Tok, & Park, 2008;
Wilson, 2008), and probe data (Ahmed, El-Darieby, Abdulhai,
& Morgan, 2008; Ban, Herring, Hao, & Bayen, 2009; Fontaine
& Smith, 2007; Pan, Lu, Wang, & Ran, 2007; Qiu & Ran,
2008).
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EXPLORATORY SHOCKWAVE APPROACH 13

The development of traffic detection technologies makes the
use of probe vehicle trajectory data possible. There are some
studies about using trajectories of all vehicles for shockwave
detection (Izadpanah, Hellinga, & Fu, 2009; Lu & Skabar-
donis, 2007). There are also a few attempts of using vehicle
trajectories for performance measurement (Berkow, Monsere,
Koonce, Bertini, & Wolfe, 2009; Claudel, Hofleitner, Mignerey,
& Bayen, 2009). The detailed trajectory data can provide more
abundant and detailed traffic information than can travel time
of a predefined route, especially for arterials. Congestion can
be easily detected using trajectory data because trajectories can
directly reveal low speeds and frequent stops. In contrast, the
number of available sampled travel times would drastically de-
crease at low flow rate because probe travel times will only be
available after the probe vehicle finishes the prespecified route.
The main challenge of developing a trajectory-based model is
how to convert the microscopic detection into macroscopic per-
formance measurement. One trajectory only represents individ-
ual behavior of a vehicle, which is subject to actual situations
encountered by the driver. Therefore, the probe trajectory data
are more volatile. In a freeway travel-time estimation model
(Claudel et al., 2009), the probe trajectories are converted to den-
sity estimation using the Moskowitz function (Daganzo, 2005;
Newell, 1993). The arterial situations are more complicated
because of the periodic turbulence caused by signals and lo-
cal frictions. Comert and Cetin (2007) studied the conditional
probability distribution of the queue length at an isolated inter-
section, given the probe vehicle locations in the queue. They
found that only the location of the last probe in the queue is nec-
essary for queue length estimation. However, the assumption of

knowing the actual percentage of probe vehicles in the traffic
stream limits its application.

The existing work related to arterial trajectory data has not
really led to practical applications of providing real-time in-
formation. This article explores the feasibility of using vehicle
trajectory data for signalized intersection performance measure-
ment, choosing cycle-by-cycle queue length estimation as the
start point. The proposed approach defines the trajectory’s crit-
ical points (CPs), which are able to capture the dynamics of the
vehicular movement in a space-time diagram. A method was
developed to extract the CPs and shockwave-based methods
were used to detect signal timing and to estimate the cycle-by-
cycle queue length. The theories were tested by numeric exper-
iment using simulation data and real trajectory data from Next
Generation SIMulation (NGSIM) Project (Alexiadis, Colyar, &
Halkias, 2004).

METHODOLOGY

Given the intersection and link geometric characteristics, the
intent is to develop a real-time intersection performance model
using vehicle trajectory data as the only input. Figure 1 shows
the overall building blocks for the methodology and the rela-
tion between them. The critical point extraction module re-
duces the trajectories to a series of CPs. The critical points
filter module selects three types of CPs for different purposes.
The signal timing is detected and the queue length in a cycle is
estimated.

Probe 
Trajectories

Queue Length 
Estimation

Critical Point (CP)
Extraction

Pre-defined 
Thresholds

Signal Timing 
Detection

CPs for Queue
(Type II)

CPs for Signal
(Type I & III)

Critical Point (CP)
Filter

Figure 1 Methodology flow chart (color figure available online).
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14 Y. CHENG ET AL.

Figure 2 Critical points at a trajectory (Paramics simulation data) (color figure available online).

Modeling Trajectories

The trajectory of a vehicle can be described as a series of
points, {xt }, where xt is a record of the vehicle at time t . xt

is a vector that describes the dynamics of vehicle at time t ;
xt = [l, v, a], where l is the location, v is the speed and a
is the acceleration rate. l, v and arepresent the three dynamic
features.

The movement of a vehicle is not completely random. Drivers
can be assumed rational as they fulfill three major tasks: (a)
maintaining a desired speed, (b) keeping a safe distance from
the lead vehicle, and (c) following the signal indication. In a
general case, the trajectory of a vehicle can be divided into
several regimes, which are either uniform motion or uniformly
acceleration motion. CPs, {xc

t }, a subset of {xt }, are places where
the movement regime changes. Therefore, the trajectory {xt } can
be simplified to a set of CPs as shown in Figure 2.

(cv = 3mph, ca = 3fpss, cv,stop = 3mph; see next section)

The vehicles are assumed to travel on a one-dimensional road.
Although the situations of lane changing or overtaking behavior
are not explicitly discussed in this study, the one-dimensional
assumption can be extended to two-dimensional by defining the
lane as the fourth dynamic feature besides location, speed and
acceleration rate.

From the information science perspective, the trajectories
can be treated as a signal series. Converting {xt } to {xc

t } is

analogous to data reduction, which benefits the real-time probe
data collection by reducing the volume of data transmitted. If
the onboard device operates a CP extraction program, only real-
time CP data will be uploaded and communication cost will be
reduced. It is obvious that this approach has the advantage over
the current probe measurement technologies, which record at a
fixed time interval.

Critical Points Extraction

The trajectory between two CPs is definitive and belongs
to one of the two basic movements: (a) uniform motion
(including stopping as a special case), and (b) uniformly
acceleration motion (including deceleration). Therefore, a
trajectory can be divided into several regimes with CPs as
the boundaries; each regime belongs to one of the two basic
movements.

Within each regime, either Eq. (1) or (2) is satisfied:

if |ai | < ca,

|ṽ − vi | < cv (1)

if |ai | ≥ ca,

|ã − ai | < ca (2)

intelligent transportation systems vol. 16 no. 1 2012
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EXPLORATORY SHOCKWAVE APPROACH 15

Figure 3 Critical points extraction algorithm logic.

where,
ṽ is the median speed of {xi }, i = 1, 2 . . . n;
cv is a speed threshold;
ã is the median acceleration rate of {xi }, i = 1, 2 . . . n; and
ca is an acceleration rate threshold.
Eq. (1) represents the uniform motion and Eq. (2) represents

uniformly accelerated motion. In addition, considering the end
of queue detection, it is necessary to treat stopping or very low
speed as a special case; otherwise, the actual point when and
where the vehicle joins the standing queue might be missed.
A new speed threshold cv,stop is introduced. When Eq. (1) is
satisfied (i.e., the regime is in a uniform motion), if Eq. (3) is
satisfied, it is a stopping regime:

vi < cv,stop (3)

The logic of the CP extraction algorithm is shown in
Figure 3. After a CP is extracted, the trajectory before this
CP is discarded and this CP becomes the first point of the rest
of trajectory.

The calibration efforts would be moderate for these thresh-
olds. According to the definition of CPs, the values of these
thresholds are directly related to the acceleration and decelera-
tion characteristics of vehicles, instead of traffic conditions or
geometrics. CPs subscribe the changes in vehicle kinematics.
The speed and acceleration rate thresholds are used to define
to what extent the difference of any two consecutive segments
on a trajectory is large enough to be considered as two differ-
ent motions; the stopping speed threshold is for determining
stopping. The Travel Time Data Collection Handbook (Turner,
Eisele, Benz, & Holdener, 1998, p. 5) suggests that “typically”
less than 5 mph be considered as stopping. It was found that the
lower threshold can locate the point when the vehicle joins the
standing queue more accurately. The selection of the thresholds

can be determined by the user. According to the experiment, it
is suggested that cv be no larger than 6 mph, ca be no larger than
5 fpss and cv,stop be less than 5 mph. In the “Numerical Exper-
iment” section, cv = 3 mph, ca = 3fpss and cv,stop = 3 mph
were used.

In comparison with several previous studies in identifying
and analyzing shockwaves using vehicle trajectories (Izadpanah
et al., 2009; Lu & Skabardonis, 2007), the CP defined in this
article is different in the assumption, algorithm, and applica-
tion:

1. Assumptions are different

The CP in this article is used to extract the movement change
at the trajectory while “joint point” (Izadpanah et al.,
2009, p. 2) and “local minima” (Lu & Skabardonis, 2007,
p. 3) are for detecting “major shockwaves.” The joint point
stands for the connecting point of trajectory segments,
assuming the trajectory consists of segments of uniform
movements; whereas the local minima means the points
of speed drop. It can almost be certain that for arterials, the
joint points are a subset of the CPs for the same trajectory.
The CP is for a sampled probe approach, whereas local
minima and joint points are not.

2. Extraction algorithms are different

Given the different assumptions, the CP extraction algorithm
proposed in this article is simple for real-time implemen-
tation with lower computational cost. The local minima
method searches the local minimal speed points within a
time window, and the joint point method uses an itera-
tive two-phase piecewise regression model for the loca-
tion domain. Although generated CPs tend to have more
noise, establishing proper thresholds and a well-designed
“selection of critical points” module can reduce noise sig-
nificantly.

3. Potential applications are different

Our algorithm can be used in the onboard GPS device to
reduce the communication cost. In addition, CPs may
include useful details about how the speed changes, which
are valuable for other research such as vehicle emission
and traffic safety.

Critical Points Filter for Various Purposes

Because of the changes in vehicle dynamics, the extracted
CPs are different, which can be used for various purposes. A
filter should be applied to choose the appropriate CPs. For ex-
ample, when CPs are used for signal detection, only the CPs
that result from signal changes should be used.

intelligent transportation systems vol. 16 no. 1 2012
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16 Y. CHENG ET AL.

Figure 4 demonstrates three types of CPs: Type I is defined
as the CP at the beginning point of a deceleration regime caused
by signal light turning to red; Type II is defined as the CP at the
point when the vehicle slows down and joins the queue; Type
III is defined as the CP at the beginning point of an acceleration
regime caused by signal light turning to green.

The three types of CPs need to be distinguished from the CPs
related to small traffic flow disturbances and other irrelevant
factors. We propose a filtering algorithm on the basis of these
features of CPs: (a) time difference and (b) speed difference.
The algorithm can be described as follows:

• Order all of the CPs from this vehicle chronologically and find
the minimum speed CPs (index j1, j2 . . . jm) with speeds less
than cv,stop; if no such CP exist, this vehicle is not stopped by
a standing queue, and Type II and Type III CPs do not exist
in the current trajectory.

• Let p = j1, find the first CP whose speed is less than its
immediate previous CP with index of i ; if the speed of CP i is
higher than all the CPs from i to j , i is the Type I CP and go to
(c); if not, throw away the CP from first to i , do this step again;

• CP jm is the Type II CP; CP jm + 1 is the Type III CP.

Figure 5 shows the selected Type I, II, and III CPs from the
generated CPs.

Signal Timing Detection

Traffic signals are the major factor which affecting the traf-
fic on arterials. However, real-time signal timing is not always
available for online or even offline operations. According to the
2007 National Traffic Signal Report Card Technical Report (Na-
tional Transportation Operations Coalition, 2007, p. 19), “traffic
monitoring and data collection” received a score of F and “al-
most half of agencies (43 percent) reported having little to no
regular, ongoing program for collecting and analyzing traffic
data for signal timing.” Ban et al. (2009) explored the methods
to derive signal timing using the delay measurement by vir-
tual trip line technology based on GPS-equipped cell phones.
Using sampled travel times, they found that a 40% penetra-
tion rate of probe was needed to obtain reliable signal timing
detection. Using trajectory data can help detect signal timing
data with a lower sample rate. It is known that vehicle move-
ment changes are caused by the formation and dissipation of the
queue before a traffic signal. In addition, the movement changes
of a vehicle are actually captured by CPs. Hence, the signal
timing parameters such as cycle length and green time can be
obtained.

The fundamental and most widely used traffic flow model is
the Lighthill-Whitham-Richards model (Lighthill & Whitham,
1955a, 1955b; Richards, 1956). The solution of this model is
based on the conservation equation of the traffic flow and a
function of speed, flow (or density). The propagation speed of

a shockwave is calculated as follows:

v = qu − qd

ku − kd
(4)

where qu, qd are the flow rate for upstream and downstream,
respectively, and ku, kd are the density for upstream and down-
stream, respectively.

As demonstrated in Figure 4 and 5, since the location and
time of CPs are known from the trajectories, the start times of
green and red can be determined once the shockwave speeds are
estimated.

After the start of green, the queue begins to dis-
charge. The start time of the green can be calculated as
follows:

Tg = T ∗
CP3 − L∗

CP3

vdis
(5)

T ∗
CP3 is the adjusted time stamp of the Type III CP. T ∗

CP3 =
TCP3 − vCP3/aCP3, where TCP3 is the time stamp of the Type III
CP, and vCP3, aCP3 are the speed and acceleration rate of this
Type III CP. L∗

CP3 is the adjusted distance from the Type III
CP to the stop bar. L∗

CP3 = LCP3 + v2
CP3/2aCP3, where LCP3 is

the distance from the Type III CP to the stop bar. The adjusted
time and distance are used to compensate the detection errors by
the CP extraction algorithm. vdis is the queue discharge shock-
wave speed.

At the beginning of a green light, assume there is no queue
spillback at the downstream intersection, the queue discharges at
the saturation flow rate. The queue discharge shockwave speed
can be estimated as follows:

vdis = qs − 0

km − k j
(6)

where qs is the saturation flow rate, km is the saturation flow den-
sity, and k j is the jam density. In the “Numerical Experiment”
section, vdis = 15 mph was used.

After the start of red, traffic is stopped before the stop bar
and a queue is formed. The start time of the red can be obtained
by the following equation:

Tr = T ∗
CP1 − L∗

CP1

vform
(7)

T ∗
CP1 is the adjusted time stamp of the Type I CP. T ∗

CP1 = TCP1 −
cv/ |aCP1|, where TCP1 is the time stamp of the Type I CP, and
aCP1 are the speed and acceleration rate of this Type I CP. L∗

CP1
is adjusted distance from the Type I CP to stop bar. L∗

CP1 =
LCP1 + (2vCP1 + cv)cv/2 |aCP1|, where vCP1 is the speed of the
Type I CP and LCP1 is the distance from the Type I CP to the
stop bar. vform is the queue formation shockwave speed.

The queue formation shockwave can be estimated as follows:

vform = 0 − qu

k j − ku
(8)

intelligent transportation systems vol. 16 no. 1 2012

D
ow

nl
oa

de
d 

by
 [

So
ut

h 
D

ak
ot

a 
St

at
e 

U
ni

ve
rs

ity
] 

at
 0

9:
45

 1
1 

Fe
br

ua
ry

 2
01

3 



EXPLORATORY SHOCKWAVE APPROACH 17

Figure 4 Shockwaves and critical points (CPs) (color figure available online).

Figure 5 Critical points (CPs) and the selected CPs for further applications at a trajectory (Paramics simulation data) (color figure available online).

intelligent transportation systems vol. 16 no. 1 2012
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18 Y. CHENG ET AL.

where qu is the upstream arrival flow rate, ku is the upstream
arrival density, and k j is the jam density.

The problem is now getting qu and ku . Using the basic flow-
speed-density relationship q = kv, either qu or ku can be deter-
mined by the other because the inflow speed can be estimated
by the vehicle speed before deceleration. There is no direct way
to estimate qu or ku , but the average density kCP1 in terms of the
number of vehicles between the stop bar and a Type I CP can
be estimated without considering lane changing activities:

kCP1 = LCP2

LCP1
k j (9)

where LCP2 is the distance between the Type II CP and the stop
bar.

Therefore, Eq. (8) is rewritten and approximated as follows:

vform = 0 − qu

k j − kCP1
= − qu/kCP1

k j/kCP1 − 1
≈ − vCP1

LCP1/LCP2 − 1

(10)

where vCP1 is the speed of the Type I CP.

Dynamic Queue Length Estimation

Type II CPs correspond to the time and location when the
vehicle joins the end of the queue. They can be used to detect
the instantaneous queue length, or the end of the queue.

The progress of the queue formation and dissipation is greatly
affected by the arrival pattern. For an isolated intersection, the
arrival flow rate within a cycle can be assumed to be constant.
Therefore, the incremental queue length can be calculated using
the detected end of queue. Given the detected signal timing, the
maximum queue length can be calculated as follows:

Lq = qsqu(Tg − Tr )

k j (qs − qu)
(11)

The upstream arrival rate qucan be estimated as follows:

qu = LCP2

k j (TCP2 − Tr )
(12)

where LCP2 is the distance between the Type II CP and the stop
bar, and TCP2 is the timestamp of the Type II CP.

Eq. (11) is used for cases without an initial queue. Consid-
ering there are stopped vehicles from the previous cycle, initial
queue should be detected first and then the total queue length can
be estimated. The following formula can help to detect initial
queues:

qs(TCP2 − Tr ) < LCP2k j (13)

If Eq. (13) satisfies, the initial queue exists and the length of
the initial queue can be estimated by the following:

Lq0 = LCP2 − (TCP2 − Tr )qs/k j (14)

For an intersection affected by an upstream signal such as coor-
dination, the arrival pattern varies within a cycle because of the
gating effect. The flow pattern from upstream crossing streets
may be significantly different from the main direction. The re-
sulting queue formation process is a complex process. As an
approximation, the queue increase process can be modeled as a
piecewise linear line (Figure 6). More than one Type II CP is
needed for this case. Assume there are n − 1 available Type II
CPs, plus the point of the start of red (with the zero distance
to the stop bar), and order them chronologically as a series of
points on the queue length and time plane. Now, the average
queue increase rate between each two consecutive points can be
calculated as follows:

ri = LCP2,i +1 − LCP2,i

TCP2,i +1 − TCP2,i
(15)

where i is the index, i ∈ {1, 2, . . . , n}, LCP2,i is the distance from
the ith Type II CP to the stop bar, and TCP2,i is the timestamp of
the i th Type II CP.

x (time)

Green Red Green

CP Type II 
y (Queue Length)

 L max

L last

L min

tr tg

y=Vdis(x-tg)

Figure 6 Queue formation under various arrival rates (color figure available online).
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EXPLORATORY SHOCKWAVE APPROACH 19

Therefore, several queue length estimates can be obtained
using different arrival rates:

Lmax = LCP2,n + rmaxtmax

Llast = LCP2,n + rn−1tn−1

Lmin = LCP2,n

(16)

where Lmax, Lmin, Llast are the three queue length estimates
with the max queue increase rate, the last available queue in-
crease rate, and no queue increase, respectively; rmax = max(ri ),
tmax, tlast are the time durations from the last Type II CP to the
queue dissipation shockwave line using qmax or qn−1 (see Figure
6, and note that the line of the queue dissipation shockwave is:
y = vdis(x − tg)).

Actually, Lmax, Llast can be calculated in another way: They
are the intersecting points of the queue dissipation shockwave
with

y = rmax(x − tCP2,n) + LCP2,n (17)

and

y = rn−1(x − tCP2,n) + LCP2,n (18)

Therefore, Lmax, Lmin can be calculated by the following:

Lmax = (LCP2,n − rmax(tCP2,n − tg))
vdis

vdis − rmax
(19)

Llast = (LCP2,n − rn−1(tCP2,n − tg))
vdis

vdis − rn−1
(20)

The queue length of the cycle can be estimated as a weighted
average:

Lq = w1Lmax + w2Llast + w3Lmin (21)

w1, w2, w3 are the weights. w1 +w2 +w3 = 1; w1, w2, w3 ∈
[0, 1]. In the “Numerical Experiment” section, w1 =
tg,n/(tg,max + 2tg,n) and w2 = w3. tg,n is the time duration
from the last Type II CP to the queue dissipation shockwave.
Similarly, tg,max is the time duration from the latter Type II
CP of the segment with the max queue incremental rate to the
queue dissipation shockwave line. They can be calculated as
tg = LCP2

vdis
+ tg − TCP2.

Note that the proposed models are based on the CPs on a
single trajectory except for the queue length estimation under
various arrival rates. Model improvement for various sample
rates and sensitivity analysis of the sample rate are beyond the
scope of this article.

NUMERICAL EXPERIMENT

Data Source

We used two types of data in the study. One is a simple two
signalized intersection simulation network in Paramics and the
other is a data set from NGSIM. In the simulation network,

there is one exclusive through lane in the study direction, and
the speed limit is 40 mph. The cycle length of the two in-
tersections is 80 s with 45 s green. In the coordinated mode,
the offset of the two signals is equal to the free-flow travel
time between them. The demand flow rates have two levels:
800 veh/hr/ln for the nonpeak hour period and 1,800 veh/hr/ln
for the peak hour period. The NGSIM data set used in this
study is the trajectory data on the southbound link from 11th
Street to 10th Street on Peachtree Street in Atlanta, Georgia.
The data were collected between 4 PM and 4:15 PM on Novem-
ber 9, 2006. The signal was coordinated with a cycle length
of 100 s.

Experiment Results

Signal Timing Detection

The signal detection error distributions are displayed in Fig-
ure 7 and 8, where the left y axis is the frequency and the right y
axis is the percentage. Figure 7 shows the results of the isolated
intersection case. Figure 8 shows the results of the coordinated
intersection case. As discussed in the “Methodology” section,
the detection of red uses one Type I CP each time and detection
of green uses one Type III CP each time. All the available Type
I and III CPs were used to compose the error distributions in
Figure 7 and 8.

Figure 7 shows the results using 15 consecutive cycles’ data
for each of the two traffic demand levels. From nonpeak to
peak period, the number of available samples increased from
150 to 500 approximately. For the isolated-intersection case,
the detected start times of red and green are quite accurate. The
detection of the start of green has better performance because
the speed of the queue dissipation shockwave is nearly constant
and the traffic in the queue discharging process usually has
fewer disturbances. In contrast, the queue formation shockwave
varies more and the traffic is “unstable far away” from the stop
bar (Smilowitz, Daganzo, Cassidy, & Bertini, 1999, p. 225).
For the peak hour case, errors distribute similarly to nonpeak
hour except for some outliers. Further investigation reveals that
these outliers were from the end of long queues (close to the
upstream intersection) where the traffic is less stable and has
more disturbances. It is sometimes observed that the shockwaves
caused by signal were concealed by the local disturbances and
even human eyes have difficulties in distinguishing them.

Figure 8 shows the results a coordinated intersection. Figure
8 (a) and (b) show the results using 15 consecutive cycles’ data
for each of the two traffic demand levels, where 90 samples were
available in the nonpeak case and 158 were available in the peak
hour case. Figure 8 (c) shows the results using 10 consecutive
cycles’ data by NGSIM, in which 88 samples were available. It
is noteworthy that the signal timing cannot be detected if CPs are
not available, (e.g., no vehicle is slowing down during a cycle).

The overall percentage error distribution is summarized in
Figure 9. Approximately 50% errors for red detection are within
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Figure 7 Signal detection for an isolated intersection (color figure available online).
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Figure 8 Detection of signal timing for a coordinated intersection (color figure available online).
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Figure 9 Summary of signal timing detection (color figure available online).

5 s and 80% are within 10 s. Approximately 90% errors for
green detection are within 5 s. The results indicate a consistent
and reliable signal detection performance.

Maximum Queue Length Estimation

The performance of the maximum queue length estimation
is measured by the mean absolute percentage error (MAPE),
which is calculated as follows:

MAPE = 1

n

n∑

i=1

∣∣∣∣
Ground T rue − Estimation

Ground T rue

∣∣∣∣ × 100%

(22)

where n is the total sample size.
The ground truth queue lengths were collected by observing

the overall vehicle trajectories. For the isolated intersection

Table 1 Mean absolute percentage error of queue length estimation.

Number of
cycles

Mean absolute
percentage

error

SIMU Isolated (nonpeak) 12 18.41
Isolated (peak) 12 19.56
Coordinated (nonpeak) 12 22.43
Coordinated (peak) 12 21.07

NGSIM Lane 1
∗

Lane 2
∗∗

7
7

23.35
24.16

∗
Lane next to median except left turn lane.

∗∗
Lane on the right.

cases, one trajectory was randomly selected for estima-
tion in each cycle. For the coordinated intersection cases, three
trajectories were randomly chosen in each cycle. For each
case, the MAPE was calculated based on 20 independent runs
to avoid randomness. The MAPEs for different scenarios are
around 20% (Table 1).

Several possible causes contribute to the differences, includ-
ing the errors in signal detection and end of queue detection,
and more important, the variation of arrival rate within one cy-
cle. The variation is so significant in the NGSIM dataset that in
some cycles, arrival rate can change from nearly zero to close
to capacity. Therefore, MAPEs are higher in the coordination
scenarios than the ones for isolated intersections.

CONCLUSION AND FUTURE STUDY

This article describes an innovative approach for arterial in-
tersection queue length estimation using vehicle trajectory data.
The concept of CP connects the microscopic detections of indi-
vidual trajectory with macroscopic performance measurement.
The CP extraction algorithm has the potential for reducing com-
munication cost for onboard GPS devices. Featuring all the ma-
jor and minor turbulence and frictions of the vehicle, different
types of CPs can be selected for a variety of applications. On
the basis of the detected signal timing, the cycle-by-cycle queue
length can be estimated for isolated and coordinated intersec-
tions. The model was evaluated under different signal and traffic
demand conditions using simulated data and the NGSIM trajec-
tory data.
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Future studies should include (a) the improvement of the
CP extraction algorithm and CP selection design to address the
stop-and-go traffic, (b) the sensitivity analysis of the probe data
error and sample rate for estimation performance and (c) the
adoption of nonlinear shockwave models that are more suitable
for arterial traffic flow and are able to support CP extraction and
selection.
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