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a b s t r a c t

Identifying locations that exhibit the greatest potential for safety improvements is becoming more and
more important because of competing needs and a tightening safety improvement budget. Current crash
modeling practices mainly target changes at the mean level. However, crash data often have skewed
distributions and exhibit substantial heterogeneity. Changes at mean level do not adequately represent
patterns present in the data. This study employs a regression technique known as the quantile regression.
Quantile regression offers the flexibility of estimating trends at different quantiles. It is particularly useful
for summarizing data with heterogeneity. Here, we consider its application for identifying intersections
with severe safety issues. Several classic approaches for determining risk-prone intersections are also
compared. Our findings suggest that relative to other methods, quantile regression yields a sensible and
much more refined subset of risk-prone locations.

Published by Elsevier Ltd.

1. Background

Intersection safety has been one of the primary focuses for
national, state and local traffic agencies. At-grade intersections
alone account for over 39% of total crashes and 22% of fatal crashes
(Potts et al., 2009). Numerous intersection improvement strate-
gies and technologies, ranging from traffic control advancement
to innovative geometric design, have been put forth by Amer-
ican Association of State Highway and Transportation Officials
(AASHTO), state and local agencies. These strategies and measures
vary considerably in terms of their costs. However, their relative
efficacy remains unclear.

Given the tightening fiscal conditions, there is increasing
urgency to implement safety measures in the most cost-effective
manner. The general principle in implementation of safety mea-
sures is that safety improvement dollars should be spent on the
sites that exhibit an inherently high risk of crash losses and that
possess an economically justifiable opportunity for reducing the
risky conditions. There are two classic approaches for determin-
ing crash-prone locations. One is based on the observed number
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of crashes, and the other is based on regression analyses. Crash
history can be directly used to generate ranks via crash counts,
rates, or other variations involving weighted average. On the other
hand, regression analyses generate expected numbers of crashes
for a site given certain characteristics of interest. One advantage
of using regression-based methods is that these methods do not
rely strictly on the crash frequencies as in count methods. They
also take into consideration attributes associated with the number
of crashes. Consequently, we can separate out variations in obser-
vations due to sampling error and identify crucial risk factors that
predict outcome levels. Furthermore, by modeling the association
between determinants and outcomes, we can make comparisons
among sites and identify those with unusually high risk of crashes.

One of the most popular approaches for performing regression
analysis is by means of general linear models (GLMs) or generalized
linear models (GLMs) if the residual is not a multivariate normal dis-
tribution, which include ordinary least squares (OLS) as a special
case. GLMs are appealing because they provide relatively simple
solutions for modeling a wide spectrum of data including counts
and proportions (rates). However, they have several limitations.
First, they involve restrictive distributional assumptions. Specifi-
cally in the classic GLMs framework, the distribution of data must
belong to the exponential family. In reality, however, few datasets
follow exactly the distributional assumptions. Therefore, poor fit
and erroneous parameter estimates are resulted. Second, in GLMs,
link functions are required to be correctly specified. Misspecifica-
tion of link functions can lead to the loss of efficiency in parameter
estimates (e.g. Chiou and Muller, 1998). Third, homogeneity is often
assumed when fitting GLMs. Violation of homogeneity assumption
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Fig. 1. Scatter plot of heterogeneous data.

can result in overdispersion, which refers to situations in which the
observed variance is higher than the theoretical variance. Conse-
quently, the accuracy of parameter and standard error estimates
are undermined (e.g. Palmer et al., 2007). Although alternatives
such as the quasi-likelihood methods have been proposed to tackle
these problems, they only serve as partial solutions, and their finite
sample performance can be unsatisfactory (Nelder and Lee, 1992).

In addition to the limitations aforementioned, another issue
with GLMs is that they focus mainly on extracting a single trend
to summarize the data. For example, when fitting count data, the
results from the log-linear (Poisson) model represent the change in
conditional means across different values of the explanatory vari-
ables. In situations where the assumption of homogeneity is met,
conditional means generally serve as decent summary statistics of
the central tendency. However, in situations where heterogeneity
is present, conditional means give an incomplete summary. As an
illustration, consider Fig. 1, heterogeneity is present in the data.
Specifically, the variability of counts (y) increases as the value of
x increases. Moreover, three different trends can be observed. As
shown in the graph, neither the Poisson nor the Poisson-Gamma
model captures the disparity in trends since both models are
designed to capture the conditional means only. In this case, inter-
esting aspects of the data are overlooked.

In fact, data similar to the above example is not uncommon in
transportation safety research. In particular, data in many studies
are obtained at different times across a wide range of geographical
locations. Data collected at the same time or location may exhibit
more similarities, whereas data collected at different times and
locations may exhibit markedly different characteristics. As a result,
the final dataset may have considerable heterogeneity. Recently,
noticeable efforts have been made to address the crash data hetero-
geneity by adopting a random parameter model (Anastasopoulos
and Mannering, 2009; El-Basyouny and Sayed, 2009). Instead of
assuming that parameters are fixed across all the sites, some or
all parameters are allowed to vary in order to account for het-
erogeneity across observations due to unobserved factors. Using
rural interstate highway crash data in Indiana, substantial marginal
effects and inferences were found between the models with and
without accounting for the random parameters (Anastasopoulos
and Mannering, 2009). Using more homogenous dataset grouped
by 58 urban arterial corridors, El-Basyouny and Sayed expanded

the random parameter models by considering variations through
the variance and through the mean, respectively. The finding
shows that the Poisson-lognormal models with the random cor-
ridor models significantly outperformed the ones without random
parameters (El-Basyouny and Sayed, 2009). Both studies support
that random parameter count model could be an effective approach
to account for data heterogeneity.

In order to gain new insights regarding how covariates affect
crash occurrence, it is better to capture the distribution of crash
data given these factors. In other words, it is essential to look not
only at the mean level but also at different quantiles. Quantiles
are points at regular intervals in the cumulative distribution func-
tion (CDF) of a random variable. The median is probably the most
well-known quantile measure that describes the value separating a
population in half (i.e. 0.5 quantile). Both the median and the mean
are often used to describe the central tendency of data. However,
they differ quite substantially in terms of robustness. Specifically,
mean is extremely sensitive to outliers and skewness in a distri-
bution. Hence, it may not always be the best measure of central
tendency.

The major goal of this paper is to provide an alternative regres-
sion analysis approach known as the quantile regression (QR). QR
is a method for estimating how the quantile of an outcome variable
changes with respect to the levels of the explanatory variables. It
allows us to capture the disparity in trends caused by heterogeneity
and offers a more complete picture of the data. This paper is orga-
nized as follows. In Section 2, we provide a brief literature review
of QR and its application in various disciplines. In Section 3, we out-
line the basic mathematics underlying QR. In Section 4, we describe
the application of QR for modeling crash counts at intersection. In
Section 5, we repeat the analysis in Section 4 with the classic GLMs.
In Section 6, we compare and contrast the findings in the previous
two sections. Finally, in Section 7, we conclude by describing the
implications of the findings.

2. Literature review

QR is originated from the econometric literature (Koenker and
Bassett, 1978). It is closely related to a classic technique called
the least absolute error (LAE). LAE estimates the regression slope
by minimizing the sum of absolute residuals. The resulting best
fit is the conditional median, which is the 0.5 quantile. (This is
in contrast with the ordinary least squares (OLS) which estimates
the regression slope by minimizing the sum of squared residuals.
The resulting best fit is the conditional mean.) Note that, although
LAE has better efficiency than OLS, it remains sensitive to out-
liers. Specifically, LAE only guards against unusual y values but not
unusual x values (i.e. leverage points).

LAE and QR are closely related in the sense that they both
involve optimizing certain function of absolute residuals. While
LAE involves optimizing a symmetric piecewise linear absolute
residuals function, QR involves optimizing an asymmetrically
weighted absolute residuals function (see Section 3 for more
details). Nonetheless, in contrast with LAE, QR offers the flexibil-
ity to capture the trend in data not only at the 0.5 quantile but also
at other quantiles. This feature is particularly useful for analyzing
dataset where clustering or heterogeneity is present. As a result,
in fields like the social and biological sciences, QR is becoming
increasingly popular.

In the area of finance, for instance, QR has been applied in value
at risk (VAR) modeling. Since market returns often follow a heavy-
tailed distribution, models focusing only the conditional means are
often inadequate. QR is employed to understand the change in dis-
tribution over time (e.g. Taylor, 1999). Similarly, in economics, QR
has been used to analyze earnings-related data, which often contain
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outliers and the issue of heterogeneity is prevalent (e.g. Arias et al.,
2001; Machado and Mata, 2001). As mentioned earlier, QR is par-
ticularly useful when data contain subgroups. In a study by Nielson
and Rosholm (2001), QR was used to study the determinants of
wages in Zambia with special emphasis on the public–private sec-
tor wage gap. Their paper nicely presented the differential trends
in the entire wage distribution across education and age groups.
Another research domain in which QR is becoming increasingly
popular is public health. For example, recent studies have applied
QR to examine the effect of health care reform (Winkelmann, 2006)
and prenatal care utilization (Wehby et al., 2009).

Compared to these research areas, transportation research still
has not fully embraced QR. Publication involving this methodology
is sparse. The paper by Hewson (2008), which explored the appli-
cation of quantile smoother for speed data, was perhaps one of the
few pioneering studies. Given the data issues exist in transportation
studies, QR can be a potentially useful tool in this field.

3. Methodology

3.1. Quantile definition and estimation

Let p be a number between 0 and 1, the 100p percentile of the
distribution of a continuous random variable X denoted by �(0.5)
is defined by

p = F(�(p)) =
∫ �(p)

−∞
f (y)dy (1)

In general, the p-percentile of the distribution of any random
variable X can be rewritten as the inverse function of its cumula-
tive distribution function evaluated at p. Formally, the pth quantile
of X with cumulative distribution function F on � with 0 ≤ p≤ 1 is
defined as

�(p) = F−1(p) = inf {y : F(y) ≥ p} where 0 < p < 1 (2)

Note that �(0.5) is the median, the 95th percentile is denoted as
�(0.95) and the commonly used 1st and 3rd quartiles are similarly
represented as �(0.25) and �(0.75), respectively. �(p) can be inter-
preted as the threshold that splits the possible values of X into two
groups, such that P(X ≤ �((p)) = p and P(X > �((p)) = 1 − p.

3.2. Quantile regression model

Similar to the sample mean that minimizes the sum of square
errors, the sample median of a random sample {y1, y2, . . ., yn} of
a random variable Y is the minimal of the sum of absolute devia-
tions. Therefore, the general pth sample statistics quantile �(p) may
be solved as a optimal solution to minimizing a weighted average
of the samples whose values are larger or equal to �(p) and the
samples whose values are less or equal to �(p) as Eq. (3) (Koenker,
1978).

min
ˇ ∈ Rk

⎡⎣ ∑
i ∈{i:yi≥�(p)}

p
∣∣yi − �(p)

∣∣ +
∑

i ∈{i:yi<�(p)}
(1 − p)

∣∣yi − �(p)
∣∣⎤⎦ (3)

the pth sample statistics quantile �(p) can be expressed as a linear
function of the parameters of interest as

�(p) = X ′ˇ + ε

where p: 100p percentile such as 95 percentile, 50 percentile
(median), etc; �(p): the response variable corresponding to 100p
percentile; ˇ: k-dimensional vector of unknown parameters of the
covariates X, and ε: random error.

Fig. 2. Crash data histogram.

Hence, the optimization problems become solving the estimates
for ˇs

∧
ˇ(p) = arg min

ˇ ∈ Rk

⎡⎣ ∑
i ∈{i:yi≥X ′ˇ)}

p
∣∣yi − X ′ˇ

∣∣
+

∑
i ∈{i:yi<X ′ˇ}

(1 − p)
∣∣yi − X ′ˇ

∣∣⎤⎦ (4)

For any quantile p between 0 and 1,
∧
ˇ(p) is called the pth

regression quantile which minimizes the sum of weighted abso-
lute residuals. As a special case, the sample median minimizes the
sum of the absolute errors of the sample set when p is equal to 0.5,
which is also called the L1 regression.

In general, QR can be considered as a linear programming
problem and can be solved efficiently with various optimiza-
tion methods such as simplex algorithm, interior point method,
smoothing algorithm and their derivations (Chen, 2005). The
simplex algorithm is the most popular algorithm, but it is computa-
tionally demanding. Its processing time increases considerably as
the size of data increases. The interior algorithm has been devel-
oped as an alternative for handling large datasets and has been
proven to be superior to the simplex algorithm. The smoothing
algorithm, on the other hand, is a heuristic approach which aims
to improve the estimate through numerous iterations. All three
algorithms are implemented in the SAS QUANTREG procedure and
details are described in the procedure document (Chen, 2005).

4. Quantile regression application in intersection safety

Identification of crash-prone locations is salient in the assess-
ment of intersection designs and the implementation of safety
measures. In this section, we explore the use of QR for modeling
intersection crash data, with the specific objective to determine
locations with high risk of crashes. QR serves as a desirable option
for modeling intersection crash data because the distribution of
crash data is often skewed (see Fig. 2). Moreover, due to the data
collection process, crash data often show substantial heterogeneity.

Data were obtained from the Wisconsin intersection crash
summary statistics (Knapp et al., 2005). Crash data for 1710 inter-
sections in the state of Wisconsin were collected along with other
features. We modeled the number of crashes at the intersections
based on various attributes including crash characteristics, area
type, traffic volume, traffic control, and the geometric features of
the intersection. These geometric features included the number of



Author's personal copy

1534 X. Qin et al. / Accident Analysis and Prevention 42 (2010) 1531–1537

Table 1
Description of variables.

Variables Description

TOT0103 Total number of crashes between 01 and 03
AREATYPE Types of area (rural or urban)
LEG Number of intersection approach legs (3 or 4)
ENTVEH Million of annual entering vehicles (MEV)
DIVIDED Existence of major roadway median
TRFCNTL Types of traffic controls (all-way, side, other, signal)
LANE Number of major roadway lanes (2 or 4)
LEFTTURN Existence of left-turn lane(s)

intersection approach legs (legs), the number of major roadway
lanes (lane), the presence of median in major roadway, and the
presence of left-turn lane(s) (left turn). Table 1 describes the covari-
ates considered in the study, and Table 2 summarizes the statistics
for key variables.

Let yi denote the number of crash counts at the intersection
i. Unlike GLMs, QR does not rely on any distribution assumption.
Estimates of slopes are derived by minimizing the optimization
function. The logarithm of the response variable yi (crash count)
was used to normalize the data and to achieve more accurate
fitting.

min

⎡⎣ ∑
i ∈ {i:yi≥�(p)

p|yi − �(p)| +
∑

i ∈ {i:yi≤�(p)

(1 − p)|yi − �(p)|

⎤⎦ (5)

and the link function is

�(p) = Vˇv exp(ˇ0 + ˛Z) and define ˇ = (ˇ0, ˇv, ˛′)′

where p:100p percentile such as 95 percentile, 50 percentile
(median), etc �(p): the expected number of crashes correspond-
ing to p percentile, V: million annual daily entering volume, Z: the

matrix of categorical variables such as traffic control, median, left
turn, area type, ˛: regression coefficient vector.

The primary goal was to use the QR model to identify intersec-
tions which exhibit the most severe safety problems. Therefore,
we focused our attention on the 95th percentile regression. The
QUANTREG procedure was used to estimate the coefficients for the
covariates and to perform statistical inferences on the estimated
coefficients (Chen, 2005). Table 3 presents the results of the esti-
mated coefficients and 95% confidence intervals. Standard errors
and confidence intervals for the QR coefficients were obtained via
asymptotic and bootstrap methods respectively. Except for area
type (urban or rural) and median (yes or no), all the coefficients
are statistically significant at ˛ = 0.05 level. The results also suggest
that the daily entering volume is a significant predictor of number
of crashes. The negative coefficient associated with LEG indicates
that 3-legged intersections in general have lower crash frequency
than 4-legged intersections. This could be attributed to the fact
that 3-legged intersections have fewer conflicting points. Hold-
ing all else constant, the results suggest that 3-legged intersections
generally have approximately a quarter (e−0.2851) fewer number of
crashes than 4-legged intersections. Similarly, the coefficient asso-
ciated with LANE suggests that 2-lane intersections tend to have
lower number of crashes compared to 4-lane intersections holding
all else constant. As for traffic control type, the results show that
relative to signalized intersections both stop-controlled (all-way or
side) intersections have significantly fewer crashes than signalized
intersections.

Based on the model, intersections with particularly high
incidence of crash were identified by comparing the observed
counts with the predicted values. Specifically, a site was classified
as crash-prone if the observed number of crashes exceeded the
prediction. Using this procedure 86 out of 1710 intersections were
identified as extreme sites, which constituted approximately 5% of
the sample size

Table 2
Summary statistics of variables.

TOT0103 AREATYPE Sites LEG Sites

Min 1 Urban 1151 (67.3%) 3 361 (21.1%)
Mean 12 Rural 559 (22.7%) 4 1349 (78.9%)
Max 134
SD 14.17

ENTVEH (MEV) DIVIDED Sites TRFCNTL Sites

Min 0.53 Yes 788 (46.1%) All-way 25 (1.475%)
Mean 14.73 No 922 (53.9%) Side 931(54.45%)
Max 89.87 Other 3 (0.175%)
SD 12.9 Signal 751 (43.9%)

LANE Sites LEFTTURN Sites

2 697(40.8%) Yes 1023 (59.8%)
4 1013 (59.2%) No 687 (40.2%) Total 1710

Table 3
95th regression quantile estimates.

Parameter estimates

Parametera DF Estimate Standard error 95% confidence limits t value P > |t|
Intercept 1 2.7938 0.1110 2.5760 3.0116 25.16 <0.0001
ENTVEH 1 0.5386 0.0455 0.4494 0.6278 11.84 <0.0001
LEG 3-Legged 1 −0.2827 0.0611 −0.4025 −0.1629 −4.63 <0.0001
LANE 2-Lane 1 −0.1909 0.0603 −0.3092 −0.0725 −3.16 0.0016
TRFCNTL All-way 1 −0.4680 0.2039 −0.8679 −0.0680 −2.29 0.0219
TRFCNTL Other 1 −0.8271 0.5728 −1.9506 0.2964 −1.44 0.1490
TRFCNTL Side 1 −0.3744 0.0584 −0.4888 −0.2599 −6.42 <0.0001

a Covariates such as area type, median and left turn lane are removed from the model because they are not statistically significant.
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5. Mean regression model estimates

In this section, we repeat the same analysis using the clas-
sic GLMs approach. The Poisson-Gamma model was used in this
case for the non-negative count data and to tackle the problem
of overdispersion. Unlike the QR model, the GLMs estimate the
changes of conditional means given the various contributing fac-
tors.

5.1. Point estimated parameters of Poisson-gamma model

Let yi denote the number of crashes at intersection i and the
distribution of yi conditional on its mean �i is assumed to follow a
Poisson distribution independently over sites.

yi|�i∼Poisson (�i), i = 1, 2, . . . , n (6)

The log function used to link the mean number of crash counts with
all possible covariates and unstructured errors is defined as

log(�i) = ˇv log V + ˇ0 + Z˛ + εi, t = 1, 2, . . . , k (7)

where V: million annual daily entering volume, Z: the matrix of cat-
egorical variables such as traffic control, median, left turn, area type,
˛: regression coefficient vector, and εi: an unstructured random
effect independent of Z.

The Poisson-gamma model is specified by assuming that exp(εi)
follows a gamma distribution independently. In most crash predic-
tion literature, it is widely accepted that its mean is 1 and variance
is 1/� for some positive quantity (or parameter) �. In other words,

exp(εi)∼Gamma (�, �) (8)

and � is usually called an inverse dispersion parameter. Let ˇ =
(ˇ0, ˇv, ˛′)′, based on this particular parameterization, yi follows
a negative binomial distribution with mean exp(x�) and variance
exp(x�)(1 + exp(x�)/�). Here, ˇ is estimated via SAS GENMOD pro-
cedure (SAS 9.1, 2003) and the results are listed in Table 4.

A comparison of Tables 3 and 4 indicates that the estimated coef-
ficients yielded by the QR and GLMs are identical in signs but vary
slightly in magnitude. This suggests that the relationship between
crash counts and the covariates follows the same pattern at the 95%
percentile and the mean level. For instance, high daily entering vol-
ume is associated with more crashes at both the 95% percentile and
mean levels. Nonetheless, the difference in the values of the coeffi-
cients implies that the magnitude of change in crash incidence per
unit increase in traffic volume is slightly less at the 95% percentile
than at the mean level.

5.2. Confidence intervals for means

To identify locations with high incidence of crash, the observed
counts were compared with the 90% confidence intervals for the

predicted value. Confidence intervals are computed as follows:

X ′ˇ ± t˛/2
n−pS v1/2

0 (9)

where v0 = x′
0(X ′X)−1x0 and ˛ = 0.1. This limit indicates the range of

possible true values for the conditional mean crash incidence given
X. A site was classified as crash-prone if the observed number of
crashes exceeded the upper 90% confidence limits. For the situation
at hand, 621 out of 1710 intersections were classified as extreme
sites, which constituted approximately 64% of the sample size.

The procedure described is commonly used for detecting out-
liers in the dependent variable (Laughlin et al., 1975; Agrawal and
Lord, 2006; Geedipally and Lord, 2008; Lord, 2008; Wood, 2005).
However, caution must be taken when applying this strategy. First,
the presence of extreme observations can inflate the estimated
variance (S), resulted in masking (i.e. the detection of outliers being
hindered by their very presence). Second, this procedure offers little
control over the number of observations declared as extreme val-
ues. Therefore, situations may occur in which more observations
than desired are classified as extreme cases.

6. Comparative analysis and discussion

In this section, we compare the rankings yielded by four meth-
ods, namely ranks based on observed crash counts only (henceforth
count method), ranks based on predicted mean crash counts from
Poisson-Gamma GLMs (henceforth mean method), ranks based on
the differences between observed crashes and the 90% upper confi-
dence limits of the predicted values derived from GLMs (henceforth
CI limit method), and ranks based on the differences between
observed crashes and predicted crashes derived from 95th quantile
QR (henceforth QR method).

All 1710 intersections were ranked. Fifteen sites were selected
for illustration purpose. Table 5 shows the crash rankings yielded by
the methods. The selected sites are ranked as the top 15 crash-prone
locations based on the QR method. Similar ranking is obtained by
the CI limit method. Overall, more than half of the sites categorized
as top 15 by the QR method are similarly identified by the CI limit
approach. Among which five of the sites are given the same ranks
by both methods. However, some discrepancies exist. For instance,
Site N, which is ranked 14th by the QR method is ranked 71st by
the CI limit approach.

On the other hand, remarkably different rankings are obtained
by the count and the mean methods. For example, Site E, which
is ranked 5th by the QR method is ranked 131st and 1171st by
the count and the mean methods respectively. It is also interest-
ing to note that among the four methods, ranks yielded by the
mean method generally tend to be low. For instance, Site A, which
is ranked 1st unanimously by the count, CI limit and QR methods, is
ranked 16th based on the mean method. One possible explanation
for the unsatisfactory performance of the mean method is that it
failed to account for the presence of heterogeneity in the data. The

Table 4
Regression parameter estimates.

Analysis of parameter estimates

Parametera DF Estimate Standard error Wald 95% confidence limits Chi-square P > ChiSq

Intercept 1 1.7008 0.0696 1.5644 1.8373 596.99 <0.0001
ENTVEH 1 0.7005 0.0284 0.6449 0.7561 610.27 <0.0001
LEG 3-Legged 1 −0.2851 0.0389 −0.3613 −0.2089 53.76 <0.0001
LANE 2-Lane 1 −0.1143 0.0369 −0.1866 −0.0420 9.61 0.0019
TRFCNTL All-way 1 −0.2936 0.1278 −0.5440 −0.0432 5.28 0.0216
TRFCNTL Other 1 −0.4518 0.4328 −1.3001 0.3965 1.09 0.2966
TRFCNTL Side 1 −0.4255 0.0356 −0.4954 −0.3557 142.72 <0.0001
Dispersion 1 0.2646 0.0120 0.2411 0.2880

a Covariates such as area type, median and left turn lane are removed from the model because they are not statistically significant.
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Table 5
Ranking comparisons.

Site Observed
crashes

Rank by count Predicted mean crash
counts from GLM

Rank by mean Difference from
upper 90% CI limit

Rank by CI limit Difference from the
predicted 95th quantile

Rank by QR

A 134 1 47.65 16 83.46 1 47.78 1
B 130 2 50.90 11 75.81 2 39.30 2
C 87 11 26.11 313 59.77 3 32.71 3
D 97 7 38.22 93 56.90 5 24.23 4
E 42 131 8.72 1177 32.76 27 21.89 5
F 117 3 54.21 4 59.06 4 21.79 6
G 39 162 6.81 1377 31.63 28 21.71 7
H 86 13 32.83 171 51.71 8 21.25 8
I 88 10 34.76 134 51.64 9 20.34 9
J 98 6 43.15 48 52.47 7 18.11 10
K 36 190 7.55 1305 28.02 37 18.01 11
L 110 4 52.11 7 54.44 6 17.64 12
M 27 292 4.17 1604 22.51 60 16.30 13
N 24 361 3.56 1640 20.14 71 13.90 14
O 53 65 17.09 669 34.90 20 13.81 15

predicted value substantially underestimated the true number of
crashes, resulted in questionable rankings.

Although the CI limit approach yields more plausible rankings,
it has the tendency to select too many sites as high-risk locations.
As mentioned earlier, 621 out of 1710 intersections were classified
as extreme sites, which constituted approximately 64% of the sam-
ple size. Among which 220 were sites with relatively low observed
number of crashes (less than or equal to 15 crashes). This reflects
the lack of specificity by the CI limit method. In other words, this
method may not adequately provide a clear indication of the most
problematic sites.

Conversely, the QR method offers a more specific selection
of crash-prone sites. Using the QR method, 86 out of 1710
intersections were classified as extreme sites, which constituted
approximately 5% of the sample size. Although minor discrepan-
cies are present between the QR ranking and observed number of
crashes, the QR method appears to provide a more specific and
discriminative selection of sites.

7. Conclusions

Identifying the locations with high risks of accidents is crucial
for the planning of transportation policies and the implementation
of safety measures. Many methods are available for determining
crash-prone sites. Nevertheless, given that many factors contribute
to crash incidences, regression-based approaches offer a means
to predict and classify crash-prone locations based on the rele-
vant factors. Unfortunately, the current practices in road safety
modeling lack the flexibility and capability to handle hetero-
geneity and other data issues. In this paper, we illustrated the
use of quantile regression for identifying crash-prone intersec-
tions. QR is more favorable to traditional regression approaches
in a sense that it does not involve any distributional assump-
tion concerning the error and is less sensitive to violation of
distributional assumptions. Moreover, by providing estimates at
different quantile levels, QR has the capacity to capture hetero-
geneity in data and present a more well-rounded description of
the trends.

Here, we applied QR on the 95th quantile of the intersection
crash data. More specifically, we estimated the association between
the 95th quantile of the intersection crash data and various factors.
These factors included daily entering volume, number of legs and
number of lanes on the intersection main approaches, as well as
traffic control types. The predicted values from the QR model were
used to identify locations which exhibited severe safety issues.
We compared the ranking derived from this method with the

count method and two GLMs-based approaches including the mean
method and the CI limit method.

The number of locations identified by the QR method accounted
for approximately 5% of the total sample. These outcomes were
fairly consistent with the count and CI limit methods. However, we
believe that QR is preferable to the other methods in practice for
at least two reasons. First, unlike the count method, which focuses
only on crash frequencies, QR offers insights into the risk of crash
given certain location-specific characteristics. In other words, it not
only enables us to identify sites which exhibit an overall high num-
ber of crashes, it also allows us to distinguish sites which exhibit
unusually high number of crashes within its class. Second, compared
with the CI limit method, which lacks specificity in sites selection,
QR provides a more discriminative set of crash-prone locations.
Having a highly specific set of crash-prone locations can greatly
enhance the process of priority settings.

To be comprehensive, we shall note that QR is not without its
limitations. For example, for certain discrete dataset, such as binary
data, in which the sample objective function is non-differentiable,
estimation of conditional quantiles may become problematic. A
recent paper by Machado and Santos Silva (2005) proposed the
use of jittering to impose smoothness to the data. They offered a
framework for estimating conditional quantiles for a range of GLMs,
which could be potentially useful in transportation research. Fur-
ther research is needed to investigate the application of the new
method.

In summary, given the various data issues in transportation
studies, quantile regression serves as a useful tool for attaining
more accurate estimation. Using the intersection crash data, we
have shown that QR allows us to determine crash-prone locations
with more specificity. Through this brief introduction and demon-
stration of the application of QR, we hope to encourage researchers
to explore the use of this modern statistical method.
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