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a b s t r a c t

As part of the Wisconsin road weather safety initiative, the objective of this study is to assess the
effects of rainfall on the severity of single-vehicle crashes on Wisconsin interstate highways utilizing
polychotomous response models.

Weather-related factors considered in this study include estimated rainfall intensity for 15 min prior
to a crash occurrence, water film depth, temperature, wind speed/direction, stopping sight distance and
deficiency of car-following distance at the crash moment. For locations with unknown weather infor-
mation, data were interpolated using the inverse squared distance method. Non-weather factors such
as road geometrics, traffic conditions, collision types, vehicle types, and driver and temporal attributes
were also considered. Two types of polychotomous response models were compared: ordinal logistic and
sequential logistic regressions. The sequential logistic regression was tested with forward and backward
formats. Comparative models were also developed for single vehicle crash severity during clear weather.
In conclusion, the backward sequential logistic regression model produced the best results for pre-
dicting crash severities in rainy weather where rainfall intensity, wind speed, roadway terrain, driver’s
gender, and safety belt were found to be statistically significant. Our study also found that the seasonal fac-
tor was significant in clear weather. The seasonal factor is a predictor suggesting that inclement weather
may affect crash severity. These findings can be used to determine the probabilities of single vehicle
crash severity in rainy weather and provide quantitative support on improving road weather safety via

s, hig
weather warning system

. Introduction

Driving in rainy conditions is more challenging than in clear
eather due to low visibility and slippery road conditions. These

hallenges contribute to a sizable portion of severe crashes includ-
ng fatalities and injuries in Wisconsin. According to Wisconsin
raffic Crash Facts from the Wisconsin Department of Transporta-
ion (WisDOT), there are 3047 injury and fatal crashes in rainy
eather, the greatest number of all kinds of inclement weather con-
Please cite this article in press as: Jung, S., et al., Rainfall effect on single-v
Anal. Prev. (2009), doi:10.1016/j.aap.2009.07.020

itions from 1999 to 2005. In addition, the proportion of injury and
atal crashes to total crashes in rainy weather is 0.37, the second
ighest during the same period. Despite the fact that fog-related
rashes have the highest injury and fatal crash proportion, the total
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hway facility improvements, and speed limit management.
© 2009 Elsevier Ltd. All rights reserved.

number of injury and fatal crashes in foggy weather is merely 249
from 1999 to 2005, less than 10% of injury and fatal crashes that
occurred in rainy weather.

In Wisconsin, rainy weather-related crash severity is distributed
differently between single and multi-vehicle crashes. From 1999
to 2006, 659 single-vehicle crashes and 899 multi-vehicle crashes
occurred on Wisconsin interstate highways in rainy weather. The
proportion of serious crashes including fatalities and incapacitating
injuries to total crashes is 10% for single-vehicle crashes while it
is only 4% for multi-vehicle crashes. Since the consequence of a
single-vehicle crash is more serious, there is a need to investigate
the contributing factors to single-vehicle crash severity, especially
fatal or incapacitating injury severity.

Crash consequences can be minimized through the improve-
ments in roadway and roadside design, appropriate use of safety
ehicle crash severities using polychotomous response models. Accid.

devices, and changes in driver behavior. Numerous studies have
been conducted by safety researchers and practitioners in hopes
of identifying the contributing factors to crash severities (Abdel-
Aty and Pemmanaboina, 2006a; Dissanayake and Lu, 2002; Donnell
and Mason, 2004; Golob and Recker, 2003; Khan et al., 2008; Qin
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t al., 2006; Savolainen and Tarko, 2005; Shankar et al., 1995;
au, 2004; Yau et al., 2006). Overall, research demonstrates that
uch factors as weather, roadway geometries, traffic conditions,
river, and temporal-related predictors as well as their interaction

ead to different injury severities. In many crash severity-based
tudies, weather is just one of the contributing factors, not nec-
ssarily the focus. Using only rainy weather related crashes, this
tudy identified a variety of significant predictors that contribute
ore serious crash consequences. Furthermore, a comparison

etween rainy weather and clear weather crash prediction models
evealed important factors that may potentially lead to appro-
riate countermeasures against severe crash occurrences in rainy
eather.

. Literature review

The topic of crash severity has been of interest to traffic safety
ommunity because of the direct impact on occupants involved.

eather is frequently cited and found as one of the factors con-
ributing to either a more or less severe crash. The approaches used
o model injury severities vary from one to another, depending on
he purpose of the study and data availability.

Based on the purpose of this research, the focus of this literature
eview will be specifically on factors caused by rain precipitation
t the time of the crash.

For crash severity models, the crash outcome of a single vehicle
r multi-vehicle crash is usually modeled separately. Malyshkina
nd Mannering (2009) explained unobserved heterogeneity related
o variant weather conditions over time for single- and two-vehicle
rash severity potentials using a Markov switching multinomial
ogit model. In their study, daily averaged or maximal weather data
ver one week were used as follows: rain precipitation, tempera-
ure, snowfall, visibility, gust wind, and fog/frost. Weather variables
uch as rain precipitation, low visibility, gust wind were key factors
enerating time-related two-state nature of severities in single-
ehicle accidents on high-speed roads, but not in two-vehicle acci-
ents on high-speed roads. Savolainen and Mannering (2007) pre-
icted motorcyclists’ injury severities in single and multiple crashes
sing nested logit and multinomial logit models, respectively.
et pavement was significant to increase no injury severity only

n single-vehicle motorcycle crashes while none of the weather
elated factors were found to be significant to motorcyclists’ injury
everities in multi-vehicle crashes involving motorcyclists.

Rainfall-related effect on crash severity outcomes has been also
dentified along with roadway characteristics. Ordered probit mod-
ls were used in a Abdel-Aty’s study (2003) to predict driver injury
everity in Central Florida, with crashes occurring in specific road-
ay sections, signalized intersections and toll plazas in expressway

ystems. It was found that crashes happening in signalized intersec-
ions with bad weather and dark street lighting had a significantly
igher probability of severe injury. Abdel-Aty stated that an angle
nd turning collision in the adverse weather and dark street light
onditions was a possible reason to contribute higher proba-
ility of injuries in signalized intersections. Donnell and Mason
2004) employed ordinal and nominal logistic regression models
o predict interstate highway crash severity in cross-median and

edian-barrier collisions, respectively. Researchers found wet or
cy pavement surface to be significant factor in decreasing crash
everity. In contrast, in a study by Lee and Mannering (2002), the
ested logit analysis showed that wet roadway surfaces increased
he likelihood of evident and disabling injury/fatality in run-off-
Please cite this article in press as: Jung, S., et al., Rainfall effect on single-v
Anal. Prev. (2009), doi:10.1016/j.aap.2009.07.020

oadway accidents. The conflicting results from these two studies
uggest the need for a detailed analysis for weather-related crash
everity by collision type.

Special attention was given to crash severities by vehicle types
n several studies. Shankar and Mannering (1996) used a multi-
 PRESS
revention xxx (2009) xxx–xxx

nomial logit model to predict five-level rider injury severities
from statewide single-vehicle motorcycle crashes in Washington.
In their study, pavement surface and weather interaction were
significant factors to increase the likelihood of being injured. Inter-
estingly, the crash severity on wet pavement without rainfall was
limited only to property damage and possible injury crashes. Sim-
ilarly, wet pavement for single-vehicle motorcycle crashes was
more likely to result in no injury according to a study by Savolainen
and Mannering (2007). The authors argued that it could be a
result of lower speeds or longer headway maintained by rid-
ers in these conditions as they adjust for the perceived higher
risk. Khorashadi et al. (2005) also utilized the multinomial logit
model to analyze driver injury severities involving large-truck
accidents. Results in their study showed that rainy weather was
significant to increase injuries in urban area accidents. Ulfarsson
and Mannering (2004) showed that wet roads led to increasing
relatively higher injury severities involved in single sport utility
vehicle (SUV)/minivan accidents using multinomial logit model. In
a study by Kim et al. (2007), bicyclist injury severities in bicycle-
motor vehicle accidents were predicted by the same method.
Inclement weather including rain, snow, and fog was found to
increase the probability of fatal injury approximately by 129%.
The authors stated that the inclement weather effect was largely
due to increased slipperiness which reduced both the vehicle’s
and bicycle’s maneuverability and visibility. Pai and Saleh (2008)
used ordered logit model to assess motorcyclist injury severities.
In their study, on the contrary, fine weather was a statistically sig-
nificant factor to increase the most severe category of motorcyclist
injury.

Driver characteristics such as age or gender also play impor-
tant roles in the likelihood of injury severity associated with
weather conditions. Hill and Boyle (2006) utilized a logistic regres-
sion model in the fatality and incapacitating injury prediction.
In their study, females in the older age groups (age of 54 or
older) were more likely to suffer severe injuries in poor weather.
Ulfarsson and Mannering (2004) found that rainy weather sig-
nificantly affected the increase of property damage only level in
female single SUV/minivan accidents but not in male driver single
SUV/minivan accidents.

Weather impact was also evaluated in crash count-based mod-
els with the emphasis on severity counts. Abdel-Aty et al. (2006b)
used a seemingly unrelated Negative Binomial regression model to
estimate the number of property damage only and injury crashes,
respectively. The result showed that crash severity in adverse
weather conditions causing wet pavement surface was more likely
to increase at curves or ramps. Caliendo et al. (2007) grouped
crashes by total, fatal and injury crashes on curves and tangent
roadways sections, and compare them using Poisson, Negative
Binomial and Negative Multinomial regression models. In their
study, rain was found to be a highly significant variable increas-
ing the expected number of severe crashes for curves by a factor
of 3.26 and for tangents by a factor of 2.81. Their study sug-
gests wet-skidding for the higher number of severe crashes on
curves.

Compared with previous studies, our study applied a rain-
related crash dataset and included microscopic data at the crash
moment to predict crash severity outcomes. To be specific, vari-
ables used in this study were real-time information at the crash
moment, such as momentary weather and traffic data, and other
non-weather data such as driver characteristics and roadway
geometries. Additionally, rain-related single-vehicle crash sever-
ehicle crash severities using polychotomous response models. Accid.

ity models were compared to clear weather models to identify
the common factors that contributed to crash severity regardless
of weather. Research findings from this study will provide guid-
ance on countermeasures to prevent severe crashes related to rainy
weather and improve overall safety.

dx.doi.org/10.1016/j.aap.2009.07.020


ARTICLE IN PRESSG Model

AAP-1952; No. of Pages 12

S. Jung et al. / Accident Analysis and Prevention xxx (2009) xxx–xxx 3

Study

3

s
w
a
o
s

a
f
s

o
d
t
c
i
c
i
n
s
d

min intervals were obtained for 1 h prior to each crash moment. The
associated standard deviations providing 1 h temporal buffers prior
to the crash moment were also computed based on the archived
traffic detector data due to the difference in density between crash

Table 1
Frequency distribution of crashes occurred in rainy weather.

Injury severity Ordinal
logistic

Sequential logistic

Forward format Backward format

Stage 1 Stage 2 Stage 1 Stage 2

Fatal and
incapacitating injury

10 (3) 10 (1) 10 (1) 10 (1) –
Fig. 1.

. Data collection and processing

The study area consisted of 74.99 miles of southeastern Wiscon-
in highway segments including I-43, I-94, I-43/94 and I-43/894,
here rainy weather crash frequency normalized by average

nnual daily traffic and vehicle miles traveled was higher than any
ther interstate highway segments between 2004 and 2006. The
tudy area is shown in Fig. 1.

Single-vehicle crash and traffic data were collected from police
ccident reports (MV 4000) and traffic detector database (V-SPOC)
rom the WisTransPortal, respectively. The WisTransPortal project
erves the data archiving and management needs of WisDOT.

In the study area, 255 single-vehicle crashes were found
ccurring in rainy weather between 2004 and 2006. The crash
ataset included information for crash severity, roadway geome-
ries, driver demographics, collision types, vehicle types, pavement
onditions, and temporal and weather conditions. In this study,
ncapacitating injury (type A) and fatal injury (type K) crashes were
Please cite this article in press as: Jung, S., et al., Rainfall effect on single-v
Anal. Prev. (2009), doi:10.1016/j.aap.2009.07.020

ombined as the highest level of crash severity to obtain a mean-
ngful sample size (Agresti, 1996). Possible injury (type C) and
on-incapacitating injury (type B) crashes were combined as the
econd highest level of crash severity because they were not clearly
istinguishable. Property damage only (PDO) crashes made up the
area.

lowest level of crash severity. Crash frequency by the severity and
the coding are provided in Table 1.

Next, average vehicle volume, speed, and occupancy data for 5-
ehicle crash severities using polychotomous response models. Accid.

Non-incapacitating and
possible injury

57 (2) 57 (1) 57 (0) 57 (0) 57 (1)

PDO 188 (1) 188 (0) – 188 (0) 188 (0)

Total 255 255 67 255 245

Note. SAS coding of crash severity level are in parentheses.

dx.doi.org/10.1016/j.aap.2009.07.020
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ocations and detector locations in study area. The traffic detec-
ors were installed at approximately 0.7 mile interval in the study
rea. Real-time average vehicle volume, speed and occupancy were
ollected at short-time (5-min) intervals.

State Trunk Network (STN) highway log from WisDOT contains
oadway geometric attributes, including the number and width
or travel lane and shoulder as well as pavement surface material.
sing the STN highway log, the geometric attributes were linked to

he crash dataset.
One of the keys to the success of this study was to obtain accu-

ate weather data at a crash moment. However, there were few
eather data sources that can provide minute-based measurement

nterval. After a thorough investigation, Weather Underground
nc. was found to deliver the most reliable and real-time weather
ata for Wisconsin. Considering crash distribution in study area
nd weather station proximity to each crash location, six airport
eather stations and ten private weather stations were selected to

btain microscopic weather data measured by the minute based
nterval in this study. For each crash observation, three weather
tations out of the 16 weather stations were used by their prox-
mity to the crash location to estimate the microscopic weather
ata.

From the four databases, the following explanatory variables
Please cite this article in press as: Jung, S., et al., Rainfall effect on single-v
Anal. Prev. (2009), doi:10.1016/j.aap.2009.07.020

rovided in Table 2 were utilized in the crash severity predic-
ion models. The category coding in each explanatory variable was
ased on sample size and characteristic for each category, which is
lso shown in Table 2.

able 2
xplanatory variables used in prediction models.

Variable Minimum Maximum Mean Category c

Driver’s sex – – – Female = 1
Alcohol or drug – – – Sobriety = 1
Safety belt – – – Use of safe
Driver action – – – Going strai
Curve direction – – – Curve to th
Injury transport – – – Injured peo
Terrain – – – Horizontal
First harmful spot – – – Ramp/gore
Pavement surface – – – Asphaltic c
Lighting condition – – – Daylight =
Collision type – – – Median rel
Vehicle type – – – Car = 1, tru
Time of day – – – Peak-hour
Day of week – – – Tuesday to
Quarter of year – – – December
Wind direction – – – No wind =
Driver’s age 16 80 34 –
Number of lanes 1 4 3 –
Lane width (ft) 12 17 12 –
Shoulder width (ft) 0/0a 16/20 7/11 –
Speed limit (min/h) 45 65 56 –
Average 5-min Vb 2 129 51 –
Average 5-min SPDc 16 99 53 –
Average 5-min Od (%) 0.08 41.02 5.77 –
S.D.e of V 0.69 61.23 9.26 –
S.D. of SPD 0.27 29.33 6.25 –
S.D. of O 0.13 19.96 1.86 –
SSDf (ft) 71 1305 447 <330 = 1, [3
DCDg (ft) 0 363 68 <16 = 1, [16
Wind speed (km/h) 0 48 12.8 <6 = 1, [6,1
Temperature (◦C) 0.9 24.1 12.1 <7 = 1, [7,1
Water film (mm/h) 0 0.74 0.15 <0.04 = 1, [
RIh (mm/15 min) 0 9.53 0.79 <0.06 = 1, [

a Left shoulder width/right shoulder width.
b V: volume.
c SPD: vehicle speed.
d O: occupancy.
e S.D.: standard deviation.
f SSD: stopping sight distance.
g DCD: deficiency of car-following distance.
h RI: rainfall intensity.
 PRESS
revention xxx (2009) xxx–xxx

3.1. Weather parameter estimation

Weather data directly collected from a weather station include
temperature, wind speed/direction, rainfall precipitation and rain-
fall duration. To reflect real-time weather conditions at the crash
moment, some weather data can be estimated by interpolating
between weather stations because weather data such as rainfall
intensity or wind speed show geometrical and temporal variety. In
other words, rainfall precipitation for 15 min (rainfall intensity) can
be calculated using rainfall precipitation and the duration at each
of the three weather stations near the crash location and the esti-
mated 15-min rainfall intensities are interpolated for each crash.
Water film depth, stopping sight distance (SSD), and deficiency
of car-following distance (DCD) are estimated by hourly rainfall
precipitation, traffic, and road geometry data.

3.1.1. Rainfall intensity
Rainfall intensity is defined as the rainfall precipitation divided

by measurement interval. The rainfall intensity reflects visibility on
highway in rainy weather conditions. Using three weather station
data for each crash location, the average measurement interval of
rainfall precipitation was 15 min. Therefore, rainfall precipitation
ehicle crash severities using polychotomous response models. Accid.

for 15 min prior to a crash was adopted as the real-time rain-
fall intensity at the crash moment. Compared to the weather data
measurement intervals mentioned in the previous studies, 15-min
measurement interval used in this study was a more microscopic
reflection of the real-time rainfall intensity at a crash moment.

oding

, male = 2
, under alcohol/drug effect = 2

ty belt = 1, non-used = 2
ght = 1, others = 2, negotiating curve = 3
e right = 1, curve to the left = 2
ple transported to hospital = 1, others = 2
curve = 1, vertical curve = 2, horizontal/vertical curve = 3, tangent/flat = 4
= 1, Shoulder/outside shoulder = 2, median = 3, On roadway = 4
ement plant mix/rigid base = 1, others = 2
1, dusk/dawn/dark = 2, night but street light = 3
ated = 1, Non-collision = 2, Fixed object = 3
ck (straight)/truck-tractor = 2, motor cycle = 3
(6–8 a.m. and 3–5 p.m.) = 1, off-peak = 2
Thursday = 1, Monday/Friday = 2, Saturday/Sunday = 3

to February = 1, March to May = 2, June to August = 3, September to November = 4
1, North = 2, East = 3, South = 4, West = 5

30,546] = 2, >546 = 3
,130] = 2, >130 = 3

8] = 2, >18 = 3
8] = 2, >18 = 3
0.04, 0.24] = 2, >0.24 = 3
0.06, 0.83] = 2, >0.83 = 3

dx.doi.org/10.1016/j.aap.2009.07.020
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.1.2. Water film depth
Water film is created by rainfall between the tire and pavement

urface, causing a decrease in skid resistance. Therefore, water film
epth in this study was used as an explanatory variable for measur-

ng the slippery pavement condition. Russam and Ross (1968) gave
he following empirical method to estimate the water film depth:

= 0.046(W · S/Sc · I)1/2

S1/5
(1)

= (S2
l + S2

c )
1/2

(2)

here D = water film depth (mm/h); I = rainfall intensity (mm/h);
= flow path slope (%); Sl = longitudinal slope (%); Sc = slope of pave-
ent cross section (%); W = width of pavement (m).

.1.3. SSD and DCD
In this study, there were not direct visibility data for highways.

herefore, SSD and DCD were considered as the surrogate mea-
ures for highway visibility at the time of the crash. First of all, SSD
ormula is as follows.

SD = 1.47V · t + 1.075V2

a
(3)

here V = vehicle speed (min/h); t = brake reaction time (2.5 s);
= deceleration rate (ft/s2).

According to a detailed study about pavement conditions
Kokkalis and Panagouli, 1998), the coefficient of wet pavement
riction is associated with water film depth and vehicle speed
hown in Fig. 2. In Fig. 2, vertical axis is Skid Number (or Friction
umber) representing longitudinal friction force and horizontal
xis is vehicle slip speed given a specific water film depth. That is,
ig. 2 combines relations among friction force, vehicle speed and
ater film depth.

Using Fig. 2 and pavement surface material information from
isconsin STN highway log, deceleration rate in SSD formula can be

btained by multiplying wet pavement friction coefficient by grav-
ty acceleration. Consequently, SSD was calculated by the obtained
eceleration rate, vehicle speed from traffic detector data, and
rake reaction time.

DCD represents the risk of losing control caused by driver over
orrection for avoiding any potential conflict. DCD is calculated by
Please cite this article in press as: Jung, S., et al., Rainfall effect on single-v
Anal. Prev. (2009), doi:10.1016/j.aap.2009.07.020

he following formula.

CD = SSD − AVG (4)

here SSD = stopping sight distance; AVG = average vehicle gap.

Fig. 2. Influences of water film depth and vehicle speed on skid resistance.
 PRESS
revention xxx (2009) xxx–xxx 5

In Eq. (4), AVG is the average vehicle spacing obtained by sub-
tracting average vehicle length from vehicle density data calculated
by traffic detector data (Roess et al., 2004).

Strictly speaking, vehicle speed in SSD formula should be indi-
vidual vehicular speeds, so is the gap between every pair of cars.
In this study, the average of 5-min traffic detector data contain-
ing the crash occurrence time was used to surrogate the real-time
prevailing traffic conditions at the crash moment.

3.2. Weather data interpolation

To estimate weather data at a crash location, a study (Patrick
and Stephenson, 1990) regarding the comparison of interpolation
methods concludes that the inverse squared distance method is
stable and appropriate for the localized field with short spatial
correlation length scale and large variability, and the minimum
number of weather stations to apply the inverse squared distance
interpolation is three (Press et al., 2007). Therefore, the inverse
squared distance interpolation was utilized to estimate localized
weather data at the crash moment:

Zk = ˙wiZi (5)

wi =
(

1/dik
)2

˙(1/dik)2
(6)

where Zk = weather data estimated at a crash location, k;
Zi = weather data measured by each weather station, I;
wi = weighting for each weather station, I; dik = distance between
each weather station i and a crash location k; i = one of the three
nearest weather stations, i = 1–3.

In Eqs. (5) and (6), the larger weight is applied to a closer
weather station data. According to the weather database used in
this study, rainfall precipitation and wind speed from weather sta-
tions showed spatial and temporal variety in the values. Hence,
15-min rainfall intensity, hourly rainfall precipitation for water film
depth, and wind speed were interpolated between three weather
stations near to each crash location by the inverse squared dis-
tance interpolation method. However, temperature data in the
weather station nearest to each crash location was used without
data interpolation because temperature was spatially and tempo-
rally consistent at the crash time.

4. Methodology

To model discrete outcome data, several alternative modeling
techniques such as ordered probability, multinomial and nested
logit models can be considered but the application to the dataset
varies from one to another due to their limitations. For example, the
multinomial and nested logit models do not account for the order-
ing of crash severities, which was stated in several previous studies
(Abdel-Aty, 2003; Milton et al., 2008; Wang and Abdel-Aty, 2008).
Note that the crash severities are not only multiple discrete out-
comes but also inherently ordered. Therefore, neither multinomial
nor nested logit analysis would be able to account for the ordi-
nal nature of the crash severities. Moreover, traditional ordered
probability approaches impose a critical restriction that regression
parameters have to be the same for different crash severity levels, so
called proportional odds. Since it is not clear whether the distance
between adjacent crash severity levels is equal, it is rather arbitrary
to assume that all coefficients of ordered probability models are the
ehicle crash severities using polychotomous response models. Accid.

same. This restriction was also mentioned in other studies (Milton
et al., 2008; Wang and Abdel-Aty, 2008).

Alternatively, a generalized version of the standard ordered logit
model was introduced to relax the restrictions of the same param-
eters for explanatory variables across the response levels imposed

dx.doi.org/10.1016/j.aap.2009.07.020
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y the standard ordered logit model (Eluru et al., 2008). The gen-
ralized standard ordered logit model allows the treatment of the
tility thresholds across the ordered response levels by separate
arameter coefficients for explanatory variables and heterogeneity

n the effects of injury severity determinants. However, the gener-
lized ordered response model is recommended only to conclude
hat the proportional odds assumption is valid because the model
s very anti-conservative (Peterson and Harrell, 1990). Based on
he purpose of this study, the difference in the set of predictors
cross various severity levels is one of the most important issues.
ven though the generalized ordered logit model allows a separate
arameter for each explanatory variable across crash severity lev-
ls, the set of significant explanatory variables is invariant over all
he crash severity comparisons.

Furthermore, crash data used in this study were filtered through
everal criteria: rainy weather, wet pavement, single vehicle
ncluded in a crash, interstate highway divided by barrier, no con-
truction zone, no hit and run and no pedestrian involved in a crash.
dditionally, microscopic weather and traffic attributes at the crash

ime as well as roadway geometries, vehicle, and driver attributes
ere used in this study. Therefore, the conditions restricted by

everal criteria at the crash moment and detailed explanatory vari-
bles can reduce moderate influence of unobserved factors that
ay cause heterogeneity in the effects of crash severity deter-
inants. Specifically, eight crashes out of 255 total crashes were

elated to intoxicated drivers and seven crashes out of the eight
rashes by the intoxicated drivers were property damage only lev-
ls in this study, which implies a certain level of homogeneity in
rivers’ alertness.

Consequently, given the certain level of data homogeneity,
equential logistic regression approach was selected to predict
ainy weather crash severities in this study because this method not
nly accounts for the inherent ordering of crash severities but also
llows different regression parameters for the severity levels. Nev-
rtheless, as a comparison, ordinal logistic regression was used to
redict rainy weather crash severities with the inclusion of only the

ndependent variables satisfying the proportional odds assump-
ion. Since sequential logistic regression model does not require the
roportional odds, all the independent variables can be included in
he model.

.1. Model structure

The functional form of a logistic is S-shaped, making it possible
o deal with the multi-level response outcomes and the probability
f a certain outcome (Keinbaum and Klein, 2002).

An interpretation of the logistic regression model is based on
he odds and the odds ratio of an event. The odds of an event are
xpressed as a ratio of the probability that the event will occur
ivided by the probability that it will not. The odds ratio is a ratio of
he predicted odds for a one-unit change in Xi with other variables
n the model held constant. Logarithm of the odds ratio is called as
ogit and it is shown as follows.

n
[

P(X)
1 − P(X)

]
= logit P(X) = ˛ + ˇX (7)

here P(X) = P(Y = y|X) = probability of a response outcome,
= response variable, y = 0 or 1, X = set of variables, ˛ = intercept
arameter, ˇ = set of parameter estimates for X.

Crash severity can be fitted to a proportional odds model mean-
Please cite this article in press as: Jung, S., et al., Rainfall effect on single-v
Anal. Prev. (2009), doi:10.1016/j.aap.2009.07.020

ng that the odds ratio assessing the effect of a predictor for any
rdinal response categories is equal regardless of where cut-point
o classify the response categories is made. The logistic model
ssuming the proportional odds is called an ordinal logistic regres-
ion model. In this study, the ordinal logistic regression fits the
 PRESS
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following equations:

logitP1 = ln
[

P1

1 − P1

]
= ˛1 +

∑
ˇiXi (8)

logit(P1 + P2) = ln
[

P1 + P2

1 − P1 − P2

]
= ˛2 +

∑
ˇiXi (9)

where P1 = probability of PDO severity; P2 = probability of non-
incapacitating/possible injury severity; P3 = probability of fatal-
ity/incapacitating injury severity.

The LOGISTIC procedure was used to fit logistic regression mod-
els. To reverse the default ordering of the response variable in
a statistical program used for this study, accordingly, the ordinal
logistic regression can be refitted in the following way:

logitP3 = ln
[

P3

1 − P3

]
= ln

[
P3

P1 + P2

]
= ˛1 +

∑
ˇiXi = h1 (10)

logit(P2 + P3) = ln
[

P2 + P3

1 − P2 − P3

]
= ln

[
P2 + P3

P1

]

= ˛2 +
∑

ˇiXi = h2 (11)

Combining Eqs. (10) and (11), the probability of each crash
severity is written as follows:

P3 = exp(h1)
[1 + exp(h1)]

(12)

P2 = [exp(h1) − exp(h2)]
[1 + exp(h1)][1 + exp(h2)]

(13)

P1 = 1 − P2 − P3 (14)

If the proportional odds assumption is not satisfied in the crash
dataset, the probability of a crash severity can be estimated by
the sequential logistic regression model. The primary difference
between ordinal logistic regression and sequential logistic regres-
sion is that the sequential logistic regression handles a set of
predictors at each stage independent of the set used at the previous
stage.

In this study, the standard logistic regression concept is applied
at both stages to fit the sequential logistic regression model. At the
second stage, a sub-sample is used after removing observations of a
certain crash severity used in the previous stages (Maddala, 1983).
In order to explore whether there is an impact in the development
of the sequential structure, forward and backward formats were
conducted in this study as follows:

Forward format:

Stage 1: Crash types K, A, B, and C vs. PDO.
Stage 2: Crash types K and A vs. Crash types B and C.

Backward format:

Stage 1: Crash types K and A vs. Crash types B, C, and PDO.
Stage 2: Crash types B and C vs. PDO.

Using the standard logistic regression concept at each stage of
both formats, the probabilities of crash severity levels can be writ-
ten as follows:

Forward format:

Stage 1 :
(P2 + P3)

P1
= exp

(
˛1 +

∑
ˇiXi

)
= g1 (15)
ehicle crash severities using polychotomous response models. Accid.

Stage 2 :
P3

P2
= exp

(
˛2 +

∑
ˇjXj

)
= g2 (16)

P1 = 1
1 + g1

(17)

dx.doi.org/10.1016/j.aap.2009.07.020
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2 = g1
(1 + g1)(1 + g2)

(18)

3 = g1 · g2
(1 + g1)(1 + g2)

(19)

Backward format:

tage 1 :
P3

(P1 + P2)
= exp

(
˛1 +

∑
ˇiXi

)
= g1 (20)

tage 2 :
P2

P1
= exp

(
˛2 +

∑
ˇjXj

)
= g2 (21)

1 = 1
(1 + g1)(1 + g2)

(22)

2 = g2
(1 + g1)(1 + g2)

(23)

3 = g1
1 + g1

(24)

.2. Measures of model performance

Typical measures of model performance for goodness of fit and
rediction accuracy are likelihood ratio test and classification table,
espectively. These measures of model performance are syntheti-
ally considered to assess crash severity prediction models in rainy
eather condition.

The likelihood ratio (LR) test reveals whether or not global null
ypothesis for a specific model is rejected. In other words, an
stimated model containing at least one non-zero parameter coef-
cient is better fit than constant only model when P-value of LR
est is less than a conventional criterion.

Standard logistic regression model classifies an observation as
n event if the estimated probability of this observation is greater
han or equal to a given cut-point. Otherwise, it is classified as a
on-event. In the statistical term, the rate of actual events that are
lso predicted to be events is called sensitivity. Similarly, the rate of
ctual non-events that are also predicted to be non-events is called
pecificity. The overall predictive power of a model depends on the
roportion of correctly predicted observations (i.e., the sum of sen-
itivity and specificity). The classification table for the prediction
ccuracy is as follows.

Predicted event Predicted non-event

Actual event Sensitivity False negative
Actual non-event False positive Specificity

Even though the predictive power of a model can be measured
or all severity levels, sensitivity and false negative rate are often
mphasized for the highest crash severities (fatal and incapaci-
ating injuries) because of their resulting economic loss. Hence, a

odel that produces high sensitivity and low false negative rate
t the classification stage for fatal and incapacitating injuries is
onsidered as a good one.

Note that the classification accuracy is dependent on the prob-
bility cut-point since the model classifies an observation based
n the given probability cut-point. The probability cut-point of 0.5
an be considered first assuming an equal opportunity for observ-
ng event or non-event. However, the value of 0.5 may yield low

odel accuracy. In reality, more severe crashes (event) do not
requently occur compared with less severe crashes (non-event),
hich implies the probability cut-point of 0.5 is too high to be used
Please cite this article in press as: Jung, S., et al., Rainfall effect on single-v
Anal. Prev. (2009), doi:10.1016/j.aap.2009.07.020

n the prediction model. From this perspective, the probability cut-
oint may be determined by practical consideration. Since desirable
rediction models should fit the field data well, the probability cut-
oint used in this study is the proportion of actual events in the field
ata.
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5. Results and discussion

In this study, PROC LOGISTIC statement in SAS 9.1 was used to
estimate ordinal logistic regression and sequential logistic regres-
sion models on the basis of rain-related single-vehicle crashes with
a significance level of 0.10 for retaining explanatory variables in the
models. The modeling process is as follows.

First of all, bivariate logistic regression of each explanatory
variable was performed to choose an individual predictor one
by one which correlated to crash severity. Especially for ordinal
logistic regression model, the individual predictor that was also
satisfied with proportional odds assumption was selected in the
step of bivariate logistic regression. In this study, six continuous
weather-related variables were considered: 15-min rainfall inten-
sity, wind speed, temperature, water film depth, SSD, and DCD.
Since weather effect on crash severity is the primary interest of
this study, the continuous weather data were specifically trans-
formed to a categorical variable by quantile if any continuous
weather variable was not selected by the bivariate logistic regres-
sion.

Next, correlation between predictors selected by the bivariate
logistic regression was identified by Pearson’s correlation coef-
ficient or likelihood ratio chi-squared test in order not to omit
significant predictors in multiple logistic regression models. After
the correlation test, several combinations that contain the maxi-
mum number of uncorrelated predictors were constructed for the
next step.

Finally, stepwise variable selection was conducted to select the
best multiple logistic regression model. Using the best-fitted model,
a classification table by the model was produced at a given prob-
ability cut-point to check prediction power of the fitted model.
Given an appropriate probability cut-point, the fitted model pro-
duces reasonable prediction accuracies for both actual events and
actual non-events. In this study, the probability cut-point is deter-
mined by the proportion of actual events to total observations at
each modeling stage because desirable prediction models should
fit the field data well and the probability cut-point should reflect
the field data condition.

5.1. Ordinal logistic regression model

The proportional odds assumption in the best model provided in
Table 3 was not rejected, which means that ordinal logistic regres-
sion is appropriate to the response outcomes. P-value of LR test
revealed quite small value in Table 3, indicating the global null
hypothesis is rejected.

The odds of response categories for types K and A vs. types B, C
and PDO or for injury vs. PDO were 0.041 times higher for wear-
ing safety belt than for not wearing safety belt, implying crash
severity reduction by the safety belt. The odds ratio for posted
speed limit was positive, but close to 1, indicating slight effect
on increasing crash severity at higher posted speed limit. All the
significant parameter effects were consistent to general expecta-
tion.

The probability cut-point to classify the predicted event was
based on the proportion of actual event observations to total obser-
vations. That is, the probability cut-point was 0.26 to predict injury
crash severity (event) while the probability cut-point was 0.04 to
predict the fatal and incapacitating injury crash severity (event).
For two event comparisons, reasonable overall prediction accura-
cies for total observations were produced. However, sensitivity was
ehicle crash severities using polychotomous response models. Accid.

50% particularly for fatal and incapacitating injury crashes vs. oth-
ers at the reasonable overall prediction accuracy of 65%, which
means that the prediction power of ordinal logistic regression
was not sufficiently strong for the highest level of crash sever-
ity.

dx.doi.org/10.1016/j.aap.2009.07.020
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Table 3
Multiple ordinal logistic regression model.

ChiSq D.F. Pr > ChiSq

Score test 4.5793 2 0.1130
LR test 48.3070 2 <0.0001

Parameter Estimate S.E. Odds ratio Pr > ChiSq

MLE

Intercept 3 −4.2021 1.4022 – 0.0027
Intercept 2 −1.4351 1.0581 – 0.3037
Safety belt −3.1990 0.5345 0.041 <0.0001
Speed limit 0.0580 0.0233 1.060 0.0130

Classification Event Non-event Overall accuracy

Others vs. PDO (Pcutoff = 0.26)
Correct = 41 Incorrect = 26 Correct = 135 Incorrect = 53 69%
Sensitivity Specificity False POS False NEG
61% 72% 56% 16%

Correct = 5 Incorrect = 5 Correct = 161 Incorrect = 84 65%

N false n

5

w
b
r
a
P
m
f

T
M

N
f

K + A vs. Others (Pcutoff = 0.04) Sensitivity Specificity
50% 66%

ote. MLE: maximum likelihood estimate; false POS: false positive rate; false NEG:

.2. Sequential logistic regression model

The modeling process of sequential logistic regression model
as identical to that of ordinal logistic regression. The differences

etween the sequential logistic regression and the ordinal logistic
egression were the use of sub-sample and variant sets of predictors
Please cite this article in press as: Jung, S., et al., Rainfall effect on single-v
Anal. Prev. (2009), doi:10.1016/j.aap.2009.07.020

cross stages for the sequential logistic regression. In other words,
DO crashes were removed at the second stage in the forward for-
at while fatal and injury crashes were removed in the backward

ormat.

able 4
ultiple model for forward format of sequential logistic regression.

Stage 1

ChiSq D.F.

LR test 22.4048 3

Parameter Estimate

MLE

Intercept 1 −3.5445
FD 2.6658
LSW 0.2436
FD × LSW −0.2247

Event

Classification (Pcutoff = 0.26)
Correct = 48 Incorrect = 19
Sensitivity Specificity
72% 56%

Stage 2

ChiSq D.F.

LR test 12.8808 3

Parameter Estimate

MLE

Intercept −2.3430
SSD 0.0050
Wind speed 2 −1.4784
Vehicle type 1 −1.5171

Event

Classification (Pcutoff = 0.17)
Correct = 8 Incorrect = 2
Sensitivity Specificity
80% 78%

ote. FD: female driver; LSW: left shoulder width; FD × LSW: interaction of female driver
rom 6 km/h to 18 km/h; Vehicle type 1: passenger car.
False POS False NEG
94% 3%

egative rate.

5.2.1. Forward format
Based on low P-values of LR test in Table 4, the global null

hypothesis was rejected at both stages, indicating the estimated
models were better to predict crash severities than constant only
model.

At the first stage, female drivers were much more likely to be
ehicle crash severities using polychotomous response models. Accid.

involved in more severe crashes than PDO crashes based on the high
odds ratio. An interesting effect of left shoulder width was identi-
fied. The odds ratio for left shoulder width was approximately 1.3,
implying wide left lane was more likely to increase crash sever-

Pr > ChiSq

<0.0001

S.E. Odds ratio Pr > ChiSq

0.7718 – <0.0001
0.9072 14.3794 0.0016
0.0769 1.2758 0.0015
0.0950 0.7987 0.0180

Non-event Overall accuracy

Correct = 105 Incorrect = 83 60%
False POS False NEG
63% 15%

Pr > ChiSq

0.0049

S.E. Odds ratio Pr > ChiSq

1.5934 – 0.1414
0.0027 1.005 0.0896
0.8929 0.228 0.0978
0.8156 1.085 0.0629

Non-event Overall accuracy

Correct = 44 Incorrect = 13 78%
False POS False NEG
62% 4%

with left shoulder width; SSD: stopping sight distance; Wind speed 2: wind speed

dx.doi.org/10.1016/j.aap.2009.07.020
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Table 5
Multiple model for backward format of sequential logistic regression.

Stage 1

ChiSq D.F. Pr > ChiSq

LR test 34.5496 4 <0.0001

Parameter Estimate S.E. Odds ratio Pr > ChiSq

MLE

Intercept −0.4724 0.4839 – 0.4866
RI 0.5806 0.1655 1.787 0.0005
Wind speed 2 −2.5170 1.0440 0.081 0.0159
Terrain 3 2.7768 1.1082 16.067 0.0094
Safety belt −4.2795 1.0090 0.014 <0.0001

Event Non-event Overall accuracy

Classification (Pcutoff = 0.04)
Correct = 9 Incorrect = 1 Correct = 214 Incorrect = 31 88%
Sensitivity Specificity False POS False NEG
90% 87% 78% 0.5%

Stage 2

ChiSq D.F. Pr > ChiSq

LR test 41.8949 2 <0.0001

Parameter Estimate S.E. Odds ratio Pr > ChiSq

MLE
Intercept 1.6464 0.7680 – 0.0321
Female driver 1.1858 0.3419 3.273 0.0005
Safety belt −3.6222 0.7986 0.027 <0.0001

Event Non-event Overall accuracy

Classification (Pcutoff = 0.23)
Correct = 39 Incorrect = 18 Correct = 128 Incorrect = 60 68%
Sensitivity Specificity False POS False NEG
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68% 68%

ote. RI: 15-min rainfall intensity; Wind speed 2; wind speed from 6 km/h to 18 km

ty from PDOs to injuries, which is opposite to general expectation.
owever, the odds ratio for the interaction with female drivers was

ess than 1, which implies that wide left shoulder can be helpful to
ecrease injury crashes especially for female drivers.

Weather factors were more explicitly identified at stage two of
orward sequential logistic regression than ordinal logistic regres-
ion. At the second stage, severe crashes including types K and A
ncreased slightly as stopping sight distance increased. On the other
and, the second class of wind speed from 6 km/h to 18 km/h was

ikely to decrease the most severe crashes. The effect of wind speed
ould be caused by drivers’ cautions due to low visibility derived
y moderately strong wind in the rainfall. Passenger cars were also

ess likely to be involved in the most serious crashes than other
ypes of vehicles.

The probability cut-point was 0.26 to predict injury crash sever-
ty (event) at the first stage while the probability cut-point was 0.17
o predict the fatal and incapacitating injury crash severity (event).
verall prediction accuracies were reasonable at both stages. Espe-
ially, sensitivity at the second stage was 80%, which is much higher
han the sensitivity for the fatal and incapacitating injury crash
everity in ordinal logistic regression.

.2.2. Backward format
Table 5 shows the best model selected by backward sequential

ogistic regression. Small P-values in LR test at both stages reveals
hat the selected model provided in Table 5 is better fit than the
lobal null model.
Please cite this article in press as: Jung, S., et al., Rainfall effect on single-v
Anal. Prev. (2009), doi:10.1016/j.aap.2009.07.020

Weather-related factors were identified to predict fatal and
ncapacitating injury crash severity at stage one. The most severe
rashes were 1.787 times more likely to occur as rainfall intensity
or 15 min was getting stronger. This result implies that drivers
end to less sensitively perceive the risk of driving by the rainfall
61% 12%

rrain 3: horizontal/vertical curve.

intensity. However, wind speed effect on the highest crash severity
in backward format was consistent to the effect in forward for-
mat. That is, the odds ratio for the second class of wind speed
from 6 km/h to 18 km/h was less than 1, indicating moderately
strong wind speed is likely to decrease the fatal and incapacitating
injury crashes. Also note that the odds ratio for horizontal/vertical
curves was extremely higher than 1, which indicates that the hor-
izontal/vertical curves increases the likelihood of the most severe
crashes in rainy weather. At stage two, female driver was more
likely to be involved in types B and C crashes in rainy weather than
male driver based on the positive parameter estimate and the cor-
responding odds ratio. At both stages, wearing safety belt decreased
more severe crashes.

At stage one, 0.04 was used as the probability cut-point to pre-
dict fatal and incapacitating injury crash severity (event) while 0.23
was used to predict non-incapacitating and possible injury crash
severity (event) at stage two. According to Table 5, overall predic-
tion accuracies were 88% at the first stage and 68% at the second
stage, which are reasonable. In particular, the first stage shows the
highest sensitivity (90%) and overall prediction accuracy of all the
rates provided by ordinal and sequential logistic regression models.
Additionally, false negative rate at stage one was found to be the
lowest of all false negative rates from ordinal and sequential logis-
tic regression models. These prediction accuracy rates at the first
stage imply that backward format is the most desirable to predict
crash severity levels especially for fatal and incapacitating injury
crash severity.
ehicle crash severities using polychotomous response models. Accid.

Comparing multiple regression results based on goodness of fit,
parameter significance and prediction accuracies, on the whole, the
backward sequential logistic regression model outperforms ordi-
nal and forward sequential logistic regression models in predicting
crash severity levels in rainy weather. Specifically, the backward

dx.doi.org/10.1016/j.aap.2009.07.020
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Table 6
Crash frequencies and coding in study area in clear weather.

Crash severity Frequency Category coding

Stage 1 Stage 2

Fatal and incapacitating injury 30 1 –
Non-incapacitating and possible injury 175 0 1
PDO 350 0 0
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Additionally, median related collisions increased the likelihood of

T
M

N

Total 555 555 525

equential logistic regression model was found to be compara-
ively effective to predict the highest level of crash severity based
n the overall prediction accuracy, sensitivity and false negative
ate. Moreover, 15-min rainfall intensity impact on crash severity
as significantly identified in the backward format and wind speed
as more significant in the backward format than in the forward

ormat. In addition, the estimated parameter coefficients in the
ackward sequential model consistently agree with the common
xpectations. Therefore, the backward format of sequential logistic
egression model is recommended as the final model for predict-
ng all levels of single vehicle crashes that occurred on high-speed
ighways in rainy weather.

.3. Comparison of clear weather crash severity

The goal of comparing rainy and clear weather conditions
sing the best crash severity prediction model is to identify fac-
Please cite this article in press as: Jung, S., et al., Rainfall effect on single-v
Anal. Prev. (2009), doi:10.1016/j.aap.2009.07.020

ors that are independent of weather conditions. In this study,
he clear weather condition indicates dry pavement under clear
r cloudy weather, when rainfall and other weather factors do
ot exist. Crash data in clear weather condition only were sepa-

able 7
ultiple model for backward sequential logistic regression (clear weather).

Stage 1

ChiSq D.F.

LR test 38.7058 4

Parameter Estimate

MLE

Intercept −10.1080
Speed limit 0.1316
LGT 3 2.3159
Safety belt −1.1575
SFTB × LGT 3 −1.7601

Event

Classification (Pcutoff = 0.05)
Correct = 23 Incorrect = 7
Sensitivity Specificity
77% 63%

Stage 2

ChiSq D.F.

LR test 15.2776 2

Parameter Estimate

MLE
Intercept −0.9102
Spring season −0.5682
Collision type 1 0.5936

Event

Classification (Pcutoff = 0.33)
Correct = 89 Incorrect = 86
Sensitivity Specificity
51% 63%

ote. LGT 3: night but street light; SFTB: safety belt; Collision type 1: median related coll
 PRESS
revention xxx (2009) xxx–xxx

rately collected. In other words, crash data used in rainy weather
model were not included in modeling clear weather crash severity.
Study area, data sources, data collection duration, variable coding,
and modeling process were the same as those of the backward
sequential logistic regression model that was selected as the best
model format to account for rainy weather effect on crash sever-
ity levels. Crash frequency for the clear weather is presented in
Table 6.

The best multiple regression model for clear weather condition
is provided in Table 7. At the first stage, the odds ratio for posted
speed limit was greater than 1, indicating that higher posted speed
limit increased the likelihood of fatal and incapacitating injury
crashes. In particular, the odds ratio for street lighting at night was
approximately 10, implying street light condition at night has high
potential to increase fatal and incapacitating injury crashes in clear
weather. At night, glaring caused by street lighting might affect
the strong street light effect on increasing the most severe crashes.
However, interaction of the street lighting at night with safety belt
was significantly identified to decrease the most severe crashes,
which implies that safety belt can be effective to improve high-
way safety under the street lighting at night. The effect of wearing
safety belt on decreasing crash severity was consistent regardless
of weather conditions.

At the second stage, the odds ratio of possible/non-
incapacitating injury crashes to being PDO crashes was 0.567
for spring season. Intuitively, this seasonal factor is expected to
be an excellent indicator representing weather conditions. It is
plausible that crash severity is affected by weather conditions.
ehicle crash severities using polychotomous response models. Accid.

possible/non-incapacitating injury crashes.
The overall prediction accuracies were reasonable at both

stages: 64% with event classification probability cut-point of 0.05 at
stage one and 60% with event classification probability cut-point of

Pr > ChiSq

<0.0001

S.E. Odds ratio Pr > ChiSq

2.6479 – 0.0001
0.0421 1.141 0.0017
0.7182 10.134 0.0013
0.5665 0.314 0.0410
0.8779 0.172 0.0450

Non-event Overall accuracy

Correct = 332 Incorrect = 193 64%
False POS False NEG
89% 2%

Pr > ChiSq

0.0005

S.E. Odds ratio Pr > ChiSq

0.1496 – <0.0001
0.2460 0.567 0.0209
0.1902 1.811 0.0018

Non-event Overall accuracy

Correct = 222 Incorrect = 128 60%
False POS False NEG
59% 28%

isions.

dx.doi.org/10.1016/j.aap.2009.07.020
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.33 at stage two. In addition to the overall accuracies, sensitivities
t both stages were also reasonable, implying backward sequential
odel are effective to predict more severe crashes (event) even in

lear weather.

. Conclusions

Even though rainfall effect on crash severity has been investi-
ated in previous studies, the rainy weather-related factors in the
tudies lack the accuracy and sophistication to reflect real-time
avement surface conditions and visibility practically during the
ainfall. For instance, wet or dry pavement surface, average annual
ainfall precipitation, and even hourly rainfall are not sufficient to
apture the real-time rainy weather conditions prior to or dur-
ng the crash occurrence. Using more microscopic weather data,
his study assessed rainfall effect on the severities of single vehicle
rashes on the selected Wisconsin interstate highways. To com-
rehensively characterize weather conditions and their effects on
rash occurrences, this study used several novel variables at the
rash moment, in particular, 15-min rainfall intensity, water film
epth, stopping sight distance, and deficiency of car-following dis-
ance that have not been frequently considered in the previous
tudies. In addition, estimated or measured weather factors were
nterpolated between three weather stations by inverse squared
nterpolation method for each crash location.

In this study, both ordinal and sequential logistic regression
odels were applied to predict crash severity that is a polychoto-
ous response. The sequential logistic regression models were

urther divided into the forward format from the lowest injury
everity to the highest one and the backward format reversing the
equence. Additionally, the severity of crashes occurring on dry
avement in cloudy or clear weather was estimated to compare
ith its counterpart in rainy condition. As a result, the backward

ormat of sequential logistic regression model outperformed others
n predicting crash severity levels, especially fatal and incapacitat-
ng injuries, and detected rainfall effect on the severities. In the
ackward sequential logistic regression model, following variables
ere significantly identified: 15-min rainfall intensity, wind speed,
orizontal/vertical curve, female driver, and safety belt usage. The
ackward format produced the highest prediction accuracy and
learly significant weather effect especially on fatal and incapac-
tating injury prediction.

Note that ordinal logistic regression imposes restrictions that
ll parameter estimates have to be the same and only the inter-
ept is allowed to be different while sequential logistic regressions
llows variant parameter estimates for different response out-
omes. In other words, the sequential logistic regression is more
exible to reflect variant predictor effects on response categories
nd to predict the response accurately for this study. Thus, the
ackward sequential logistic regression model, specifically, is con-
idered to be the most appropriate for determining the probability
f crash severity in rainy weather. In addition, a seasonal indi-
ator was significant in the clear weather backward sequential
ogistic regression model. This implies that weather condition may
ffect crash severity outcomes because the weather condition is
ssociated with the seasonal factor. The resultant findings in this
tudy can be used to provide quantitative support on improving
oad weather safety via weather warning systems, highway facility
mprovements, and speed limit management.
Please cite this article in press as: Jung, S., et al., Rainfall effect on single-v
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