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bstract

The study describes an investigation of the relationship between crash occurrence and hourly volume counts for small samples of highway
egments from two states: Michigan and Connecticut. We used a hierarchical Bayesian framework to fit binary regression models for predicting
rash occurrence for each of four crash types: (1) single-vehicle, (2) multi-vehicle same direction, (3) multi-vehicle opposite direction, and (4)
ulti-vehicle intersecting direction, as a function of the hourly volume, segment length, speed limit and pavement width. The results reveal how

he relationship between crashes and hourly volume varies by time of day, thus improving the accuracy of crash occurrence predictions. The
esults show that even accounting for time of day, the disaggregate exposure measure – hourly volume – is indeed non-linear for each of the four

rash types. This implies that at any time of day, the crash occurrence is not proportional to the hourly volume. These findings help us to further
nderstand the relationship between crash occurrence and hourly volume, segment length and other risk factors, and facilitate more meaningful
omparisons of the safety record of seemingly similar highway locations.

2006 Elsevier Ltd. All rights reserved.
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. Introduction

Exposure in highway safety analyses, defined as some mea-
ure of the opportunity for crashes of a certain type in a given
ime in a given area, is applied to calculate crash rate – the ratio
f the number of crashes to the exposure (Chapman, 1973). In

his construct, only the occurrence of crashes is observable, as
either crash rate nor exposure is self-explanatory and each is
ependent on how the other is defined. Hence, the quantitative
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efinition of exposure determines the magnitude of the crash
ate value.

The usual exposure measures applied to quantify the opportu-
ity for crashes, such as Annual Average Daily Traffic (AADT),
ehicle-miles Traveled (VMT), or Number of Entering Vehicles

NEV), are aggregate quantities that do not consider temporal
raffic variation. For example, the distribution of weekday to
eekend traffic volume may vary from one location to another
r from daytime to nighttime. To the extent that the actual
ourly volume is an important factor in explaining the num-
er of crashes, the hourly volume can accurately account for
his effect in a way that AADT or other aggregate exposure

easures cannot.
Since these opportunities for crashes are occasions when

ehicles cross paths, follow one another, or even travel alone on a

inding road, it follows that the occurrence of crashes involving
single vehicle may have different likelihood from those involv-

ng multiple vehicles, and further, even the likelihood of those
nvolving multiple vehicles may vary according to the direction
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f travel of the vehicles involved (Chapman, 1973). In order
o distinguish between the likelihood of different crash types
ccurring, it is customary to categorize crashes by the vehicle
ravel directions (Hauer et al., 1996; Brown, 1981).

Also, factors such as light condition, weather condition,
river characteristics and physical status are associated with
xposure, since these factors are correlated with the temporal
ffects (Jovanis and Delleur, 1983). Intuitively, for the same
mount of exposure, one might expect the incidence of crashes
o be higher at night during the day due to differences in visibility,
nd due to human factors such as biological clock influences on
river alertness and sleepiness (Garbarino et al., 2000; Langlois
t al., 1983). Similarly, one should expect peak hour crash occur-
ence to be different from off-peak crash occurrence because of
ifferent trip purposes (to/from work).

This study focuses on defining crash exposure measures at
more disaggregate level, specifically as a function of hourly

irectional traffic volume by time of day. For example, the expo-
ure for a crash type involving multiple vehicles could be a
unction of the related traffic flows, while for single-vehicle
rashes it may only be related to the volume through the road-
ay cross-section. The subject of this research is to formulate

nd estimate disaggregate crash prediction models of the actual
ourly volume and segment length based on functions that are
roportional to crash incidence, and whose parameters vary by
rash type and by time of day.

. Background

According to previous studies, the safety performance func-
ion (relationship between number of crashes and exposure) is
onlinear when AADT is applied as exposure for road segments;
hat is, crashes increase with the traffic volume in a non-linear
ashion. Consequently, the crash rate (ratio of crashes to AADT)
s not constant with respect to traffic volume even at the same
ocation, and hence this rate should not be regarded as a measure
f the site safety. The non-linear relationship between number
f crashes and AADT may be due to some factors overshadowed
y this aggregated exposure measure. For example, for the same
evel of AADT, one might expect more crashes to occur at night
han during the day due to differences in visibility and human
actors such as biological clock influences on driver alertness
nd sleepiness (Garbarino et al., 2000; Langlois et al., 1983).
ang and Ivan explored the interaction between exposure and

ime of day and argued that the effect of exposure may not be
onsistent throughout the entire day. They found that the effect
f exposure is significantly different at 11 p.m.–6 a.m. than at
ther times (Wang and Ivan, 2000).

Logically, crashes at a specific time should relate closely to
he hourly traffic volume or more accurately, to a real-time traf-
c volume. There is evidence that the hourly volume explains
uch of the variation in highway crash rates (Ivan et al., 2000).
number of studies have explored such microscopic models
tratified by hourly volume. Gwynn studied the relationship of
rash rate and crash involvement with hourly volume using a
.8-mile section of U.S. Rte 22 in New Jersey, showing a U-
haped relationship between the number of crashes and hourly
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olume (Gwynn, 1967). Cedar explored in detail the relation-
hip between road accidents and hourly traffic flow using power
unctions of hourly flow rate. The study found a negative rela-
ionship between single-vehicle crashes and hourly flow rate, but
U-shaped pattern for the total number of crashes as did Gwynn

Ceder and Liveh, 1982). Recently, Persaud found nonlinear
elationships for both single-vehicle and multi-vehicle crashes
sing hourly volume under the different effect of day/night
ondition for two-lane rural roads. The observation indicates a
onvex relationship between single-vehicle accidents and traffic
ow, but a concave relationship for the multi-vehicle accident
Persaud and Mucsi, 1995). Ivan also found a nonlinear rela-
ionship between single-vehicle crashes and the hourly volume
o capacity ratio on two-lane rural road segments (Ivan et al.,
000). Similarly, Chang predicted the effects of traffic condition
n safety at freeway sections using hourly volume and presented
U-shaped pattern between accident rates and the ratio of flow

ate (volume) to capacity (V/C ratio) for all sections (Chang et
l., 2000).

These studies draw both conflicting and consistent conclu-
ions, indicating that there is indeed a relationship between the
umber of crashes and the hourly volume, though its exact form
s still unknown. In addition, using only the total number of
rashes ignores the differences in the relationship between the
umber of crashes and traffic volume by crash type. A recent
tudy by Hauer categorized crashes by type and related them to
he actual volumes to which the two colliding vehicles belonged,
hich shows that opportunities for the occurrence of single-
ehicle and multiple vehicle crashes are different (Hauer et al.,
996). Similar findings can be found in Brown’s study at a four-
eg signalized intersection (Brown, 1981).

Consequently, in our study, we propose the following crash
ypes on rural two-lane highways: (1) single-vehicle crashes
SV), (2) multi-vehicle same direction crashes (SD), (3) multi-
ehicle opposite direction crashes (OD), and (4) multi-vehicle
ntersecting direction crashes (ID).

. Data collection and description

Before using the hourly volume as one of the exposure com-
onents in order to estimate or predict crash occurrences, a
ew points need to be clarified, and the experiment should be
arefully designed. Here, the time interval is an hour, therefore
he corresponding number of crashes is unlikely to exceed one.
onsequently, the dependent variable can be defined as crash
ccurrence denoted by a binary indicator assuming either zero
r one.

The data for this study were collected from different agency
esources in the states of Michigan and Connecticut. Hourly
raffic volumes from Automatic Traffic Recorders (ATR) were
equested from each state’s Department of Transportation, with
rash records and road segment characteristics gathered for
ontiguous highway segments to ensure hourly volume con-

istency. For Michigan, road segment geometric features and
rash data were requested from Federal Highway Administra-
ion’s (FHWA) Highway Safety Information System (HSIS) and
ourly traffic volumes requested from Michigan Department of
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Table 1
Variable definitions and summary statistics of road segments

Variables Symbol Michigan Connecticut

Min Max Mean Min Max Mean

Additive exposure v1 + v2 2 1636 175 2 1678 285
Multiplicative exposure v1v2 1 628505 14036 1 696000 23837
Segment length L 0.01 6 1.66 0.5 0.5 0.5
P 46
S 55
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1 is the hourly volume in one direction of the two-lane rural highway. v2 is the

ransportation (MIDOT). The study period for Michigan runs
rom 1995 to 1997 and a total of 32 road segments were used.
or Connecticut, we defined one-half mile (about 0.8 km) seg-
ents, each with homogeneous cross-sectional features, close

o the ATR stations located on two-lane rural highways. The
orresponding crash records were collected from Connecticut
epartment of Transportation (ConnDOT), and the geomet-

ic features were obtained by viewing the ConnDOT photolog
rchive, a videodisc system containing images of the entire 6300
enterline km (3900 miles) of the state-maintained highway net-
ork (TR News Research, 1995). Compared with the Michigan

ample, Connecticut has a smaller sample size of 17 segments
long with a longer time period from 1995 to 2000.

We have included the directional hourly volume, segment
ength, full roadway width and speed limit. The crash types
efined by state police have been re-categorized into the four
ypes defined earlier. As expected, there are several differences
n the observed data between the two states, as displayed in
able 1.

Table 2 presents the number of records and the number of
rashes of each type during each of three times of day peri-
ds. We selected time periods of 7 a.m.–3 p.m., 3 p.m.–11 p.m.
nd 11 p.m.–7 a.m. in order to be consistent with commonly
efined work shifts (for comparison with the literature on cir-
adian effects on sleepiness and work) and typical definitions
f morning and afternoon peak periods. The different number
f hours in each cell is a result of missing data. The two states

isplay different patterns. Single-vehicle crashes are dominant
n Michigan, while multiple vehicle same direction crashes are

ore common in Connecticut. The crashes for each state are
istributed similarly in daytime and evening shifts. The mid-

4

a

able 2
umber of crashes by type and time of day

tates 7 a.m.–3 p.m 3 p

ichigan
Number of total records 219264 21
SV 123
SD 28
OD 10
ID 19

onnecticut
Number of total records 214867 21
SV 17
SD 49
OD 11
ID 17
42 28 44 32
54 35 50 40

y volume in the opposite direction of the two-lane rural highway.

ight shift exhibits the lowest number of crashes, which may be
ue to the lowest traffic volumes at that time. Without the cor-
esponding volume data, it is not possible to draw any valuable
onclusions about crash risk. Detailed statistical analysis will be
iscussed in the next section.

. Methodology

In this section, we describe the binary regression model
or the crash data. An extensive discussion of these models
s given in (McCullagh and Nelder, 1989). The following sec-
ions present the details of the model structure and describe the
ayesian approach for estimation and inference. The sampling-
ased Bayesian approach is attractive since it provides the user
ith samples generated from the posterior distribution of the
arameters from which several features of interest, such as
he estimated marginal posterior densities, posterior moments,
obust posterior moments, quantiles, scatter plots exhibiting
nteresting relations between parameters, etc., may be derived
n a straightforward manner. Further, model selection and pre-
iction discussed based on the predictive density is attractive
nd we obtain the entire distribution of unknown responses, and
ot merely point predictions with the associated variances. This
s not directly possible using the frequentist approaches, which
sually provide only point estimates with the associated esti-
ated standard errors for model parameters.
.1. Binary regression model

The binary regression model is used for modeling these data
nd for making predictions. Let h denote the observation hour,

.m.–11 p.m. 11p.m.–7 a.m. Total

9311 216590 655165
305 175 603

35 6 69
1 4 25

18 2 39

4875 211773 641515
17 8 42
44 2 95

8 1 20
16 4 37
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(h) denote our specification for the time of day corresponding
o hour h, and let Ni,k,t(h) be the binary indicator variable denot-
ng the occurrence of crashes of type k at site i during a given
our h falling at time of day t. Let pi,k,t(h) denote the unknown
robability of a crash of type k occurring at site i during a given
our h at time of day t. Note that each case represents 1 hour,
ut separate models are estimated for each of the three times of
ay for each state, with indicators for each year in the dataset.
he hierarchical modeling framework has the following setup.
binary model, which is most suitable for predicting such a

ariable, has the form:

r(Ni,k,t(h)|pi,k,t(h)) = pNi,k,t(h)
i,k,t(h) (1 − pi,k,t(h))

1−Ni,k,t(h) (1)

here Pr(Ni,k,t(h)) is the probability of observing Ni,k,t(h).
Since the probability pi,k,t(h) always lies between zero and

ne, we use the generalized linear model (GLIM) with a logit
ink function in order to relate the probability of a crash to the
bserved covariates:

ogit(pi,k,t(h)) = log

(
pi,k,t(h)

1 − pi,k,t(h)

)
= log(ηi,k,t(h)) + �Xi

�β
(2)

here

i,k,t(h) = ηk,t(h)(vi,t(h), Li) (3)

nd vi,t(h) is the hourly volume by direction on segment i in a
iven hour h at time of day t, Li is the length of the road segment
, �Xi is the set of road characteristics for segment i (in this study,
e use year, AADT (V), pavement width (W) and speed limit

S)), �β is the vector of parameters to be estimated.
For simplicity of notation, we use ηikt(h) to represent

ikt(h)(vit(h), Li) and hypothesize different functions for differ-
nt crash types. In fact, the exponent on each function will also
ary by time; however, this dimension has also been omitted
ere for brevity of notation.

We define two functions for relating traffic flow to crash inci-
ence by type of crash. One is an additive function of volumes,
nd the other is a multiplicative function. Use of the additive
unction assumes that each entity (vehicle or driver) on the road
egment has a potential opportunity to be in a crash, and the
rashes on the two directions of a road are independent of each
ther. The multiplicative function, on the other hand, assumes
hat each vehicle on its own path has a potential probability
o collide with a vehicle in the opposite direction, so that the
umber of meetings is proportional to the product of the flows,
ccounting for the directional split.

The additive exposure function is defined as

k = (v1 + v2)αvk LαLk (4)

nd the multiplicative exposure function is defined as

k = (v1v2)αvk Lα (5)
here ηk is the exposure function for potential crash conflict
ype k, k ∈K (SV, SD, OD, ID), v1 is the hourly volume in
ne direction of the two-lane rural highway, v2 is the hourly
olume in the opposite direction of the two-lane rural highway, w
revention 38 (2006) 1071–1080

vk
and αLk

are the exponents on flow rate and segment length,
espectively, to be estimated for crash type k, k ∈K (SV, SD, OD,
D).

A statistical model selection procedure enables the choice of
he best function for a given data set and for given values of
ther parameter specifications.

.2. Bayesian approach for inference

In this section, we describe a fully Bayesian framework for
odeling and inference. In general, given data and model param-

ters, the Bayesian model specification requires a likelihood
unction and a prior distribution, from which, by Bayes’ theo-
em, we obtain the posterior density of the parameters given the
ata being proportional to the product of the likelihood and the
rior (up to a normalizing constant). Given the entire posterior
ensity distributions of the model parameters, we are able to do
wide range of inference beyond just the first few moments. It is
uperior to the other empirical methodologies such as empirical
ayesian (EB) method. It also facilitates extensive predictive
nalysis through the use of numerical summary statistics and
raphical displays, such as histograms and density plots for esti-
ated parameters and functions of these parameters.
As we will see, a useful offshoot of the sampling-based

ayesian framework for modeling crashes is that it enables
s to make inferences about the functions of parameters (such
s differences between parameters) effortlessly, as we describe
ater. We fit the hierarchical fully Bayesian model using Markov
hain Monte Carlo (MCMC) algorithms. The Gibbs sampling
pproach to estimating the model parameters involves sampling
rom the complete conditional distribution of each parameter in
systematic manner, conditional on the previous sampled val-
es of the other parameters. Although the posterior density that
esults as the product of the likelihood function and the prior den-
ities is analytically intractable, the Gibbs sampling approach is
lways possible, since the complete conditional densities are
vailable, up to a normalizing constant, from the form of the
roduct of the likelihood and the prior (Gelfand and Smith,
990). When these conditional densities do not have standard
orm, as is often the case, the Metropolis-Hastings algorithm
ay be used to obtain realizations from a Markov chain having

he required stationary distribution (Tanner, 1993; Gelman et al.,
995). The Metropolis-Hastings algorithm creates a sequence
f random points, whose distribution converges to the target
osterior distribution. The final samples from the posterior are
btained after monitoring convergence.

The likelihood function of the binary model parameters given
he observed data is

(�θ|N) =
m∏

h=1

pNi,k,t(h)
i,k,t(h) (1 − pi,k,t(h))

1−Ni,k,t(h)

m∏ ∏ ( )

=

h=1

(1 − pi,k,t(h))
Ni,k,t=1

pi,k,t(h)

1 − pi,k,t(h)
(6)

here �θ = (αv, αL, �β), and m is the total observation hours.
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Replacing the forms from Eqs. (2), (4) and (5) for pikt(h), we
obtain these respective likelihood function forms for the additive
and multiplicative functions

L(�θ|N) =
m∏

h=1

(
1

1 + (vi,t(h)1 + vi,t(h)2)αvLαLe �Xi
�β

)

×
∏

Ni,k,t(h)=1

((vi,t(h)1 + vi,t(h)2)αvLαLe
�Xi

�β) (7)

or

L(�θ|N) =
m∏

h=1

(
1

1 + (vi,t(h)1vi,t(h)2)αvLαLe �Xi
�β

)

×
∏

Ni,k,t(h)=1

((vi,t(h)1vi,t(h)2)αvLαLe
�Xi

�β) (8)

Numerical maximization for obtaining the maximum likeli-
hood estimates (MLE) of the model parameters is possible using
software such as SPLUS, our models are too cumbersome to
make feasible.

The updated uncertainty about the value of these parameters
is expressed via the posterior distribution as follows:

P(�θ|N) ∝ L(�θ|N)π(�θ) (9)

where P(�θ|N) is the joint posterior distribution of �θ given the
data, L(�θ|N) is the likelihood function, (see Eqs. (7) or (8), and
π(�θ) is the prior distribution for the vector of parameters.We
specify a diffuse proper prior distribution for the parameter vec-
tor

�θ ∼ Normal(�0, σ2Iq) (10)

where σ2 is a large number, and Iq is an identity q × q matrix, q
being the number of covariates.

4.3. Bayesian model selection

To study model selection we use the conditional predictive
ordinate (CPO) which is defined as the estimate of f(yi|y−i)
(for simplicity, we let yi denote Ni,k,t(h) with other subscripts
suppressed), the cross validation density evaluated at the obser-
vation yi (Gelfand et al., 1992). In comparing two models, the
one with a larger CPO value is the one more likely to observe
yi.

∧
f (yi|y−i) =

⎡
⎣ 1

G

G∑
g=1

1

f (yi|y−i, θg)

⎤
⎦

−1

(12)

where G denotes the number of samples obtained from the Gibbs
sampler, θ is the vector of samples obtained from the Gibbs

sampler. y−i denotes all observed ys except yi.

In the i.i.d case, f(yi|y−i, θg) is equal to f(yi|θg). Hence, for
the binary model where the parameter vector θ is identical inde-
pendent distributed, the CPO has the form

i
m
s
1

revention 38 (2006) 1071–1080 1075

∧
f (Ni,k,t(h)|θg)

=
⎡
⎣ 1

G

G∑
g=1

(
e �Xi

�θg

1 + e �Xi
�θg

)Ni,k,t(h)
(

1

1 + e �Xi
�θg

)1−Ni,k,t(h)

⎤
⎦

−1

(13)

here Ni,k,t(h) is the observed crash occurrence and it is either
ne or zero; �θ is the vector of parameters to be estimated for a
ector of covariates �Xi.

Therefore, the ratio (or log ratio) of the two models indi-
ates relative support of the observation yi. If we aggregate
ver the number of observations and compute the product of all
he cross validation predictive densities for all observations we
et the product predictive density (PPD). Sometimes, one uses
og(PPD) instead of PPD. We prefer the model with the larger
PD or log(PPD) value. Therefore, we get the pseudo-Bayes
actor (PsBF) which is the ratio of the marginal likelihood under
odel 1 in the format of PPD and marginal likelihood under
odel 2 in the format of PPD. PsBF is suggested as an alterna-

ive criterion for selecting among competing models (Gelfand
t al., 1992).

sBF =

∏
j

f (Nj|N−j, Model 1)

∏
j

f (Nj|N−j, Model 2)
(14)

. Analysis and results

In the hierarchical Bayesian approach, coefficients for the
ovariates are considered to be random variables rather than
xed values as in classical statistical inference. Thus, the result

s a sampled posterior distribution for each estimated parameter.
he estimated coefficient means are shown in Tables 3 and 4,
nd present some interesting conclusions.

.1. Directional factor of hourly volume

The models using the additive hourly volume and multiplica-
ive hourly volume functions have similar estimates for all of
he covariate parameters. The only obvious variation is the mag-
itude of the estimates for the exponents on the hourly traffic
olume, which is reasonable because the scales are different
or v1 + v2 and v1v2. The purpose of testing exposure with both
dditive and multiplicative models is that the latter is presumed
o include more information, such as the directional split, which

ay explain some of the crash variation. MCMC model selection
sing pseudo-Bayes factor is applied as the selection criteria.
able 5 displays the model selection procedure results for Michi-
an and Connecticut. From the results, it is difficult to judge
hich one is better, additive or multiplicative, because the model

fficiency varies by crash type and time of day. In fact, accord-

ng to Raftery’s selection criteria, the difference between the two

odels is weak (PsBF of under 3.0) and no confident conclu-
ions can be drawn on which model performs better (Raftery,
995). Generally speaking, the estimated parameters are con-
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Table 3
Posterior mean parameters for connecticut hourly binary model

Time Covariate Additive model Multiplicative model

SV SD OD ID SV SD OD ID

7 a.m.–3 p.m.

Intercept −6.422 −4.560 −5.753 −9.429 −6.655 −4.234 −6.215 −9.106
Year 1997 −0.374 −0.592 −1.249 −0.920 −0.431 −0.572 −1.212 −0.874
Year 1998 −0.823 −0.686 −0.556 −0.666 −0.804 −0.701 −0.574 −0.625
Year 1999 −0.789 −1.057 −1.021 −1.032 −0.853 −1.039 −0.976 −1.034
Year 2000 −0.751 −0.366 −1.108 −1.313 −0.748 −0.370 −1.057 −1.290
ln(V)* −0.396 0.392 −0.160 0.599 −0.204 0.203 −0.073 0.299
W −0.084 0.178 0.073 0.151 −0.084 0.179 0.071 0.152
S 0.064 −0.288 −0.110 −0.188 0.065 −0.292 −0.101 −0.187

3 p.m.–11 p.m.

Intercept −8.258 −12.067 −14.577 −9.747 −9.147 −11.669 −14.412 −9.356
Year 1997 −0.754 −0.629 −0.663 −0.557 −0.874 −0.648 −0.633 −0.522
Year 1998 −0.839 −0.078 −1.325 −1.394 −0.625 −0.083 −1.293 −1.412
Year 1999 −0.659 −0.692 −1.245 −0.216 −1.034 −0.707 −1.305 −0.188
Year 2000 −0.550 −0.964 −1.295 −1.155 −1.290 −0.964 −1.270 −1.144
Ln(V)* −0.051 0.795 0.707 0.525 −0.299 0.416 0.351 0.268
W 0.010 0.144 0.060 0.185 0.152 0.142 0.058 0.193
S −0.011 −0.135 −0.011 −0.203 −0.187 −0.133 −0.001 −0.211

11 p.m.–7 a.m.

Intercept −9.350 −9.849 −8.822 −9.997 -9.631 −9.777 −8.823 −9.314
Year 1997 −0.568 −0.490 −0.656 −0.582 −0.518 −0.571 −0.647 −0.500
Year 1998 −0.884 −0.653 −0.924 −0.850 −0.838 −0.809 −0.887 −0.857
Year 1999 −0.875 −0.880 −0.983 −0.910 −0.967 −0.779 −1.018 −0.838
Year 2000 −1.667 −1.682 −1.532 −1.655 −1.553 −1.773 −1.497 −1.622
ln(V)* −0.004 0.044 −0.024 0.010 −0.011 0.009 0.012 0.034
W 0.051 0.070 0.038 0.062 0.059 0.052 0.046 0.039

T
P

T

7

3

1

S −0.029 −0.037 −0.034

* ln (v1 + v2) for additive; ln (v1v2) for multiplicative model and boldface indicates

able 4
osterior mean parameters for michigan hourly binary model

ime Covariate Additive model

SV SD OD

a.m.–3 p.m.

Intercept −13.132 −13.339 4.727
Year 1996 −0.137 −0.610 −0.969
Year 1997 −0.282 −0.846 −1.236
ln(V)* 0.197 0.916 0.480
ln(L) 0.131 0.043 0.024
W −0.028 0.071 −0.143
S 0.107 −0.058 −0.188

p.m.–11 p.m.

Intercept −10.190 −9.867 −26.094
Year 1996 −0.057 −0.723 −0.831
Year 1997 −0.161 −0.819 −0.566
ln(V)* −0.145 1.276 0.416
ln(L) 0.048 −0.216 0.006
W −0.050 −0.043 −0.063
S 0.120 −0.065 0.319

1 p.m.–7 a.m.

Intercept −20.036 −0.048 −19.928
Year 1996 −0.228 −1.523 −1.107
Year 1997 −0.286 −1.080 −1.228
ln(V)* 0.477 0.494 0.474
ln(L) 0.166 −0.063 −0.158
W 0.009 0.013 −0.158
S 0.198 −0.210 0.285

* ln (v1 + v2) for additive; ln (v1v2) for multiplicative model and boldface indicates
−0.024 −0.032 −0.020 −0.042 −0.026

for significance at 5%.

Multiplicative model

ID SV SD OD ID

−8.052 −12.661 −12.553 5.631 −7.221
−1.017 −0.131 −0.614 −0.975 −1.015
−0.234 −0.275 −0.861 −1.264 −0.239
1.244 0.076 0.476 0.242 0.619
0.067 0.134 0.042 0.017 0.066
−0.002 −0.029 0.072 −0.148 −0.005
−0.141 0.106 −0.065 −0.194 −0.136

−7.108 −10.139 −10.440 −27.152 −6.985
−0.651 −0.056 −0.715 −0.827 −0.666
−0.774 −0.153 −0.835 −0.584 −0.765
0.888 −0.076 0.650 0.228 0.452
0.075 0.050 −0.227 0.013 0.070
−0.053 −0.050 −0.045 −0.085 −0.066
−0.077 0.119 −0.052 0.353 −0.068

−1.918 −12.086 −2.969 13.428 1.492
−1.410 −0.224 −1.539 −1.100 −1.388
−1.822 −0.149 −0.580 −0.642 −0.989
0.205 0.332 0.339 0.307 0.143
−0.034 0.121 −0.037 −0.119 −0.030
−0.043 0.013 −0.027 −0.258 −0.072
−0.115 0.230 −0.216 0.238 −0.115

for significance at 5%.
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Table 5
Model selection between additive and multiplicative exposure

ln(PPD) Additive exposure function Multiplicative exposure function Pseudo-Bayes factor (BF)

11 p.m.–7 a.m. 7 a.m.–3 p.m. 3 p.m.–11 p.m. 11p.m.–7 a.m. 7a.m.–3 p.m. 3 p.m.–11 p.m.

Connecticut
SV −17.610 −25.344 −25.114 −16.771 −25.202 −25.416 0.432 0.868 1.352
SD −17.656 −57.389 −52.339 −18.734 −57.599 −52.319 2.940 1.233 0.980
OD −16.129 −20.008 −16.768 −17.350 −20.084 −16.680 3.388 1.079 0.915
ID −17.535 −25.779 −24.657 −17.958 −26.018 −25.440 1.528 1.270 2.187

ln(PPD) Additive exposure function Multiplicative exposure function Pseudo-Bayes factor (BF)

7 a.m.–3 p.m. 3 p.m.–11 p.m. 11 p.m.–7 a.m. 7 a.m.-3 p.m. 3 p.m.–11 p.m. 11 p.m.–7 a.m.

Michigan
SV −1046.621 −2309.835 −1405.011 −1046.618 −2309.485 −1403.637 0.997 0.705 0.253
SD −280.115 −326.171 −70.906 −279.754 −325.765 −70.726 0.697 0.666 0.836
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and time of day. The figures indicate that the shape and scale
of the safety performance function for hourly volume varies by
crash type, implying that a single response model rather than a
multiple response model would lead to unreliable conclusions.
OD −113.568 −125.415 −52.567 −113.61
ID −193.071 −188.387 −31.229 −192.93

istent in significance, sign and magnitude, indicating that the
hoice of flow split factor has no significant effect on the other
isk factors. The additive exposure model, which does not require
irectional volume (two-way), is simpler and more commonly
ccepted.

.2. Crash type and time of day factors

One of the key issues of the study is to identify the crash
rediction model variation by crash type and time of day. In
his study, we focus on testing the exponents on hourly volume
or different models by crash type and time of day under the
ayesian framework. For example, we have a random sample
f the exponent on hourly volume, say α, from the marginal pos-
erior distribution of α. We can state the hypothesis as wishing to
ee whether the posterior distribution of α in Model 1 is the same
s that in Model 2. To do this, we take the pairwise differences
etween the MCMC samples from these two α distributions. If
he 95% confidence interval of the distribution of the difference
etween two αs contains zero, the two α distributions cannot be
ssumed to be different. In this way, we can form a table to show
he relationship between α values for different crash types and
imes of day.

Tables 6 and 7 respectively describe the comparison of expo-
ents on hourly volume by crash type for Connecticut and
ichigan for additive exposure model only. Each possible pair-
ise comparison of crash types is performed for each time of day.
he differences found to be significantly different at the 5% level
re listed in boldface. Several other comparisons, while not sig-
ificantly different at this level, are substantially skewed to one
irection or the other. We define these as marginally significant.
e find the occurrence of crashes during the morning and after-

oon shifts from 7 a.m. to 11 p.m. vary significantly by crash type
hile the variation is not distinctive at late night from 11 p.m. to

a.m. Moreover, the variation within the multi-vehicle crashes

efined by vehicle traveling directions are not as significant as
hat of the single-vehicle crashes versus multi-vehicle crashes.
t suggests that the distinction between single and multi-vehicle
−125.444 −53.021 1.043 1.029 1.575
−188.105 −31.370 0.874 0.755 1.152

rashes could be statistically significant enough to disaggregate
rashes.

.3. Relationship between crash occurrence and hourly
olume

In order to aid the understanding of the relationship between
he crash occurrence and the hourly volume, plots of predicted
umber of crashes versus hourly volume are made according
o different prediction models. For Connecticut, we predicted
997 crash occurrence with the predominant geometric feature.
avement width is 32 ft and speed limit is 40 mph, and plots are
iven in Figs. 1–3. The plots for Michigan data are omitted for
revity. Note that the variation among levels and curvatures for
hese plots also confirms the need to analyze crash prediction
t this disaggregate level with the consideration of crash type
Fig. 1. Predicted number of crashes vs. flow rate (CT, 7 a.m.–3 p.m.).



1078 X. Qin et al. / Accident Analysis and Prevention 38 (2006) 1071–1080

Table 6
The MCMC comparison of exponent on flow rate by crash type (Connecticut)

Table 7
The MCMC comparison of exponent on flow rate by crash type (Michigan)
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The same procedure is repeated for the differences in the
xponents on hourly volume by time of day for each crash type.
or both states, in at least one crash type the exponent on hourly
olume varies by time of day, strongly suggesting the necessity
f defining crash prediction models by time of day. The factors
uch as drivers’ circadian rhythms, light condition, the use of
lcohol or drugs, and trip purpose are closely related to time of
ay. Therefore, it is a reasonable alternative variable to cover
heir effects on the exposure parameters.

In this study, we are most concerned about the relationship
etween crash occurrence and exposure components of hourly

olume. The exponents on hourly volume during a majority of
he time periods exhibit a positive relationship for multi-vehicle
rash occurrence and a negative one for single-vehicle crash
ccurrence (Tables 3 and 4). Moreover, the linear relationship

r
T
t
s

etween the occurrence of crashes and hourly volume is tested
sing a similar method, i.e., if the 95% credible interval derived
rom the posterior distribution of the exponent on hourly volume
xcludes 1.0, this suggests we reject the null hypothesis that the
arameter is equal to 1.0. Our study indicates that even under
odels disaggregated by crash type, time of the day with actual

ourly volume, the relationship between crash occurrence and
raffic volume or segment length is not linear. Therefore, when
valuating the crash rate as a function of traffic volume, one must
xpect a non-linear rather than linear relationship.

Previous studies have shown inconsistent findings about the

elationship between number of crashes and the hourly volume.
hese findings include concave, convex, U-shape or other rela-

ionships. In fact, these discoveries rely on to what level the
tudy disaggregated the data. Our study shows mixed functional
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Fig. 2. Predicted number of crashes vs. flow rate (CT, 3 p.m.–11 p.m.).
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C
dition (v/c) on safety at freeway facility sections. Transportation Research,
Fig. 3. Predicted number of crashes vs. flow rate (CT, 11 p.m.–7 a.m.).

endencies: there is a negative relationship (convex downward)
etween single-vehicle crash occurrence and hourly volume at
ome times of day, but a concave upward relationship at other
imes. Multi-vehicle crash occurrence shows either a concave
r convex upward relationship with the hourly volume. Conse-
uently, the relationship between total vehicle crash occurrence
nd hourly volume may display a U-shape if the relationship
or single-vehicle crashes is convex downward while that for
ulti-vehicle crashes is convex upward.

. Conclusion

This paper describes an investigation into the relationship
etween crash occurrence and hourly traffic volume on rural
wo-lane highway segments. We used a hierarchical Bayesian
ramework with Markov Chain Monte Carlo (MCMC) algo-
ithms to estimate the posterior distributions for crash proba-
ilities as a function of hourly volume, time of day and so on.

he findings show that even accounting for time of day, the rela-

ionship between crash occurrence and traffic volume is indeed
on-linear for each of the four crash types: single-vehicle, and
ulti-vehicle same direction, opposite direction and intersect-

C

revention 38 (2006) 1071–1080 1079

ng direction. Consequently, the crash exposure proposed in this
tudy is a function of the hourly volume and segment length with
ignificant exponents different from one in each case.

In particular, the findings in this study demonstrate that crash
isk prediction functions vary by crash type and time of day.
n other words, the expected total crash count on two equal
ength segments with the same AADT and physical character-
stics will vary according to the distribution of traffic volume
hrough the day. Also, it provides a new modeling technique
sing hierarchical Bayesian binary response model which makes
he models more flexible and extracts more information from the
ata.

Besides the findings mentioned above, we note some of the
xposure factor such as hourly volume and risk factors such as
oadway width, speed limit are inconsistent from Connecticut
o Michigan, indicating the necessity for calibrating the model
or transferability. Because only a few study segments in two
tates are employed in this study, the small sample size lim-
ted the prediction accuracy and significance of the covariates.
lso, other highway characteristics such as population or drive-
ay density may be more relevant than the covariates used

n this study. The findings presented here indicate that time
f day clearly affects the parameter estimates in crash predic-
ion models. These findings should be validated and clarified
hrough estimation with a larger data set that will result in

ore significant parameters estimates and more accurate crash
redictions. Note that it is helpful to have good estimates of
ourly volumes by time of day or better, actual traffic counts
n more locations. Consequently, related research into estimat-
ng or extrapolating accurate hourly or time of day traffic vol-
mes would be indispensable for increasing opportunities for
uilding a larger data set. Finally, the study can be expanded
o more facility types such as intersections and multi-lane
ighways.
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