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Abstract

The study describes an investigation of the relationship between crash occurrence and hourly volume counts for small samples of highway
segments from two states: Michigan and Connecticut. We used a hierarchical Bayesian framework to fit binary regression models for predicting
crash occurrence for each of four crash types: (1) single-vehicle, (2) multi-vehicle same direction, (3) multi-vehicle opposite direction, and (4)
multi-vehicle intersecting direction, as a function of the hourly volume, segment length, speed limit and pavement width. The results reveal how
the relationship between crashes and hourly volume varies by time of day, thus improving the accuracy of crash occurrence predictions. The
results show that even accounting for time of day, the disaggregate exposure measure — hourly volume — is indeed non-linear for each of the four
crash types. This implies that at any time of day, the crash occurrence is not proportional to the hourly volume. These findings help us to further
understand the relationship between crash occurrence and hourly volume, segment length and other risk factors, and facilitate more meaningful
comparisons of the safety record of seemingly similar highway locations.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction definition of exposure determines the magnitude of the crash

rate value.

Exposure in highway safety analyses, defined as some mea-
sure of the opportunity for crashes of a certain type in a given
time in a given area, is applied to calculate crash rate — the ratio
of the number of crashes to the exposure (Chapman, 1973). In
this construct, only the occurrence of crashes is observable, as
neither crash rate nor exposure is self-explanatory and each is
dependent on how the other is defined. Hence, the quantitative
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The usual exposure measures applied to quantify the opportu-
nity for crashes, such as Annual Average Daily Traffic (AADT),
Vehicle-miles Traveled (VMT), or Number of Entering Vehicles
(NEV), are aggregate quantities that do not consider temporal
traffic variation. For example, the distribution of weekday to
weekend traffic volume may vary from one location to another
or from daytime to nighttime. To the extent that the actual
hourly volume is an important factor in explaining the num-
ber of crashes, the hourly volume can accurately account for
this effect in a way that AADT or other aggregate exposure
measures cannot.

Since these opportunities for crashes are occasions when
vehicles cross paths, follow one another, or even travel alone on a
winding road, it follows that the occurrence of crashes involving
a single vehicle may have different likelihood from those involv-
ing multiple vehicles, and further, even the likelihood of those
involving multiple vehicles may vary according to the direction


mailto:xqin@engr.wisc.edu
mailto:john.ivan@engr.uconn.edu
mailto:Nalini.ravishanker@uconn.edu
mailto:jfliu@stat.wvu.edu
mailto:tepas@uconnvm.uconn.edu
dx.doi.org/10.1016/j.aap.2006.04.012

1072 X. Qin et al. / Accident Analysis and Prevention 38 (2006) 1071-1080

of travel of the vehicles involved (Chapman, 1973). In order
to distinguish between the likelihood of different crash types
occurring, it is customary to categorize crashes by the vehicle
travel directions (Hauer et al., 1996; Brown, 1981).

Also, factors such as light condition, weather condition,
driver characteristics and physical status are associated with
exposure, since these factors are correlated with the temporal
effects (Jovanis and Delleur, 1983). Intuitively, for the same
amount of exposure, one might expect the incidence of crashes
to be higher at night during the day due to differences in visibility,
and due to human factors such as biological clock influences on
driver alertness and sleepiness (Garbarino et al., 2000; Langlois
etal., 1983). Similarly, one should expect peak hour crash occur-
rence to be different from off-peak crash occurrence because of
different trip purposes (to/from work).

This study focuses on defining crash exposure measures at
a more disaggregate level, specifically as a function of hourly
directional traffic volume by time of day. For example, the expo-
sure for a crash type involving multiple vehicles could be a
function of the related traffic flows, while for single-vehicle
crashes it may only be related to the volume through the road-
way cross-section. The subject of this research is to formulate
and estimate disaggregate crash prediction models of the actual
hourly volume and segment length based on functions that are
proportional to crash incidence, and whose parameters vary by
crash type and by time of day.

2. Background

According to previous studies, the safety performance func-
tion (relationship between number of crashes and exposure) is
nonlinear when AADT is applied as exposure for road segments;
that is, crashes increase with the traffic volume in a non-linear
fashion. Consequently, the crash rate (ratio of crashes to AADT)
is not constant with respect to traffic volume even at the same
location, and hence this rate should not be regarded as a measure
of the site safety. The non-linear relationship between number
of crashes and AADT may be due to some factors overshadowed
by this aggregated exposure measure. For example, for the same
level of AADT, one might expect more crashes to occur at night
than during the day due to differences in visibility and human
factors such as biological clock influences on driver alertness
and sleepiness (Garbarino et al., 2000; Langlois et al., 1983).
Wang and Ivan explored the interaction between exposure and
time of day and argued that the effect of exposure may not be
consistent throughout the entire day. They found that the effect
of exposure is significantly different at 11 p.m.—6 a.m. than at
other times (Wang and Ivan, 2000).

Logically, crashes at a specific time should relate closely to
the hourly traffic volume or more accurately, to a real-time traf-
fic volume. There is evidence that the hourly volume explains
much of the variation in highway crash rates (Ivan et al., 2000).
A number of studies have explored such microscopic models
stratified by hourly volume. Gwynn studied the relationship of
crash rate and crash involvement with hourly volume using a
3.8-mile section of U.S. Rte 22 in New Jersey, showing a U-
shaped relationship between the number of crashes and hourly

volume (Gwynn, 1967). Cedar explored in detail the relation-
ship between road accidents and hourly traffic flow using power
functions of hourly flow rate. The study found a negative rela-
tionship between single-vehicle crashes and hourly flow rate, but
a U-shaped pattern for the total number of crashes as did Gwynn
(Ceder and Liveh, 1982). Recently, Persaud found nonlinear
relationships for both single-vehicle and multi-vehicle crashes
using hourly volume under the different effect of day/night
condition for two-lane rural roads. The observation indicates a
convex relationship between single-vehicle accidents and traffic
flow, but a concave relationship for the multi-vehicle accident
(Persaud and Mucsi, 1995). Ivan also found a nonlinear rela-
tionship between single-vehicle crashes and the hourly volume
to capacity ratio on two-lane rural road segments (Ivan et al.,
2000). Similarly, Chang predicted the effects of traffic condition
on safety at freeway sections using hourly volume and presented
a U-shaped pattern between accident rates and the ratio of flow
rate (volume) to capacity (V/C ratio) for all sections (Chang et
al., 2000).

These studies draw both conflicting and consistent conclu-
sions, indicating that there is indeed a relationship between the
number of crashes and the hourly volume, though its exact form
is still unknown. In addition, using only the total number of
crashes ignores the differences in the relationship between the
number of crashes and traffic volume by crash type. A recent
study by Hauer categorized crashes by type and related them to
the actual volumes to which the two colliding vehicles belonged,
which shows that opportunities for the occurrence of single-
vehicle and multiple vehicle crashes are different (Hauer et al.,
1996). Similar findings can be found in Brown’s study at a four-
leg signalized intersection (Brown, 1981).

Consequently, in our study, we propose the following crash
types on rural two-lane highways: (1) single-vehicle crashes
(SV), (2) multi-vehicle same direction crashes (SD), (3) multi-
vehicle opposite direction crashes (OD), and (4) multi-vehicle
intersecting direction crashes (ID).

3. Data collection and description

Before using the hourly volume as one of the exposure com-
ponents in order to estimate or predict crash occurrences, a
few points need to be clarified, and the experiment should be
carefully designed. Here, the time interval is an hour, therefore
the corresponding number of crashes is unlikely to exceed one.
Consequently, the dependent variable can be defined as crash
occurrence denoted by a binary indicator assuming either zero
or one.

The data for this study were collected from different agency
resources in the states of Michigan and Connecticut. Hourly
traffic volumes from Automatic Traffic Recorders (ATR) were
requested from each state’s Department of Transportation, with
crash records and road segment characteristics gathered for
contiguous highway segments to ensure hourly volume con-
sistency. For Michigan, road segment geometric features and
crash data were requested from Federal Highway Administra-
tion’s (FHWA) Highway Safety Information System (HSIS) and
hourly traffic volumes requested from Michigan Department of
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Table 1
Variable definitions and summary statistics of road segments
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Variables Symbol Michigan Connecticut

Min Max Mean Min Max Mean
Additive exposure Vi +Vv) 2 1636 175 2 1678 285
Multiplicative exposure \R%) 1 628505 14036 1 696000 23837
Segment length L 0.01 6 1.66 0.5 0.5 0.5
Pavement width w 38 46 42 28 44 32
Speed limit S 50 55 54 35 50 40

vy is the hourly volume in one direction of the two-lane rural highway. v, is the hourly volume in the opposite direction of the two-lane rural highway.

Transportation (MIDOT). The study period for Michigan runs
from 1995 to 1997 and a total of 32 road segments were used.
For Connecticut, we defined one-half mile (about 0.8 km) seg-
ments, each with homogeneous cross-sectional features, close
to the ATR stations located on two-lane rural highways. The
corresponding crash records were collected from Connecticut
Department of Transportation (ConnDOT), and the geomet-
ric features were obtained by viewing the ConnDOT photolog
archive, a videodisc system containing images of the entire 6300
centerline km (3900 miles) of the state-maintained highway net-
work (TR News Research, 1995). Compared with the Michigan
sample, Connecticut has a smaller sample size of 17 segments
along with a longer time period from 1995 to 2000.

We have included the directional hourly volume, segment
length, full roadway width and speed limit. The crash types
defined by state police have been re-categorized into the four
types defined earlier. As expected, there are several differences
in the observed data between the two states, as displayed in
Table 1.

Table 2 presents the number of records and the number of
crashes of each type during each of three times of day peri-
ods. We selected time periods of 7 a.m.-3 p.m., 3 p.m.—11 p.m.
and 11 p.m.—7 a.m. in order to be consistent with commonly
defined work shifts (for comparison with the literature on cir-
cadian effects on sleepiness and work) and typical definitions
of morning and afternoon peak periods. The different number
of hours in each cell is a result of missing data. The two states
display different patterns. Single-vehicle crashes are dominant
in Michigan, while multiple vehicle same direction crashes are
more common in Connecticut. The crashes for each state are
distributed similarly in daytime and evening shifts. The mid-

night shift exhibits the lowest number of crashes, which may be
due to the lowest traffic volumes at that time. Without the cor-
responding volume data, it is not possible to draw any valuable
conclusions about crash risk. Detailed statistical analysis will be
discussed in the next section.

4. Methodology

In this section, we describe the binary regression model
for the crash data. An extensive discussion of these models
is given in (McCullagh and Nelder, 1989). The following sec-
tions present the details of the model structure and describe the
Bayesian approach for estimation and inference. The sampling-
based Bayesian approach is attractive since it provides the user
with samples generated from the posterior distribution of the
parameters from which several features of interest, such as
the estimated marginal posterior densities, posterior moments,
robust posterior moments, quantiles, scatter plots exhibiting
interesting relations between parameters, etc., may be derived
in a straightforward manner. Further, model selection and pre-
diction discussed based on the predictive density is attractive
and we obtain the entire distribution of unknown responses, and
not merely point predictions with the associated variances. This
is not directly possible using the frequentist approaches, which
usually provide only point estimates with the associated esti-
mated standard errors for model parameters.

4.1. Binary regression model

The binary regression model is used for modeling these data
and for making predictions. Let /& denote the observation hour,

Table 2

Number of crashes by type and time of day

States 7 am.-3 p.m 3 p.m.—11 p.m. 11p.m.—7 a.m. Total

Michigan
Number of total records 219264 219311 216590 655165
SV 123 305 175 603
SD 28 35 6 69
OD 10 1 4 25
ID 19 18 2 39

Connecticut
Number of total records 214867 214875 211773 641515
SV 17 17 8 42
SD 49 44 2 95
OD 11 8 1 20
ID 17 16 4 37
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t(h) denote our specification for the time of day corresponding
to hour A, and let N; ;1) be the binary indicator variable denot-
ing the occurrence of crashes of type k at site i during a given
hour £ falling at time of day #. Let p; s /) denote the unknown
probability of a crash of type k occurring at site i during a given
hour 4 at time of day 7. Note that each case represents 1 hour,
but separate models are estimated for each of the three times of
day for each state, with indicators for each year in the dataset.
The hierarchical modeling framework has the following setup.
A binary model, which is most suitable for predicting such a
variable, has the form:

Pr(Nik,«n)| Pik,eh)) = Pf?’;iﬁ‘&h)’(l — Pig )~ Nikatd (1)

where Pr(N; i «r)) is the probability of observing N; ().

Since the probability p; sx) always lies between zero and
one, we use the generalized linear model (GLIM) with a logit
link function in order to relate the probability of a crash to the
observed covariates:

: Dik,1(h 5 -
logit(pj k,«n)) = log (tt()> = log(ni k,xn)) + XiB
1 — Pik.uh)
)
where
Nik,t(h) = M,e(h) Wi e(h)» Li) 3)

and v; () is the hourly volume by direction on segment i in a
given hour % at time of day ¢, L; is the length of the road segment
i X ; 1s the set of road characteristics for segment i (in this study,
we use year, AADT (V), pavement width (W) and speed limit
S)), B is the vector of parameters to be estimated.

For simplicity of notation, we use njpn (o represent
NikecyVirgny, Li) and hypothesize different functions for differ-
ent crash types. In fact, the exponent on each function will also
vary by time; however, this dimension has also been omitted
here for brevity of notation.

We define two functions for relating traffic flow to crash inci-
dence by type of crash. One is an additive function of volumes,
and the other is a multiplicative function. Use of the additive
function assumes that each entity (vehicle or driver) on the road
segment has a potential opportunity to be in a crash, and the
crashes on the two directions of a road are independent of each
other. The multiplicative function, on the other hand, assumes
that each vehicle on its own path has a potential probability
to collide with a vehicle in the opposite direction, so that the
number of meetings is proportional to the product of the flows,
accounting for the directional split.

The additive exposure function is defined as

Mk = (1 + v2)*% L )
and the multiplicative exposure function is defined as
M = (viv2)** LY (5)

where 7y is the exposure function for potential crash conflict
type k, k €K (SV, SD, OD, ID), v; is the hourly volume in
one direction of the two-lane rural highway, v, is the hourly
volume in the opposite direction of the two-lane rural highway,

ay.and ay  are the exponents on flow rate and segment length,
respectively, to be estimated for crash type k, k €K (SV, SD, OD,
D).

A statistical model selection procedure enables the choice of
the best function for a given data set and for given values of
other parameter specifications.

4.2. Bayesian approach for inference

In this section, we describe a fully Bayesian framework for
modeling and inference. In general, given data and model param-
eters, the Bayesian model specification requires a likelihood
function and a prior distribution, from which, by Bayes’ theo-
rem, we obtain the posterior density of the parameters given the
data being proportional to the product of the likelihood and the
prior (up to a normalizing constant). Given the entire posterior
density distributions of the model parameters, we are able to do
a wide range of inference beyond just the first few moments. It is
superior to the other empirical methodologies such as empirical
Bayesian (EB) method. It also facilitates extensive predictive
analysis through the use of numerical summary statistics and
graphical displays, such as histograms and density plots for esti-
mated parameters and functions of these parameters.

As we will see, a useful offshoot of the sampling-based
Bayesian framework for modeling crashes is that it enables
us to make inferences about the functions of parameters (such
as differences between parameters) effortlessly, as we describe
later. We fit the hierarchical fully Bayesian model using Markov
chain Monte Carlo (MCMC) algorithms. The Gibbs sampling
approach to estimating the model parameters involves sampling
from the complete conditional distribution of each parameter in
a systematic manner, conditional on the previous sampled val-
ues of the other parameters. Although the posterior density that
results as the product of the likelihood function and the prior den-
sities is analytically intractable, the Gibbs sampling approach is
always possible, since the complete conditional densities are
available, up to a normalizing constant, from the form of the
product of the likelihood and the prior (Gelfand and Smith,
1990). When these conditional densities do not have standard
form, as is often the case, the Metropolis-Hastings algorithm
may be used to obtain realizations from a Markov chain having
the required stationary distribution (Tanner, 1993; Gelman et al.,
1995). The Metropolis-Hastings algorithm creates a sequence
of random points, whose distribution converges to the target
posterior distribution. The final samples from the posterior are
obtained after monitoring convergence.

The likelihood function of the binary model parameters given
the observed data is

m
LOIN) = [T pNesy (1 = piaan)' =Nk
h=1

m
Pik,t(h
= [[0 = piraw) T (1:“)) (6)
T Nikret Di.k,1(h)

where § = (ay, af,, ;3), and m is the total observation hours.
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Replacing the forms from Eqgs. (2), (4) and (5) for pjxn), we
obtain these respective likelihood function forms for the additive
and multiplicative functions

L(|N) = ﬁ ( ! )

a1 \ 1+ Uiyt + vigny)® LeLeXih

< ] @isan + viea)* LX) (M
Nik,1(h)=1

or

LEN) =[] < ! )

ret \ 1 4 (Vi g1 Vi eny2) 0 L XiP

< ] (@i visam)*™ L XiP) ®)
Ni k,t(h)=1

Numerical maximization for obtaining the maximum likeli-
hood estimates (MLE) of the model parameters is possible using
software such as SPLUS, our models are too cumbersome to
make feasible.

The updated uncertainty about the value of these parameters
is expressed via the posterior distribution as follows:

P(6IN) o L(B|N)7(6) ©9)

where P(é|N ) is the joint posterior distribution of 6 given the
data, L(é|N ) is the likelihood function, (see Egs. (7) or (8), and
rr(é) is the prior distribution for the vector of parameters.We
specify a diffuse proper prior distribution for the parameter vec-
tor

6 ~ Normal(0, o> 1,) (10)

where o2 is a large number, and I, is an identity g x g matrix, g

being the number of covariates.

4.3. Bayesian model selection

To study model selection we use the conditional predictive
ordinate (CPO) which is defined as the estimate of f(y;|y—_;)
(for simplicity, we let y; denote N;y ,n) With other subscripts
suppressed), the cross validation density evaluated at the obser-
vation y; (Gelfand et al., 1992). In comparing two models, the
one with a larger CPO value is the one more likely to observe
Yi-

-1
< 1

R 1
ilv—i) = - Lrodv .00 12
fOily-d G;f()’ib’—i*eg) -

where G denotes the number of samples obtained from the Gibbs
sampler, 6 is the vector of samples obtained from the Gibbs
sampler. y_; denotes all observed ys except y;.

In the i.i.d case, f(yily—i, 0,) is equal to f(y;|0,). Hence, for
the binary model where the parameter vector 6 is identical inde-
pendent distributed, the CPO has the form

A
TN k,1my6g)

i( o Xifg >Ni,k.t(h) ( 1 >1—Ni,k,t(h)
1 + eXify 1+ eXifs

g=1

-1

Ql =

13)

where N; i ) is the observed crash occurrence and it is either
one or Zero; 6 is the vector of parameters to be estimated for a
vector of covariates X i

Therefore, the ratio (or log ratio) of the two models indi-
cates relative support of the observation y;. If we aggregate
over the number of observations and compute the product of all
the cross validation predictive densities for all observations we
get the product predictive density (PPD). Sometimes, one uses
log(PPD) instead of PPD. We prefer the model with the larger
PPD or log(PPD) value. Therefore, we get the pseudo-Bayes
factor (PsBF) which is the ratio of the marginal likelihood under
model 1 in the format of PPD and marginal likelihood under
model 2 in the format of PPD. PsBF is suggested as an alterna-
tive criterion for selecting among competing models (Gelfand
etal., 1992).

[[f(V;IN- ;. Model 1)

PsBF = - (14)
[[#WV;IN-;. Model 2)

J

5. Analysis and results

In the hierarchical Bayesian approach, coefficients for the
covariates are considered to be random variables rather than
fixed values as in classical statistical inference. Thus, the result
is a sampled posterior distribution for each estimated parameter.
The estimated coefficient means are shown in Tables 3 and 4,
and present some interesting conclusions.

5.1. Directional factor of hourly volume

The models using the additive hourly volume and multiplica-
tive hourly volume functions have similar estimates for all of
the covariate parameters. The only obvious variation is the mag-
nitude of the estimates for the exponents on the hourly traffic
volume, which is reasonable because the scales are different
for v; +v; and v;v,. The purpose of testing exposure with both
additive and multiplicative models is that the latter is presumed
to include more information, such as the directional split, which
may explain some of the crash variation. MCMC model selection
using pseudo-Bayes factor is applied as the selection criteria.
Table 5 displays the model selection procedure results for Michi-
gan and Connecticut. From the results, it is difficult to judge
which one is better, additive or multiplicative, because the model
efficiency varies by crash type and time of day. In fact, accord-
ing to Raftery’s selection criteria, the difference between the two
models is weak (PsBF of under 3.0) and no confident conclu-
sions can be drawn on which model performs better (Raftery,
1995). Generally speaking, the estimated parameters are con-
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Posterior mean parameters for connecticut hourly binary model

Time Covariate Additive model Multiplicative model
Sv SD OD D Sv SD OD ID
Intercept —6.422  —4.560 —5.753 —9.429 —6.655 —4.234 —6.215 —9.106
Year 1997 —-0.374  —0.592 —1.249 —0.920 —0.431 —0.572 —1.212 —0.874
Year 1998 —0.823 —-0.686 —0.556 —0.666 —0.804 —0.701 —0.574 —0.625
7 am—3 pm. Year 1999 —-0.789  —1.057 —1.021 —1.032 —0.853 —1.039 —0.976 —1.034
Year 2000 —-0.751  —0.366 —1.108 —1.313 —0.748 —0.370 —1.057 —1.290
In(V)" —0.396  0.392 —0.160 0.599 —0.204 0.203 —0.073 0.299
W —0.084 0.178 0.073 0.151 —0.084 0.179 0.071 0.152
S 0.064  —0.288 —0.110 —0.188 0.065 —0.292 —0.101 —0.187
Intercept —8.258  —12.067 —14.577 -9.747 -9.147 —11.669 —14.412 -9.356
Year 1997 —-0.754  —-0.629 —0.663 —0.557 —0.874 —0.648 —0.633 —0.522
Year 1998 —-0.839  —0.078 —1.325 —1.394 —0.625 —0.083 —1.293 —1.412
3pm—i1p.m. Year 1999 —0.659  —0.692 —1.245 —0.216 —1.034 —0.707 —1.305 —0.188
Year 2000 —0.550  —0.964 —1.295 —1.155 —1.290 —0.964 —-1.270 —1.144
Ln(V)" —-0.051  0.795 0.707 0.525 —0.299 0.416 0.351 0.268
w 0.010  0.144 0.060 0.185 0.152 0.142 0.058 0.193
S —-0.011  —0.135 —0.011 —0.203 —0.187 —0.133 —0.001 —0.211
Intercept —-9.350 —9.849 —8.822 —9.997 -9.631 -9.777 —8.823 -9.314
Year 1997 —0.568  —0.490 —0.656 —0.582 —0.518 —0.571 —0.647 —0.500
Year 1998 —0.884 —0.653 —0.924 —0.850 —0.838 —0.809 —0.887 —0.857
11 pm—7 am. Year 1999 —0.875  —0.880 —0.983 —0.910 —0.967 —-0.779 —1.018 —0.838
Year 2000 —-1.667 —1.682 —1.532 —1.655 —1.553 —-1.773 —1.497 —1.622
In(V)" —0.004 0.044 —0.024 0.010 —0.011 0.009 0.012 0.034
W 0.051 0.070 0.038 0.062 0.059 0.052 0.046 0.039
S —-0.029  —0.037 —0.034 —0.024 —0.032 —0.020 —0.042 —0.026
*In (v +v2) for additive; In (v{v,) for multiplicative model and boldface indicates for significance at 5%.
Table 4
Posterior mean parameters for michigan hourly binary model
Time Covariate Additive model Multiplicative model
SV SD OD D Sv SD OD ID
Intercept —13.132 —13.339 4.727 —8.052 —12.661 —12.553 5.631 —7.221
Year 1996 —0.137 —0.610 —0.969 —-1.017 —0.131 —0.614 —0.975 —1.015
Year 1997 —0.282 —0.846 —1.236 —0.234 —0.275 —0.861 —1.264 —0.239
7 am.-3 p.m. In(V)* 0.197 0.916 0.480 1.244 0.076 0.476 0.242 0.619
In(L) 0.131 0.043 0.024 0.067 0.134 0.042 0.017 0.066
w —0.028 0.071 —0.143 —0.002 —0.029 0.072 —0.148 —0.005
S 0.107 —0.058 —0.188 —0.141 0.106 —0.065 —0.194 —0.136
Intercept —10.190 —9.867 —26.094 —7.108 —10.139 —10.440 —27.152 —6.985
Year 1996 —0.057 —0.723 —0.831 —0.651 —0.056 —0.715 —0.827 —0.666
Year 1997 —0.161 —0.819 —0.566 —0.774 —0.153 —0.835 —0.584 —0.765
3p.m.—11p.m. In(V)" —0.145 1.276 0.416 0.888 —0.076 0.650 0.228 0.452
In(L) 0.048 —0.216 0.006 0.075 0.050 —0.227 0.013 0.070
w —0.050 —0.043 —0.063 —0.053 —0.050 —0.045 —0.085 —0.066
S 0.120 —0.065 0.319 —0.077 0.119 —0.052 0.353 —0.068
Intercept —20.036 —0.048 —19.928 —1.918 —12.086 —2.969 13.428 1.492
Year 1996 —0.228 —1.523 —-1.107 —1.410 —0.224 —1.539 —1.100 —1.388
Year 1997 —0.286 —1.080 —1.228 —1.822 —0.149 —0.580 —0.642 —0.989
11 p.m.—7 a.m. In(V)” 0.477 0.494 0.474 0.205 0.332 0.339 0.307 0.143
In(L) 0.166 —0.063 —0.158 —0.034 0.121 —0.037 —-0.119 —0.030
w 0.009 0.013 —0.158 —0.043 0.013 —0.027 —0.258 —0.072
S 0.198 —0.210 0.285 —0.115 0.230 —0.216 0.238 —0.115

“In (v; +v,) for additive; In (v v,) for multiplicative model and boldface indicates for significance at 5%.
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Table 5
Model selection between additive and multiplicative exposure
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In(PPD) Additive exposure function Multiplicative exposure function Pseudo-Bayes factor (BF)
11 p.m.—7 a.m. 7 a.m.—3 p.m. 3 p.m—11 p.m. 11p.m.—7 a.m. 7a.m.-3 p.m. 3pm—11pm.
Connecticut
SV —17.610 —25.344 —25.114 —16.771 —25.202 —25.416 0.432 0.868 1.352
SD —17.656 —57.389 —52.339 —18.734 —57.599 —52.319 2.940 1.233 0.980
OD —16.129 —20.008 —16.768 —17.350 —20.084 —16.680 3.388 1.079 0.915
1D —17.535 —25.779 —24.657 —17.958 —26.018 —25.440 1.528 1.270 2.187
In(PPD) Additive exposure function Multiplicative exposure function Pseudo-Bayes factor (BF)
7 am.-3 p.m. 3 p.m—11p.m. 11 pm.—~7 a.m. 7 a.m.-3 p.m. 3pm—11pm. 11 p.m.—~7 a.m.
Michigan
NY% —1046.621 —2309.835 —1405.011 —1046.618 —2309.485 —1403.637 0.997 0.705 0.253
SD —280.115 —326.171 —70.906 —279.754 —325.765 —70.726 0.697 0.666 0.836
OD —113.568 —125.415 —52.567 —113.610 —125.444 —53.021 1.043 1.029 1.575
1D —193.071 —188.387 —31.229 —192.936 —188.105 —31.370 0.874 0.755 1.152

sistent in significance, sign and magnitude, indicating that the
choice of flow split factor has no significant effect on the other
risk factors. The additive exposure model, which does not require
directional volume (two-way), is simpler and more commonly
accepted.

5.2. Crash type and time of day factors

One of the key issues of the study is to identify the crash
prediction model variation by crash type and time of day. In
this study, we focus on testing the exponents on hourly volume
for different models by crash type and time of day under the
Bayesian framework. For example, we have a random sample
of the exponent on hourly volume, say «, from the marginal pos-
terior distribution of «v. We can state the hypothesis as wishing to
see whether the posterior distribution of o in Model 1 is the same
as that in Model 2. To do this, we take the pairwise differences
between the MCMC samples from these two « distributions. If
the 95% confidence interval of the distribution of the difference
between two «s contains zero, the two « distributions cannot be
assumed to be different. In this way, we can form a table to show
the relationship between « values for different crash types and
times of day.

Tables 6 and 7 respectively describe the comparison of expo-
nents on hourly volume by crash type for Connecticut and
Michigan for additive exposure model only. Each possible pair-
wise comparison of crash types is performed for each time of day.
The differences found to be significantly different at the 5% level
are listed in boldface. Several other comparisons, while not sig-
nificantly different at this level, are substantially skewed to one
direction or the other. We define these as marginally significant.
We find the occurrence of crashes during the morning and after-
noon shifts from 7 a.m. to 11 p.m. vary significantly by crash type
while the variation is not distinctive at late night from 11 p.m. to
7 a.m. Moreover, the variation within the multi-vehicle crashes
defined by vehicle traveling directions are not as significant as
that of the single-vehicle crashes versus multi-vehicle crashes.
It suggests that the distinction between single and multi-vehicle

crashes could be statistically significant enough to disaggregate
crashes.

5.3. Relationship between crash occurrence and hourly
volume

In order to aid the understanding of the relationship between
the crash occurrence and the hourly volume, plots of predicted
number of crashes versus hourly volume are made according
to different prediction models. For Connecticut, we predicted
1997 crash occurrence with the predominant geometric feature.
Pavement width is 32 ft and speed limit is 40 mph, and plots are
given in Figs. 1-3. The plots for Michigan data are omitted for
brevity. Note that the variation among levels and curvatures for
these plots also confirms the need to analyze crash prediction
at this disaggregate level with the consideration of crash type
and time of day. The figures indicate that the shape and scale
of the safety performance function for hourly volume varies by
crash type, implying that a single response model rather than a
multiple response model would lead to unreliable conclusions.
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Fig. 1. Predicted number of crashes vs. flow rate (CT, 7 a.m.—3 p.m.).
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Table 6
The MCMC comparison of exponent on flow rate by crash type (Connecticut)

X. Qin et al. / Accident Analysis and Prevention 38 (2006) 1071-1080

Time Period Tam-3pm 3pm-11pm 11pm-7am
SVySD | SVvOD | SVvID | SYvSD | SVvOD  SVvID [ SVvSD | SVvOD | SVvID
Mean 0583 -0.175| 0737 -0.626| -0.561  -0426| -0.048 0.021| -0.014
Std DEV 0.206 0.257 0.256 0.217 0325 0275 0311 0368 0348
2.5% Quantile -0.966 -0.686 -1.219 -1.041 -1.196 -0.985 -0.619 -0.603 -0.749
97.5% Quantile | -0.171 0303 |  -0218| -0.161 0.088 0094 0520 0.763 | 0.709
SDvOD| SDvID SDvOD | SDvID SDvOD| SDvID
Mean 0408 -0.153 0.065 0200 0.069|  0.034
Std DEV 0.238 0.236 0319 0255 0.33 0.298
2.5% Quantile 0059 | -0.629 0620 -0.327 0485 | -0.484
97.5% Quantile 0.872 0.304 0.683  0.702 0829 0.628
oD vID ODvID oDvID
Mean 0.562 0.135 -0.030
Std DEV 0.277 0.331 0.332
2.5% Quantile -1.079 -0.536 -0.621
97.5% Quantile 0.044 0.791 0.582
Table 7
The MCMC comparison of exponent on flow rate by crash type (Michigan)
Time Period Tam-3pm 3pm-11pm 11pm-7am
SVvSD | SVvOD [ SVvID | SVvSD [ SVvOD | SVvID [ SVvSD| SVvOD | SVvID
Mean -0.439 -0.173 -0.638 -1.066 -0.421 -0.775 -0.008 (0.002 (.252
Std DEV 0.183 0.250 0.237 0.200 0257 0227| 0274 0.257| 0281
2.5% Quantile 0799 | -0681| -1.136) -1478| 0972 -1220| -0508| -0.510| -0310
97.5% Quantile | g o4 0282  -0.175|  -0.696 0.039 | -0.343| 0549 0.503 | 0.805
SDvOD | SDvID SDvOD SDvID SDvOD | SDvID
Mean 0.266 -0.199 0.645 0.291 0.005 0.245
5td DEV 0.283 0.259 0311 0261 0.375 | 0403
2.5% Quantile -0296| -0.717 0.053  -0238 <0699 | -0.542
97.5% Quantile 0.804 |  0.299 1242 0.796 0.734 | 1.053
ODvID ODvID oDvID
Mean -0.465 -0.354 0.321
Std DEV 0.306 0.332 0.258
2.5% Quantile -1.034 -1.009 -0.171
97.5% Quantile 0.150 0.329 0.829

The same procedure is repeated for the differences in the
exponents on hourly volume by time of day for each crash type.
For both states, in at least one crash type the exponent on hourly
volume varies by time of day, strongly suggesting the necessity
of defining crash prediction models by time of day. The factors
such as drivers’ circadian rhythms, light condition, the use of
alcohol or drugs, and trip purpose are closely related to time of
day. Therefore, it is a reasonable alternative variable to cover
their effects on the exposure parameters.

In this study, we are most concerned about the relationship
between crash occurrence and exposure components of hourly
volume. The exponents on hourly volume during a majority of
the time periods exhibit a positive relationship for multi-vehicle
crash occurrence and a negative one for single-vehicle crash
occurrence (Tables 3 and 4). Moreover, the linear relationship

between the occurrence of crashes and hourly volume is tested
using a similar method, i.e., if the 95% credible interval derived
from the posterior distribution of the exponent on hourly volume
excludes 1.0, this suggests we reject the null hypothesis that the
parameter is equal to 1.0. Our study indicates that even under
models disaggregated by crash type, time of the day with actual
hourly volume, the relationship between crash occurrence and
traffic volume or segment length is not linear. Therefore, when
evaluating the crash rate as a function of traffic volume, one must
expect a non-linear rather than linear relationship.

Previous studies have shown inconsistent findings about the
relationship between number of crashes and the hourly volume.
These findings include concave, convex, U-shape or other rela-
tionships. In fact, these discoveries rely on to what level the
study disaggregated the data. Our study shows mixed functional
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Fig. 3. Predicted number of crashes vs. flow rate (CT, 11 p.m.—7 a.m.).

tendencies: there is a negative relationship (convex downward)
between single-vehicle crash occurrence and hourly volume at
some times of day, but a concave upward relationship at other
times. Multi-vehicle crash occurrence shows either a concave
or convex upward relationship with the hourly volume. Conse-
quently, the relationship between total vehicle crash occurrence
and hourly volume may display a U-shape if the relationship
for single-vehicle crashes is convex downward while that for
multi-vehicle crashes is convex upward.

6. Conclusion

This paper describes an investigation into the relationship
between crash occurrence and hourly traffic volume on rural
two-lane highway segments. We used a hierarchical Bayesian
framework with Markov Chain Monte Carlo (MCMC) algo-
rithms to estimate the posterior distributions for crash proba-
bilities as a function of hourly volume, time of day and so on.
The findings show that even accounting for time of day, the rela-
tionship between crash occurrence and traffic volume is indeed
non-linear for each of the four crash types: single-vehicle, and
multi-vehicle same direction, opposite direction and intersect-

ing direction. Consequently, the crash exposure proposed in this
study is a function of the hourly volume and segment length with
significant exponents different from one in each case.

In particular, the findings in this study demonstrate that crash
risk prediction functions vary by crash type and time of day.
In other words, the expected total crash count on two equal
length segments with the same AADT and physical character-
istics will vary according to the distribution of traffic volume
through the day. Also, it provides a new modeling technique
using hierarchical Bayesian binary response model which makes
the models more flexible and extracts more information from the
data.

Besides the findings mentioned above, we note some of the
exposure factor such as hourly volume and risk factors such as
roadway width, speed limit are inconsistent from Connecticut
to Michigan, indicating the necessity for calibrating the model
for transferability. Because only a few study segments in two
states are employed in this study, the small sample size lim-
ited the prediction accuracy and significance of the covariates.
Also, other highway characteristics such as population or drive-
way density may be more relevant than the covariates used
in this study. The findings presented here indicate that time
of day clearly affects the parameter estimates in crash predic-
tion models. These findings should be validated and clarified
through estimation with a larger data set that will result in
more significant parameters estimates and more accurate crash
predictions. Note that it is helpful to have good estimates of
hourly volumes by time of day or better, actual traffic counts
in more locations. Consequently, related research into estimat-
ing or extrapolating accurate hourly or time of day traffic vol-
umes would be indispensable for increasing opportunities for
building a larger data set. Finally, the study can be expanded
to more facility types such as intersections and multi-lane
highways.
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