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Travelers around the world are concerned with choosing not only the 
quickest route from one point to another but also the safest route. Traffic 
safety has always been a major public concern, and traffic safety perfor
mance should be constantly evaluated so that both reactive and pro
active countermeasures can help reduce crashes. This study developed 
a methodology for incorporating safety aspects into travelers’ pathfind
ing process. The safe pathfinding process included two main parts: a 
routespecific safety hazard index and a routefinding algorithm that 
considered both travel time and safety. The ratio of the deceleration 
rate to avoid a crash to the maximum available deceleration rate was 
chosen as the proxy for traffic safety. The safety hazard index was for
mulated by using the collision mechanism along the roadway segment 
and at the intersection. Motoristspecific information (e.g., vehicle type, 
age, pavement condition) was also included in the safety index model so 
that a traveler’s individual needs could be considered. The pathfinding 
algorithm, which combined mobility and safety, had three objectives: 
shorter travel time, lower route safety hazard index, and avoidance of 
sites with the highest safety hazard index along the route. The method
ology was applied in a realworld street network to demonstrate its use 
and prove the concept of finding a safe path.

Traffic safety concerns have increased around the world. According 
to NHTSA’s traffic facts, more than 6 million crashes were reported 
in the United States in 2014; they resulted in more than 32,000 fatal-
ities and 2 million injuries (1). Traffic crashes rank third when it 
comes to years of life lost, just behind cancer and heart disease (2). 
Collision avoidance systems, which integrate radar-assisted tech-
nologies, have been increasingly adopted as a way to reduce crashes 
(3). Aside from advanced vehicular technologies, a large number of 
studies have been dedicated to the evaluation of road traffic safety. 
Various crash prediction models and surrogate safety measures have 
been developed to help identify crash-prone conditions (4) and find 
appropriate countermeasures to protect travelers.

Vehicle routing assistance has commonly been used to help trav-
elers find the optimal route based on distance, travel time, travel 
costs, or all three (5). Unlike travel time or distance, crash risk has 
not been seriously considered as a vital factor in selecting a pre-
ferred route (3). Although navigation applications like Waze have 
started to incorporate traffic safety in their navigation applications 
by minimizing dangerous left turns at busy intersections, the pro-
cess remains in its infancy and lacks a systematic method (6). It is 

necessary to develop a valid and easy-to-implement route safety 
indicator to incorporate traffic safety into vehicle routing.

This study aims at developing a methodology for comprehen-
sive routing with simultaneous consideration of both mobility 
and safety. A two-step procedure was proposed: first, an easy-to-
implement safety hazard index with very few data requirements 
was developed for the pathfinding method; next, the process was 
used to select a route based on travel time and the proposed safety 
index. The proposed procedure was tested with a real-world street 
network.

Literature review

Incorporating safety into the routing decision is a relatively new 
concept (3, 7). The biggest obstacle is figuring out how to use the 
limited data to develop an index that can accurately measure the 
safety performance along a route (3, 7). Kingsbury et al. conducted 
an exploratory study on the journey optimization for the safest route 
(7); they compared two safety indicators: a risk prediction model 
that adopts regression models to estimate the crash rate based on 
physical and operational variables (e.g., intersection type and traffic 
volume) and a model that relies on historical crash records to predict 
crash rate. The study found that the method based on crash history 
is more reliable. Kingsbury et al. also determined that risk predic-
tion methods always suggest that drivers avoid high-volume roads 
because these roads are assumed to have a higher crash risk; how-
ever, this assumption is often the opposite of reality. Many roads 
in the study by Kingsbury et al. with higher annual average daily 
traffic were actually associated with a lower number of crashes. 
Chandra proposed a complete framework for safety-based pathfind-
ing methods; it focused specifically on older drivers and bicyclists 
(3). The study used the time-to-collision index, which, although it is 
a commonly used safety indicator, is limited by many assumptions 
made to overcome unavailable roadway attributes and traffic condi-
tions along the link or around the intersection. Moreover, Chandra’s 
method cannot be comprehensively validated. Another application, 
the safety indicator for school bus routing, includes crash records 
and manual evaluation of safety aspects of each link and intersection 
(8). Different criteria such as geometrical characteristics, lighting, 
and signage are manually assigned a score. The total safety score is 
the summation of the weighted score for each criterion.

One way to integrate safety into the routing algorithm is to solve a 
resource-constrained shortest-path problem. A variation of this solu-
tion, which is discussed in the study by Kingsbury et al., involves 
the weighting system for safety and travel time (7). Travelers can 
choose their own preference on how much safety and travel time 
will be factored into to the shortest route. An alternative approach 
is the multiobjective shortest-path algorithm. Chandra proposed a 
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modified form of the multiobjective shortest-path method based on 
the median shortest-path problem (3). Although both methods were 
effective in finding safe routes, safety is treated as a constraint in 
the resource-constrained shortest-path problem but as an objective 
in the multiobjective shortest-path problem (3, 7).

In general, three types of factors affect traffic safety: human factors 
(e.g., age, gender), road and environmental factors (e.g., lighting con-
dition, time of day, pavement condition, road geometric design, traffic 
characteristics), and vehicle factors (e.g., maximum deceleration rate) 
(9). The factors can be used collectively to develop an approach for 
generating a safety index. Figure 1 shows four approaches for mea-
suring traffic safety: historical crash records, crash prediction models, 
safety scores, and surrogate measures (4, 10–17).

Historical crash records are the most straightforward safety assess-
ment indicator. The random and sparse nature of traffic accidents 
means that more data need to be collected to measure road safety 
conditions (4). A small number of crash records usually offer limited 
information on traffic safety. Crash prediction model development 
requires a comprehensive data set (intersection features, road seg-
ment features) to predict expected crash frequency. However, driver 
behavior—one of the main causes of crashes—is left out of most data 
sets (15). The safety score, when compared with crash data and crash 
models, is a more subjective approach, in which scores are given 
based on a series of criteria (8, 17). A safety score can be assigned 
to individual traffic facilities (e.g., road segment, inter section) or to 
the entire route. Dijkstra calculated scores for each route by using 
proposed criteria such as minimized transitions between road cat-
egories, minimized number of left turns, and intersection density as 
low as possible (17).

Safety surrogate measures can be calculated directly from micro-
simulation models or developed from collision mechanisms  
(4, 10–12, 14–16). The outstanding issue with surrogate measures 
calculated from a microsimulation model is that traffic always 
obeys the traffic rules in this model. Obviously, this characteristic 
contradicts real-world situations, since some crashes occur because 
of the violation of traffic laws (4). Moreover, obtaining the index 
from a microsimulation model for routing purposes requires a huge 
computational effort. Surrogate measures developed on the basis 
of collision theory, however, can be categorized as time-based, 
deceleration-based, and so on (4). The typical time-based measure 

is time to collision, which was used by Chandra to find the safest 
route (3). However, the time to collision assumes that speed does 
not change until a collision occurs, and this assumption neglects 
the possibility of deceleration. In contrast, the deceleration rate 
measure (DRAC) does consider the possibility of deceleration when 
there is the risk of a collision (4, 14). Surrogate measures such as 
time exposed and time to collision integrate temporal characteristics 
into traditional surrogate measures (4). Advantages and disadvan-
tages of all these methods should be carefully reviewed when a new 
methodology for a safety index is proposed.

MethodoLogy

A safety index or a safety hazard index for routing should be easy to 
implement and be able to handle data limitations. Therefore, a novel 
safety index is proposed (Figure 2) that requires only road traffic 
density data and speed data.

Of all the safety surrogate measures discussed, DRAC has the 
minimum deceleration rate required to avoid a collision with the 
leading vehicle and also has the maximum available deceleration 
rate (MADR) that a vehicle can adopt (14). It is assumed that a crash 
would happen if the DRAC exceeds the MADR. The MADR can 
be determined by multiple factors, including vehicle type (vehicle 
weight), pavement condition (dry or wet), and so on (14). A safety 
hazard index can be expressed as the ratio of DRAC to MADR; a 
lower value indicates a safer road. Two kinds of data are required to 
determine this index: the existing road information such as link traf-
fic density and average link speed and traveler information, which 
allows the index to vary by user. Respective indexes are used for 
links and intersections based on crash mechanism. An index is pro-
posed for different turning movements at an intersection (left turn, 
through turn, and right turn).

Safety hazard index for roadway Link

The most common cause of a rear-end crash, the sudden braking 
of the lead vehicle, was considered for simplicity. It is supposed 
that the subject Vehicle A and its preceding Vehicle B operate in 

FIGURE 1  Summary of safety assessment methods.
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the same lane with the speed of vA and vB, respectively. Suddenly,  
the leading Vehicle B stops, and its speed becomes zero. DL is the 
expected closest distance between the two consecutive vehicles, Δt is 
the perception–reaction time for the driver in the following vehicle 
(Vehicle A). Human behavior such as driver inattention, impairment, 
and distraction are not considered. Then DRAC for Vehicle A can be 
formulated as follows:
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where vA can be estimated by the average link speed v.
The index is calculated as the ratio of DRACA to MADRA. If the 

subject Vehicle A is the lead vehicle, the DRAC for Vehicle B is 
exactly the same as it is for Vehicle A; however, MADRB may be 
different. Therefore, the larger value of the two is considered as the 
safety hazard index for the link.

In Equation 1, the expected closest distance between the two 
successive vehicles DL is unknown. Two traffic density scenarios 
(sparse and dense) are proposed to calculate this distance (3). The 
density of 50 vehicles per mile per lane was used to distinguish the 
two traffic states. The number of arrival vehicles along the link in a 
sparse traffic state is assumed to follow a Poisson distribution (18); 
thus, the gap between two consecutive vehicles follows a negative 
exponential distribution:
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where l is the link length.
The distance between two consecutive vehicles in a dense traffic 

state is assumed to follow the Gaussian unitary ensemble distribution 
(19), as follows:
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The expression of the safety hazard index Ilink for any link is
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Safety hazard index at intersections

The intersection-related crash is more complicated than the link-
based crash, since there are several types of intersections (uncon-
trolled, stop controlled, signal controlled) and collisions can occur 
in various situations (stop control violation, signal violation, conflict 
between left-turn flow and approaching flow, etc.). It is not practical, 
because of data limitations, to develop indexes for different inter-
sections. Figure 3 presents a typical angle collision process irrespec-
tive of intersection type. For simplicity, only angle collisions are  
discussed.

Suppose that there is subject Vehicle A and another, Vehicle B, 
which is the closest to A around the intersection on the other leg 
approach with speeds of vA and vB, respectively. Two crash scenarios 
are considered: (a) Vehicle B decelerates but fails to avoid collid-
ing with Vehicle A, and (b) Vehicle A decelerates but still collides 
with Vehicle B. In Figure 3, measured from Time Point 1, the initial 

FIGURE 2  Framework of proposed methods.
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distance from Vehicle A and Vehicle B to the intersection is SA and 
SB, respectively. The sum of SA and SB is DI, defined as the expected 
closest distance between two vehicles around the intersection. Vehi-
cle B is assumed to decelerate while Vehicle A maintains the same  
speed before reaching the intersection or the possible collision area 
(Time Point 2). The possible collision area is determined by the 
length and width of the approaching vehicles. To obtain the DRAC, a 
critical time point when Vehicle A leaves the collision zone and Vehi-
cle B enters the area is proposed (Time Point 3). The time interval  
between Time Points 1 and 2 is

2 (7)1 2
,1 2= =

− +

−
−t
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where

 SA,1−2 = distance A travels from Time Point 1 to Time Point 2,
 WB = width of other Vehicle B,
 WA = width of subject Vehicle A,
 LB = length of other Vehicle B, and
 LA = length of subject Vehicle A.

When Vehicle A enters the intersection, the speed may change 
(noted as v′A). For a left-turn movement, the vehicle’s speed will 
significantly decrease. The time interval between Time Points 2 and 
3 is expressed as follows:
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where sA,2−3 is the distance A travels from Time Point 2 to Time 
Point 3.

Under the critical situation in which Vehicle B does not collide 
with Vehicle A, the distance Vehicle B travels from the start of 
deceleration to the time Vehicle A leaves the collision zone (from 
Time Point 1 to Time Point 3) is expressed as follows:
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is the time interval between Time Points 1 and 3, and Δt is the 
perception–reaction time of the driver to decelerate.

The minimum value of SA is (LA + WB)/2, or t1−2 is nonnegative in 
Equation 7. Thus,
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FIGURE 3  Vehicle collision modeling at intersection (LA = length of subject Vehicle A; LB = length 
of other Vehicle B; WA = width of subject Vehicle A; WB = width of other Vehicle B).
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Given the assumption that vehicles are randomly distributed along 
the street, the expected value of SB,1−3 equals

D
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Replace SB,1−3 in Equation 9 and DRAC for Vehicle B can be 
expressed as follows:
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If Vehicle A decelerates to avoid the collision, the DRAC for 
Vehicle A can be calculated by exchanging A and B in Equation 11:
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and v′B is the speed of B around the intersection.
In both Equations 11 and 12, DI, the expected closest distance 

between two vehicles around the intersection, is unknown. Accord-
ing to Chandra (3), a similar assumption can be made that vehicles 
around the intersection are uniform randomly distributed under 
light traffic conditions; this assumption means that the probability 
of n vehicles around the intersection is
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where

 N = random number of vehicles around intersection,
 s =  total link-based distance around intersection (sum of lengths 

of streets converging to intersection), and
 d =  vehicle density around intersection (number of vehicles per 

unit length).

The probability that subject Vehicle A misses a vehicle within the 
total distance s around the intersection is the probability when n = 0, 
namely, P(N = 0) = e−ds. Then the expected closest distance around 
the intersection DI is calculated as
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where L approximately equals the summation of the length of all 
street legs around the intersection (L ≈ Σl).

For dense traffic conditions, the link-based distance between two 
consecutive vehicles around the intersection is assumed to follow 
a Gaussian unitary ensemble distribution (3) and is formulated as 
follows:
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In summary, the safety index for each intersection is
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The safety index for right-turn movements at the intersection is 
assumed to be zero because the right-turning vehicle is unlikely to 
be involved in an angle collision. The difference for through and 
left-turn movements can be simplified to be the speed for the subject 
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vehicle when it enters the intersection. For a through movement, it 
is assumed that v′A = vA. When the vehicle makes a left turn, it has 
to slow down and 15 mph is assumed to be the speed. The turning 
movement is only considered for subject Vehicle A. For Vehicle B, 
v′B is assumed to be vB.

review of Safety hazard index

Default values for the user-customized variables are considered 
when the safety index is applied. The perception–reaction time uses 
2 s as the average value for older drivers (>51 years old) and 1 s 
for younger drivers (20). According to the Green Book, the design 
vehicle dimensions for a passenger car are 19 ft ×7 ft and 30 ft × 8 ft 
for a single-unit truck (21). Mean MADR values are adopted from 
previous research (22): 8.45 m/s2 for a passenger car on dry pave-
ment, 6.82 m/s2 for a passenger car on wet pavement, 6.34 m/s2 for 
a truck on dry pavement, and 5.12 m/s2 for a truck on wet pavement.

The proposed index was reviewed by qualitatively assessing the 
relationship between the modeled safety index and the variables in 
Table 1. An increase in vehicle density increases the safety index 
because of the increased DRAC for both links and intersections. The 
relationship between crash rates and traffic density was explained in 
a previous study (23). Previous studies have also proved that vehicle 
speed increases accident probability (24); this relationship is also 
shown in the index. Intersection speed, also proposed in this index, 
differentiates between the speeds for different turning movements. 
Although no study has focused on this speed, the assumption is that 
higher speed results in less time spent in the intersection, and there-
fore the probability of a crash is reduced. Perception–reaction time 
has been shown to be closely related to the minimum stopping sight 
distance (25). Higher perception–reaction time leads to longer stop-
ping sight distance; this value increases the crash rate and coincides 
with the proposed index. The longer the length of a truck, the more 
time it takes to cross the intersection, and hence the chance of a colli-
sion is increased. Furthermore, it is obvious that the deceleration rate 
would be lower for trucks and lower on wet pavement; these condi-
tions could also contribute to crash occurrence. Overall, most variables 
in the proposed model can be validated through previous studies; this 
validation means that it is a sufficient index for safety assessment.

CaSe Study

The proposed method was tested in a case study. A multiobjective 
shortest-path model (which can also consider safety) was utilized 
instead of a typical route-finding model, which focuses only on the 
route with the shortest time.

The first objective was to find several routes with shorter travel 
time. The shortest-route-finding tool in ArcGIS can achieve this 
goal (26). The second objective was to identify a not-inferior solu-
tion by balancing both travel time and safety. Most studies sum up 
the safety index of all links and intersections along one route in 
order to obtain safety performance information and then select a 
route based on the safety performance (3, 7). Besides consideration 
of the overall safety performance of the route, the links and inter-
sections with a high safety hazard index were avoided in order to 
identify the preferred route in the proposed application.

The proposed route-finding method was tested on a street network 
near the campus of the University of Wisconsin, Milwaukee. The 
Wisconsin Information System for Local Roads geographic informa-
tion system map provided information on link traffic volume, speed, 
and link length for the routing analysis. The speed limit was esti-
mated based on the roadway functional class, and the average link 
speed was substituted by randomly assigning ±5 mph to the speed 
limit. Link vehicle density was calculated by using the average daily 
traffic. One origin and one destination (university campus) were 
selected. Five candidate routes with short travel time were chosen 
with ArcGIS (Figure 4).

Route 5 was chosen on the basis of its having the lowest travel 
time. The safety index was also calculated and compared along 
these routes. The safety index recommends not-inferior routes 
depending on the user-customized information. A lower value in 
the safety hazard index indicates a safer route. Three customized 
options, “truck,” “old,” and “wet,” which correspond to vehicle 
type, age, and pavement condition, were also applied. The default 
options of “passenger car,” “young,” and “dry” were presented 
for comparison. The overall safety index and the highest index 
(worst safety) were calculated for all customized options (Table 2). 
Route 3 is recommended for truck drivers because it has the lowest 
overall safety index and avoids the most dangerous route (Route 1). 
Route 3 is also the best choice for older drivers, wet pavement con-

TABLE 1  Relationship Between Indexes and Variables

Link Intersection

Variable MADR DRAC Safety Index DRAC Safety Index

Density (increase) — ↑ ↑ ↑ ↑
Speed (increase)
  Link speed (increase) — ↑ ↑ ↑ ↑
  Intersection speed (left-turn to through 
  movement: increase)

— ↓ ↓ ↓ ↓ 

Age (young to old)
  Perception-reaction time (increase) — ↑ ↑ ↑ ↑
Vehicle type (passenger car to truck)
  Length (increase) — — — ↑ ↑
  MADR (increase) ↓ — ↑ — ↑
Pavement condition (dry to wet)
  MADR (increase) ↓ — ↑ — ↑

Note: — = constant; ↑ = increase; ↓ = decrease.
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ditions, and default customer information. Although travel times 
on Routes 3 and 5 are almost equal, it is much safer to use Route 3 
because the summation of all options in the safety index is greatly 
decreased. Aside from the choice of the safest route, the links or 
intersections with the worst safety (highest safety index) were also 
identified. Table 2 shows the dangerous link or node that exists in 
Route 1 for all four customized options.

ConCLuSionS and Future work

This study developed a method for incorporating safety into the 
pathfinding process by developing and applying a novel safety 
index to the shortest route-finding algorithm. The ratio of DRAC 
to MADR was adopted as the safety hazard index, in which a lower 
value indicates a safer condition. The index was formulated on the 
basis of the collision mechanism along the roadway link and at the 
intersection. Besides the required roadway information (e.g., link 
speed, vehicle density), user-specific information (e.g., vehicle type, 
age, and pavement condition) can be included in the safety index 
model. A qualitative review of the index, which considers the find-
ings from previous literature, supports the index as a sufficient proxy 
for traffic safety. A real roadway network was used to apply the pro-
posed safety index. Three objectives were established in the search 

for the safest and shortest route: shorter travel time, lower overall 
index, and avoidance of the highest index. Safe routes with differ-
ent user-customized information were obtained in the application  
example.

Model assumptions and limitations should be taken into con-
sideration when this index model is applied. The model deals with 
typical intersections and urban roadways, and not all collision types 
were considered in developing the index (only rear-end collision and 
angle collisions were considered). These assumptions were made 
when the shortest distance between two successive vehicles was 
acquired, but this result may not always correspond with real-world 
situations. Future work will expand use of the model to other types 
of collsions and crash severities and will develop solutions for the 
multiobjective shortest-path problem. A systematic safe pathfinding 
method that considers all types of crashes in the safety index is pro-
posed to be built for practical navigation applications in a real-world 
road network.
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