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The existence of preponderant zero crash sites and/or sites with large crash counts can pre-
sent challenges during the statistical analysis of crash count data. Additionally, unobserved
heterogeneity in crash data due to the absence of important variables could negatively
impact the estimated model parameters. The traditional negative binomial (NB) model
with fixed parameters might not adequately handle highly over-dispersed data or unob-
served heterogeneity. Many research efforts that have involved the negative binomial–
Lindley (NB-L) model or the random parameters negative binomial (RPNB) model, for
example, have attempted to improve the inference of estimated coefficients by explicitly
accounting for extra variation in crash data. The NB-L is a mixed modeling approach which
provides flexibility to account for additional dispersion in data. The RP modeling approach
accommodates the effect of unobserved variables by allowing the model parameters to
vary from one observation to another. The following study proposes a combination of these
models – the random parameters NB-L (RPNB-L) generalized linear model (GLM) – to
account for underlying heterogeneity and address excess over-dispersion. The results show
that the RPNB-L model not only provides a superior goodness-of-fit (GOF) with the sample
data, but also offers a better understanding about the effects of potential contributing fac-
tors. The paper uses the Bayesian framework to provide a strategy for eliminating the
potential for poor mixing in the Markov Chain Monte Carlo (MCMC) chains during the esti-
mation of the RPNB-L model.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

A roadway crash is a multifaceted event involving circumstances such as highway geometry, traffic exposure, contextual
factors, driver characteristics, vehicle factors, as well as the interactions among them. Identifying key crash risk factors and
understanding their effects is critical to finding cost-effective strategies for the prevention and reduction of traffic crashes
and their severities. Typically, a quantitative safety analysis is performed through descriptive statistics to identify patterns,
and regression models are used to identify factors associated with crashes. Once the association is properly established, addi-
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tional insights about the crash can be revealed and evaluated. Lastly, the mean crash count can be estimated by mathemat-
ical formulation (Mitra and Washington, 2012).

Crash data are often characterized by the existence of a large sample variance compared with the sample mean1 (Lord
et al., 2005; Mitra and Washington, 2007). Extensive research has been devoted to modeling and analyzing this type of crash
dataset (Lord and Mannering, 2010; Mannering and Bhat, 2014; Mannering et al., 2016). A notable accomplishment resulting
from this research is the application of the negative binomial (NB) model in analyzing crash frequency data. The NB model
can handle data over-dispersion by assuming a gamma distribution for the exponential function of the disturbance term in
the Poisson mean. However, recent studies have pointed out that with a heavy-tailed crash dataset, the NB model can produce
biased parameter estimates (Zou et al., 2015; Shirazi et al., 2016). A heavy-tailed distribution is a statistical phenomenon that
occurs when sample observations have a few very high crash counts with preponderant zero observations; this shifts the overall
sample mean to near zero (Shirazi et al., 2016). Failure to account for data over-dispersion could lead to biased and inconsistent
parameter estimates, which in turn causes researchers to make erroneous inferences from models and also lead to inaccurate
crash prediction values.

The mixed model is a well-known methodology used to incorporate heterogeneity into statistical analysis. Safety litera-
ture shows that mixed distribution NB models expanded the linear mixed model for continuous responses to discrete
responses (e.g., crash count) by incorporating correlated non-normally distributed outcomes. Several mixed NB models have
been proposed, including the NB-Lindley (NB-L), NB-Generalized Exponential (NB-GE), and NB-Dirichlet process (NB-DP)
generalized linear models (GLMs) (Geedipally et al., 2012; Vangala et al., 2015; Rahman Shaon and Qin, 2016; Shirazi
et al., 2016). The advantage of using a mixed model is that it adds a mixed distribution to account for extra variance in
the crash data which is caused by preponderant zero crash responses and/or a heavy-tail of crash counts (Shirazi et al.,
2016). The underlying hypothesis is that the crash datasets are comprised of distinct subpopulations which have different
probabilistic distributions. Accessing all data items associated with the likelihood of crash occurrence and/or injury severity
is nearly impossible, but omitting important variables causes data heterogeneity which adds extra variation in the effects of
explanatory variables. Random parameters (RP) models can account for unobserved heterogeneity by allowing the param-
eter of variables to vary from one observation to the next and by estimating the unbiased mean effect of explanatory vari-
ables (Mannering et al., 2016). Therefore, incorporating both random parameters and mixed probabilistic distributions
within a single model can be a viable alternative for handling crash data with high over-dispersion and unobserved
heterogeneity.

The objective of this study was to develop and document an RPNB model with Lindley mixed effect for heterogeneous
count data that features an excess number of zero responses and/or a heavy-tail. The proposed RPNB-L model was developed
in a Bayesian hierarchical framework that is expanded from fixed-coefficients NB-L GLM (Geedipally et al., 2012; Rahman
Shaon and Qin, 2016). The study utilized two crash datasets, one from Indiana and one from South Dakota, to calibrate
the parameters in RPNB-L GLM. The datasets were characterized by over-dispersion with a very high percentage of zero
responses and a heavy-tail. The model fitting and the modeling results were compared with the traditional NB, RPNB and
NB-L models.
2. Literature review

The existence of preponderant zero crash sites with a heavy tail can create highly over-dispersed data. The NB distribu-
tion has been used to model crash frequencies for decades because it can handle data over-dispersion, a unique attribute of
crash frequency data. However, some studies have noted that the NB distribution cannot adequately handle over-dispersion
caused by a heavy tail in the crash data (Guo and Trivedi, 2002; Park et al., 2010; Zou et al., 2015; Shirazi et al., 2016). Guo
and Trivedi (2002) noted that a negligible probability is usually assigned to higher crash counts in the NB model during the
modeling of highly over-dispersed data with a heavy tail. Lord et al. (2005) pointed out that over-dispersion arises from the
actual nature of the crash process. One limitation of the NB distribution is that it assumes that only one underlying process
affects the likelihood of crash frequency (Shankar et al., 1997).

A mixture model is a very popular statistical modeling technique that is often used to account for data over-dispersion
because it is flexible and extensible (Shankar et al., 1997; Aguero-Valverde and Jovanis, 2008; Lord et al., 2008; Lord and
Geedipally ,2011; Geedipally et al., 2012; Cheng et al., 2013; Mannering and Bhat, 2014; Rahman Shaon and Qin, 2016;
Shirazi et al., 2016). The mixture model is comprised of a convex combination of a finite number of different distributions.
The NB-L GLM is a mixture of the NB and Lindley distribution in which the Lindley distribution itself is a mixture of two
gamma distributions (Lindley, 1958). The NB-L GLM was recently introduced to model crash frequency data (Geedipally
et al., 2012; Rahman Shaon and Qin, 2016). The count data mixture model works well when the dataset contains a large
number of zero responses, is skewed, or is highly dispersed. Zamani and Ismail showed that the NB-L distribution provides
a better fit compared to the Poisson and NB models when there is a large probability of crash frequency at zero (Zamani and
Ismail, 2010). Lord and Geedipally (2011) applied the NB-L distribution to estimate the predicted probability and frequency
of crashes using both simulated and observed crash data. The authors concluded that the NB-L distribution can handle crash
1 In a statistical term, the sample data is over-dispersed when the variance is greater than the mean. Data over-dispersion is often caused by unobserved data
heterogeneity due to unobserved, unavailable, or unmeasurable variables that are important to explain model responses.
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datasets with preponderant zero crash observations. Recently, Rahman Shaon and Qin (2016) evaluated the effect of lane and
shoulder width on over-dispersed crash data using the NB-L model. The authors found that the NB-L GLM performed better
than a traditional NB model when working with crash data characterized by preponderant zero responses, and that the core
strength of the NB model was maintained. Overwhelmingly positive results have been reported from applying the NB-L
model with many different data sources (Zamani and Ismail, 2010; Lord and Geedipally, 2011; Geedipally et al., 2012;
Hallmark et al., 2013; Xu and Sun, 2015; Rahman Shaon and Qin, 2016). Although the Lindley distribution has a closed form
(Zamani and Ismail, 2010), the Lindley distribution cannot be mixed with the NB distribution in the context of GLM because
it is not available in any standard statistical software (e.g. R, SAS, SPSS). Researchers have used the Bayesian method to create
the hierarchical structure that is needed to estimate the parameters of NB-L in the context of GLM (Geedipally et al., 2012;
Rahman Shaon and Qin, 2016).

The existing crash dataset contains only a fraction of the potential variables that can significantly affect the likelihood of
crash occurrence (Mannering et al., 2016). Unobserved heterogeneity in a regression model occurs when important covari-
ates have been omitted during the data collection process. The influence of these variables is therefore not accounted for in
the analysis. Unobserved heterogeneity in traditional NB models is usually considered to be random errors because the effect
of each covariate is restricted to be the same across all observations; this causes even more dispersion problems. Such mod-
eling strategies can cause serious model specification problems and may result in a variation of the estimated effect of
observed covariates (Mannering et al., 2016). An overview of the potential for heterogeneity in driver behavior was high-
lighted by Mannering et al. (2016). The research found that varying lane and shoulder widths may have an impact on the
likelihood of a crash event, but that these effects can vary among observations due to time-varying traffic, weather condi-
tions, and/or the driver’s reactions, all of which are not available for model development. Ignoring heterogeneous effects
in explanatory variables leads to biased parameter estimates which can result in inaccurate conclusions (Mannering
et al., 2016).

Research studies have been devoted to the task of obtaining unavailable but necessary data by utilizing statistical and
econometric models2 to account for unobserved heterogeneity. The RP modeling approach (Mannering et al., 2016)3 has gained
considerable attention for its use with crash count data. RP modeling addresses data heterogeneity by allowing the model
parameters to vary from observation to observation. The parameter is treated as a random variable whose probability distribu-
tion is usually defined by the modelers. Anastasopoulos and Mannering (2009) introduced the RPNB model to account for data
heterogeneity caused by explanatory variables and other unobserved factors. Crash data studies that have applied the RPNB
model have found a significant improvement in the statistical model fit (El-Basyouny and Sayed, 2009; Garnowski and
Manner, 2011; Venkataraman et al., 2011; Chen and Tarko, 2014; Buddhavarapu et al., 2016).

In summary, the RP model incorporates the effect of unobserved variables by allowing model parameters to vary from
observation to observation, but this method is susceptible to observations generated from different data sources. The mixed
model also did not resolve the issue of omitted variables that could affect the likelihood of crashes. However, joint mixture
distributions and random parameters can identify groups of observations with homogeneous variable effects within each
group and can allow for the consideration of varying parameters so that the effects of unobserved variables are included
(Peng and Lord, 2011). Buddhavarapu et al. (2016) developed a spatial finite-mixture RPNB model that relaxed the distribu-
tional assumptions of RP. The study outlined in this paper pursued the same goal by utilizing the strengths and flexibility of
both methods. Although the NB-L does not literally generate multiple homogeneous groups, it offers flexibility to account for
skewness in crash observations which occurs when preponderant zero crash sites with a heavy tail are present. The unob-
served heterogeneity in explanatory variables is assumed to be addressed when estimated parameters are allowed to vary
across observations in NB-L.
3. NB-Lindley GLM

The NB-L distribution re-parameterized in a GLM context can be formulated in Eq. (1) (Geedipally et al., 2012; Rahman
Shaon and Qin, 2016):
2 Ref
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In Eq. (1), f (u; a, b) is the distribution of the variable u, with parameters a and b. Following this explanation, given e, the
variable Y follows a NB distribution with a mean and inverse-dispersion parameter of el and / (/ = 1/a), respectively. The
variable e follows a Lindley distribution with parameter h.

If we assume that the crash count follows the NB-L(y; l;/; h) distribution, the mean response function can be structured
as follows, (Geedipally et al., 2012; Rahman Shaon and Qin 2016):
er to Mannering, F.L., Shankar, V., Bhat, C.R., 2016. Unobserved heterogeneity and the statistical analysis of highway accident data. Analytic Methods in
t Research 11, 1–16. For the list of methodological alternatives to account for unobserved heterogeneity.
te mixture models, which are a type of latent variable models or latent class models was also explored as another alternative to account for unobserved
eneity in literature (Peng and Lord, 2011, Shirazi et al., 2016). This approach express the overall distribution of one or more variables as a mixture of a
mber of component distributions which prescribes the observations from different groups, subpopulations or latent classes, each can be represented by
bility distribution function. Together, a finite mixture model can handle various distributions for different sub-populations in the target dataset.
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hðhþ1Þ
By replacing the value of l and E(e), the mean response function can be written as follows:
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The Lindley distribution is a mixture of two gamma distributions. Therefore, the Lindley distribution can be rewritten as
(Geedipally et al., 2012; Rahman Shaon and Qin, 2016):
e � 1
1þ h

Gammað2; hÞ þ 1� 1
1þ h

� �
Gammað1; hÞ ð4Þ
which can be restructured as:
e �
X
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1

1þ h

� �
ð5Þ
The NB-L GLM can be written as the following multi-level hierarchical structure using Eqs. (1)–(5):
PðY ¼ y;/;ljeÞ ¼ NBðy;/; elÞ

l ¼ e
b0þ
Xq

j¼1
bjX

e � Gammaðe;1þ Z; hÞ

Z � Bernoulli z;
1

1þ h

� �
ð6Þ
The above formulation is similar to a Generalized Linear Mixed Model (GLMM) (Booth et al., 2003) where the mixed
effects follow the Lindley distribution. In this modeling structure, the crash count follows a NB distribution which is condi-
tional on a site-specific frailty term. The site-specific frailty term e was assumed in order to accommodate extra variance in
the crash data. The Lindley mixed effect, in hierarchical terms, is formulated by adding a site-specific offset (constant) term
in the log-transformed domain of the mean response of the NB distribution.

The specification of prior distributions for the parameters is necessary for obtaining the Bayesian estimate. Prior distri-
butions are meant to describe a prior knowledge about the parameters of interest. The site-specific frailty term follows a
non-informative prior of the gamma distribution. The shape parameter in the gamma distribution follows a Bernoulli distri-
bution with a probability parameter of 1/(1 + h). A weakly informative prior may yield a model output in which the param-
eter estimate for the Lindley distribution may contribute more than the NB distribution. The Markov chain Monte Carlo
(MCMC) can suffer from poor mixing due to the correlation between the intercept and the site-specific frailty term. Accord-
ing to the literature, prior knowledge should be used to formulate the informative priors (if known) (Bedrick et al., 1996;
Schlüter et al., 1997). A prior should be used to ensure E(e) = 1 in order to limit the contribution of the mixed effect from
the Lindley distribution. Geedipally et al. (2012) suggested using a prior for 1/(1 + h) that follows a beta distribution. The
reasonable choice for prior distribution is Beta (n/3, n/2), where n is the total observations (Geedipally et al., 2012).

4. Random parameters NB-Lindley GLM

Let xij denote the j-th covariate associated with i-th site. In a RP model, the coefficient bij is assumed to be random, and is
written as:
bij ¼ bj þwij ð7Þ

where bj denotes the fixed term (the mean parameter estimate), and wij denotes the random term. The random term is
assumed to follow a predefined distribution such as a normal distribution with a mean equal to zero and a variance of
r2. The random parameter bij should be used if the standard deviation of the random term wij is significantly different from
0 (under the frequentist approach; more discussion on that is provided below); otherwise, a fixed parameter or coefficient
should be applied over all the individual observations (Anastasopoulos and Mannering, 2009; El-Basyouny and Sayed, 2009).
Considering the above parameterization, the probability mass function (pmf) for the RPNB model can be written as:
pðyiÞ ¼
Cð/þ yiÞ

Cð/ÞCðyi þ 1Þ ð1� piÞyip/
i ; / > 0;0 < pi < 1 ð8Þ
where, pi ¼ /
liþ/.
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Technically, the NB-L GLM itself can also be considered a random parameters model because the intercept (or the mixed
effect) that follows the Lindley distribution varies from observation to observation. The coefficients of explanatory variables
are considered as random variables when developing a full RPNB-L GLM. In this paper, the NB-L model can be referred to as
RPNB-L if the parameter of any covariate can be considered a random variable. Recalling the hierarchy developed for NB-L
GLM, the RPNB-L GLM can be written as the following multi-level structure:
Pðyi;/;lijeiÞ ¼ NBðyi;/; eiliÞ

logðliÞ ¼ b0 þ
Xq
j¼1

bijxij

ei � Gammaðe;1þ zi; hÞ

zi � Bernoulli z;
1

1þ h

� �
bij ¼ bj þwij

wij � Normalð0;r2
j Þ

ð9Þ
The MCMC chains in RPNB-L may suffer from poor mixing due to potential correlations between the intercept and regres-
sion coefficients, especially since both coefficients vary across observations. One simple way to overcome this difficulty is to
standardize covariates before using them in the model. The traditional way of standardizing a covariate can be written as
follows:
x�ij ¼
xij �mj

sj
ð10Þ
where, i = 1, 2. . ., n denotes the number of observations;
j = 1, 2. . ., q denotes the number of covariates; and
mj and sj are the mean and standard deviation of j-th covariate.

The standardized estimated coefficients need to be transformed back to the original scale after convergence, for ease of
interpretation and inference. The following formulas describe the transformation (Gelfand et al., 1995):
b1 ¼ b�
1

s1
. . .

bq ¼
b�
q

sq

b0 ¼ b�
0 �

Xq
j¼1

bjmj

sj

ð11Þ
where b�
q is the standardized coefficient and bq is the transformed coefficient in the original scale of the covariate.

The current formulation of the random partwij is defined with a prior that follows a normal distribution with a zero mean
value. However, even though the prior is considered to have a mean value of zero for wi, the posterior mean of the parameter
will not necessarily be zero. Hence, this causes a conflict with the fixed effect parameter estimate of b which results in poor
mixing in MCMC chains, and identifiability issues in parameter estimates will therefore occur. A simple but effective method
of centering the fixed effect parameter in the mean of the defined random coefficient can help to overcome this issue. The
random coefficient definition in the model can be structured as:
bij � Normalðbj;r2
j Þ

1=r2
j � Gammað0:01;0:01Þ ð12Þ
Previous literature has explored several distributions such as normal, lognormal, uniform, triangular, gamma etc. The nor-
mal distribution was found to provide the best statistical fit (Li et al., 2008, Anastasopoulos and Mannering, 2009). Thus, nor-
mal distribution was adopted for this study. The above formulation helped to achieve a good mixing in the MCMC chains.

5. Model estimation

The RPNB-L model was formulated and estimated in a Bayesian framework using WinBUGS (Lunn et al., 2000). The tra-
ditional fixed-coefficients NB, the random parameters NB, and the fixed-coefficients NB-L models were also implemented in
a Bayesian framework for comparison purposes. A total of three (3) Markov chains were used in the model estimation pro-
cess with 80,000 iterations per chain for each model. In order to reduce autocorrelation, a thinning factor of three (3) was
used in WinBUGS. The first 25,000 iterations were discarded as burn-in samples. The remaining iterations were used for
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estimating the model coefficients. The Gelman-Rubin (G-R) convergence statistic and Monte Carlo (MC) error were used to
verify that the simulation runs converged properly. In the analysis, the research team ensured that the G-R statistic was less
than 1.1. Mitra and Washington (2007) suggested that convergence was achieved when the G-R statistic was less than 1.2.
The MC error of each parameter estimate was tested to ensure it was less than 3 percent of the estimated posterior standard
deviation.

It is important to note that the estimation of RP models in a Bayesian framework is somewhat different compared to the
frequentist or Maximum Likelihood Estimate (MLE) approach. In a Bayesian framework, the RP approach provides additional
modeling flexibility by adding another level of hierarchy in the model parameterization. The variance in model parameters is
assumed to come from unobserved data heterogeneity and is estimated by adding another level of hierarchy for the variance.
Thus, unlike the MLE estimates, any parameter defined as random in a Bayesian framework will have a positive variance. In
short, although the parameters may have the same mean estimates, the identification of which variables are random will be
completely different. The parameters will always be random in Bayesian models if the Bayesian hierarchical model is defined
as such, but the variables in MLE are considered random only if they meet a specific statistical criterion (i.e., r2 > 0 at a 5%
significance level for example). The goodness-of-fit (GOF) of the models under investigation is also influenced by this differ-
ence in parameters.

Marginal effects are used to determine the impact of each covariate on the expected mean value of the dependent vari-
able. 4 The marginal effect represents the effect of a unit change in the independent variable on the expected mean of the depen-
dent variable. The marginal effect can be estimated as dli

dxik
� xik

li
¼ bikxik, where li is the expected mean outcome in each modeling

approach (Washington et al., 2010). In the case of RP models, it is important to note that the marginal effects were estimated
considering variation in estimated model parameters. The parameter means for each site were estimated after the MCMC chains
converged in WinBUGS, and were then used to estimate the marginal effect of each observation.
6. Data Description

The characteristics of the two datasets used in this study are described in this section, which is divided into two subsec-
tions. The first subsection summarizes the characteristics of the data collected at 338 rural interstate roadway segments in
Indiana. The second subsection describes the characteristics and summary statistics of the data collected at rural two-lane
two-way highways in South Dakota. Both datasets are highly dispersed and characterized by a heavy tail, and both contain
several variables which were used in model development to minimize the omitted-variable bias problem that can plague the
development of crash prediction models (Lord and Mannering, 2010).
6.1. Indiana data

The Indiana dataset contains crash, roadway geometry, and traffic data collected over a five-year period (from 1995 to
1999) on 338 rural interstate roadway segments in the state of Indiana. The Indiana dataset has been used in several previ-
ous research studies, such as Washington et al. (2010); Geedipally et al. (2012) and Shirazi et al. (2016). In this dataset, 120
out of the 338 highway segments did not have any reported crashes over the five-year period (�36% are 0 s). Table 1 presents
the summary statistics of the variables used for developing the models in this study.
6.2. South Dakota data

The South Dakota dataset is characterized by a preponderant number of zero responses and a heavy tail. In this dataset,
the roadway geometric characteristics and traffic data elements were collected from the South Dakota Department of Trans-
portation (SDDOT). Multiple event tables from the SDDOT Roadway Inventory System (RIS) were combined to generate
homogeneous segments. Crash data between 2008 and 2012 were spatially joined with the roadway data according to their
distance. The original dataset for rural two-lane two-way highway segments in South Dakota contains 16,827 segments. A
sample of 10,000 observations from the total segments was used to evaluate the performance of the RPNB-L model in this
study. The rural two-lane two-way segment database was previously used by Rahman Shaon and Qin to evaluate the per-
formance of the NB-L model (Rahman Shaon and Qin, 2016). The summary statistics of the sample data from South Dakota
data are provided in Table 2.

In the South Dakota dataset, 78 percent of the 10,000 sample segments did not experience any crashes during the study
period. The mean and standard deviation of the crash count for the 10,000 sample observations are equal to 0.614 and 2.493,
respectively. Due to preponderant zero crash sites, the estimated skewness of the crash count was equal to 11.624, which
shows that the crash count is highly skewed to the right. Annual average daily traffic (AADT), segment length, lane width,
shoulder width, speed limit and radius of curvature of the horizontal curve were used as continuous explanatory variables
to model crash data. Vertical grade is the only binary variable (1 if Yes, 0 if No) included in the model.
4 The marginal effects were estimated for each observation and the mean value of all marginal effects are represented in Tables 4 and 6. It is important to
note that, the marginal effect for each covariate significantly varies from site-to-site.



Table 1
Summary Statistics for the Indiana Dataset.

Variables Description Mean Standard Deviation Minimum Maximum

Crash Number of Crashes in 5 years 16.973 36.297 0 329
Log(ADT) Logarithm of Average daily traffic over the 5 years 10.036 0.681 9.153 11.874
Friction Minimum friction reading in the road segment over the 5-year period 30.514 6.674 15.900 48.200
Pavement Pavement surface type (1 if asphalt, 0 if concrete) 0.769 0.422 0 1
Median Width Median width in feet 66.984 34.169 16 194.700
Barrier Presence of median barrier (1 if present, 0 if absent) 0.160 0.367 0 1
Rumble Interior rumble strips 0.725 0.447 0 1
Length Segment length in miles 0.710 1.225 0.009 4.054

Table 2
Summary statistics for the South Dakota Dataset.

Variable Definition Mean Standard Deviation Minimum Maximum

Crash Count of Crashes 0.614 2.493 0 88
AADT Annual Average Daily Traffic 917.933 913.790 45 21396
Segment Length Segment Length in Miles 0.383 1.035 0.010 16.494
Speed Limit Posted Speed Limit 57.273 10.712 20 65
Radius Radius of curvature in miles 0.081 0.184 0 1.084
Lane Width Lane width in feet 12.955 2.098 9 24
Shoulder Width Shoulder width in feet 3.046 2.553 0 15
Vertical Grade Yes 21.58%

No 78.42%

M.R.R. Shaon et al. / Analytic Methods in Accident Research 18 (2018) 33–44 39
7. Results and discussions

Detailed modeling results from the application of the RPNB-L GLM to both Indiana and South Dakota datasets are pre-
sented in this section. The first subsection that follows documents the modeling results for the Indiana dataset. The second
subsection provides the modeling results for the South Dakota dataset. The performance of the RPNB-L model was compared
to the NB, RPNB, and the NB-L GLMs for both datasets.

7.1. Indiana data results

Tables 3 and 4, respectively, summarize the modeling results and the estimated marginal effects for the Indiana dataset.
The segment length variable was considered as an offset variable in all modeling approaches, as developed in previous stud-
ies that utilized this dataset (listed above). Therefore, it is assumed that the number of crashes will increase linearly as the
segment length increases. In Table 3, the results of the RPNB-L model were compared to the fixed and random parameters NB
and the fixed parameters NB-L model. In all models, the estimated 95 percent marginal posterior credible intervals for all
coefficients did not include zero. Hence, it can be concluded that all coefficients are statistically significant at a 5 percent
significance level. In this section, only the modeling results for the application of the RPNB-L GLM are discussed.
Anastasopoulos and Mannering (2009) and Geedipally et al. (2012) provide further discussions on the parameter estimates
for random parameters NB and fixed parameters NB-L, respectively.

The parameter mean for the traffic flow variable was estimated using the RPNB-L model to be less than one, indicating
that the crash risk increases at a decreasing rate as the value of the traffic flow variable increases. A similar or consistent
trend was observed for all other modeling approaches. The estimated marginal effect of the traffic flow variable also indi-
cates that this variable has a positive influence on crash occurrence. Although the magnitude of coefficient can vary from
site-to-site using the RPNB-L GLM, all estimated coefficients for the traffic flow variable have a value that is greater than zero.

The sign of the parameter mean estimates for both the roadway geometry and pavement-related variables are consistent
with those found in Geedipally et al. (2012) using the same dataset. In this study, the RPNB-L helps to provide more details
about the parameter estimates by combining the RP structure with the NB-L framework. The friction variable, which repre-
sents the minimum friction reading on the road segment over the five-year period, shows that the majority of sites (71.6
percent of normal density function) have estimated model coefficients with a value of less than zero while the rest of the
sites have a coefficient that is greater than zero; this indicates that the friction variable has a mixed (both positive and neg-
ative) effect on crash risk. The marginal effect illustrates that the overall impact of the friction variable has a decreasing effect
on crash risk. A similar pattern can also be observed with the median width variable. In this case, 66.6 percent of the esti-
mated coefficients have a negative value while the rest are positive. More than 98 percent of the normal density function for
pavement type has a value greater than zero with an estimated parameter mean of 0.422, meaning a change in pavement
type from concrete to asphalt almost always increases the probability of a crash. A similar observation can also be obtained
for the median barrier variable, which supports the effect of the median barrier variable as observed by Anastasopoulos and
Mannering (2009).



Table 3
Modeling Results for the Indiana Dataset.

Parameters NB RPNB NB-L RPNB-L

Value Std. Dev. Value Std. Dev. Value Std. Dev. Value Std. Dev.

Parameter Mean
Intercept �4.449 0.067 �5.486 0.035 �3.947 0.162 �4.443 0.206
Log(ADT) 0.689 0.133 0.816 31.750 0.651 0.145 0.717 0.231
Friction �0.027 0.011 �0.029 0.133 �0.027 0.012 �0.032 0.015
Pavement 0.422 0.189 0.588 0.012 0.445 0.210 0.605 0.281
Median Width �0.005 0.002 �0.012 0.240 �0.006 0.002 �0.012 0.004
Barrier �3.031 0.308 �6.614 0.003 �3.282 0.338 �6.152 0.898
Rumble �0.405 0.186 �0.288 0.437 �0.404 0.207 �0.329 0.260
a = 1// 0.950 0.122 0.137 0.035 0.239 0.083 0.128 0.028
h 1.464 0.180 1.414 0.173

Std. Deviation of Random Parameters
Log(ADT) 0.302 0.172 0.232 0.137
Friction 0.057 0.011 0.056 0.011
Pavement 0.326 0.216 0.291 0.200
Median Width 0.028 0.003 0.028 0.003
Barrier 2.390 0.399 1.925 0.709
Rumble 0.379 0.242 0.310 0.183

Model Performance
Dbar 1891.93 1481.09 1585.93 1422.70
Dhat 1883.01 1296.86 1469.51 1276.00
pD 8.92 184.22 116.41 146.30
DIC 1900.84 1665.31y 1702.34 1569.00
MAD1 6.92 6.90 6.88 6.71

Note: y With the MLE RPNB, only three variables (logarithm of ADT, presence of median barrier and interior rumble strips) were found to be random. This
increased the Deviance Information Criterion or DIC to 1736.

1 Mean Absolute Deviance (MAD) provides a measure of the average miss-prediction of the model which can be estimated as
1
n

Pn
i¼1jPredictedvalue� Observedvaluej. A value close to 0 suggests that, on average, the model predicts the observed data well.

Table 4
Average marginal effects for the Indiana Dataset.

Variables Model

NB RPNB NB-L RPNB-L

Log(ADT) 6.915 8.189 6.533 7.537
Friction �0.812 �0.897 �0.824 �0.896
Pavement 0.325 0.452 0.343 0.578
Median Width �0.351 �0.771 �0.412 �0.785
Barrier �0.484 �1.057 �0.524 �1.181
Rumble �0.293 �0.209 �0.293 �0.378
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7.2. South Dakota data results

The model parameter estimates and marginal effects of the covariates for the South Dakota data are provided in Tables 5
and 6, respectively. The first part of Table 5 provides the estimates of the parameter means, and the second part of the table
provides the estimated standard deviation of the random parameters. Unlike the model development for the Indiana data,
the segment length variable was defined as a covariate rather than as an offset. All covariates were defined as random
parameters in both RPNB and RPNB-L models. The estimated standard deviation of all random parameters was found to
be statistically significant at a 5 percent significance level.

The parameters mean for the lane width variable is not statistically significant at a 5 percent significance level when the
NB distribution is used, as indicated in Table 5. Yet, for the purpose of comparison between different models used in the anal-
ysis, this variable was kept in the model. The parameters mean for lane width did become significant when more advanced
modeling alternatives (i.e.: RPNB, NB-L, and RPNB-L) were applied to this dataset. In addition, the results in Table 5 indicate
that the parameters mean for the shoulder mean variable is not significant for all modeling approaches; however, since the
standard deviation of the parameters is significant, this variable was kept in the model. The location of the mean of the coef-
ficient distribution is not necessarily critical as long as the likelihood function improves with the significant standard devi-
ation of the parameters (Anastasopoulos and Mannering, 2009). While the parameters mean for all explanatory variables
have a similar sign in all applied models, the magnitude of the estimates is different. Interestingly, the standard deviations
of parameters for lane width and shoulder width are both statistically significant at a 5 percent significance level. The param-
eters mean is significant at a 5 percent confidence level for all other variables.



Table 5
Modeling Results for the South Dakota Dataset.

Parameters NB RPNB NB-L RPNB-L

Value Std. Dev. Value Std. Dev. Value Std. Dev. Value Std. Dev.

Parameter Mean
Intercept �7.609 0.027 �7.879 0.052 �7.546 0.038 �7.676 0.043
log(AADT) 0.751 0.031 0.744 0.032 0.754 0.031 0.738 0.032
Segment Length 0.674 0.020 0.745 0.026 0.658 0.018 0.740 0.026
Speed Limit 0.025 0.003 0.033 0.003 0.026 0.003 0.030 0.003
Lane Width �0.006 0.011 �0.037 0.013 �0.010 0.009 �0.026 0.013
Shoulder Width �0.001 0.010 �0.009 0.011 �0.002 0.010 �0.002 0.012
Radius �0.501 0.129 �0.564 0.124 �0.516 0.131 �0.506 0.121
Vertical Grade �0.992 0.073 �1.389 0.133 �1.013 0.073 �1.066 0.089
a = 1// 1.228 0.063 0.406 0.083 0.260 0.049 0.114 0.014
h 1.501 0.033 1.495 0.034

Std. Deviation of Random Parameters
log(AADT) 0.317 0.057 0.121 0.049
Segment Length 0.235 0.022 0.195 0.021
Speed Limit 0.038 0.004 0.033 0.003
Lane Width 0.117 0.021 0.101 0.020
Shoulder Width 0.092 0.019 0.069 0.013
Radius 0.437 0.301 0.384 0.136
Vertical Grade 1.274 0.180 0.550 0.176

Model Performance
Dbar 14,321.02 13,450.15 12238.60 11,550.00
Dhat 14310.30 12,780.00 11166.80 10,150.00
pD 8.98 669.90 1071.81 1393.00
DIC 14,330.00 14120.05y 13310.41 12,940.00
MAD 6.92 6.88 6.72 6.64

Note: Parameter estimates not significant under 5 percent significance level are shown in italic and bold fonts.
yWith the MLE RPNB, all the variables except speed limit were found to be random. This increased the DIC to 14132.

Table 6
Average marginal effects for the South Dakota Dataset.

Variables Model

NB RPNB NB-L RPNB-L

log(AADT) 4.83 4.769 4.85 4.69
Segment Length 0.258 0.269 0.252 0.262
Speed Limit 1.419 2.027 1.473 1.672
Lane Width �0.078 �0.566 �0.131 �0.361
Shoulder Width �0.003 �0.025 �0.006 �0.005
Radius �0.041 �0.05 �0.042 �0.04
Vertical Grade �1.698 �3.189 �1.754 �2.127
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The RPNB-L model has smaller standard deviation estimates for all model coefficients (random parameters). A smaller
standard deviation for the random parameter estimates means that the normal distribution of a covariate parameter is more
centered around the mean value when the RPNB-L model is used; this may be a result of the site-specific frailty term used in
the NB-L formulation that accounts for a portion of data variation.

The segment length and the AADT variables in the RPNB-L model showed a positive relationship with crash count for
almost all segments, but with varying magnitude. The estimated marginal effect for AADT also emphasizes the positive effect
AADT has on crash occurrence. A similar trend is also observed for the segment length variable. More than 81.8 percent of the
sites have parameter estimates that are greater than zero for the speed limit variable. The estimated marginal effect for the
speed limit variable indicates that there is an overall increase in crash occurrence with a unit increase in the speed limit
variable.

The distribution of Radius of curvature has a crash count that decreases when the radius of curvature increases, but the
magnitude varies among sites, as expected. The standard deviation of parameter estimate for the radius of curvature indi-
cates that more than 90 percent of sites have negative coefficients. Similar observations can be made for the lane width vari-
able, where 60.2 percent of the random parameter estimates have a value of less than 0. This trend also applies to the
shoulder width variable, where more than 51 percent of the parameter estimates have a value of less than zero. Rahman
Shaon and Qin used the same dataset and made similar observations (Rahman Shaon and Qin, 2016). The authors noted that
lane width may have mixed safety effects, and an increasing lane width or shoulder width or combination of both may not
always bring additional safety benefits. Further research should look into whether or not an increase in lane width leads to
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an increase in safety. One interesting finding is that the estimated marginal effect of the shoulder width variable is quite
similar between NB, NB-L, and RPNB-L (between �0.003 and �0.006), whereas it is quite different for the RPNB model.
One possible explanation for this variation could be that the mean estimate of the shoulder width itself is not statistically
significant in all models. The model parameters estimate and marginal effect of the grade variable indicates that the presence
of vertical grade reduces crash occurrence for almost all sites (97.4 percent of the distribution has value less than zero). The
estimate of the dispersion parameter is also the smallest for the RPNB-L model. The Poisson regression is a limiting case of
the NB regression because the dispersion parameter approaches zero. The mean estimates in the RPNB-L model are less
affected by the data dispersion, which means this model captures more variation in the data than the other three models.

7.3. Model performance

The last section of Tables 3 and 5 provides the model performance estimates based on the Deviance Information Criterion
(DIC) for the Indiana and South Dakota datasets, respectively.5 The DIC is a widely used GOF statistic for comparing models in a
Bayesian framework (Spiegelhalter et al., 2002). It is worth pointing out that the model parameterization can influence the esti-
mation of the DIC value, and the comparisons with DIC should be made only between models that have similar parameteriza-
tions (Geedipally et al., 2014). All developed models can be adequately compared using the DIC measure because both the NB-L
and RPNB-L models are developed based on the NB model parameterization. The DIC consists of two components: (a) measures
of how well the model fits the data, Dbar ðDðhÞÞ and (b) a measure of model complexity (pD). Thus, DIC can provide a better
comparison between models that are characterized by different complexities.

A comparison of the DIC values between models illustrated that the RPNB-L model performed better than the NB-L and
RPNB. Tables 3 and 5 show that the DIC value is highest in the traditional NB model. The small pD value illustrates that the
NB model is less complex than other model alternatives used in this study. According to the estimated pD value, the RPNB-L
model is the most complex of all the models due to its mixed distribution and random components in the explanatory vari-
ables. The point estimate of deviance illustrated by Dhat shows that the RPNB-L model has the smallest deviance in both
datasets. Dbar represents almost the same information as Dhat except that it represents the posterior mean of deviance
rather than a point estimate. The RPNB-L model, despite having the highest penalty value of pD, has a 5.8 percent and
7.8 percent improvement in DIC values for the Indiana dataset when compared with the RPNB and fixed parameters NB-L
model, respectively. The MAD estimates indicate that the fixed-coefficient NB-L model has better predictive ability than
RPNB even though the estimated DIC value is smaller with RPNB compared to the fixed parameters NB-L model. The
improvement in DIC with the RPNB-L model compared to the RPNB and NB-L models for the South Dakota dataset are
8.4 percent and 2.8 percent, respectively. The MAD estimates illustrate that RPNB-L has the lower mean absolute error com-
pared to other models in both datasets. Due to the frailty terms that explain additional data heterogeneity along with ran-
dom parameter, RPNB-L compensates for increased model complexity by improving the predictive modeling ability, which is
reflected in the MAD that considers both bias and variance.
8. Summary and conclusions

Researchers can experience challenges when it comes to understanding the underlying crash generating process, produc-
ing reliable model coefficients, and making statistical inferences from crash data. This study proposed the application of a
RPNB-L GLM for analyzing crash data by implementing an NB-L model with coefficients that varied from site to site. The
model was applied to two observed datasets, one collected in Indiana and the other in South Dakota. The model results were
compared to the traditional NB, RPNB, and fixed parameters NB-L models. Results showed that both the fixed coefficient NB-
L (especially compared to the MLE RPNB) and newly developed RPNB-L GLMs performed better than a fixed and random
parameters NB GLM. The estimated effects of covariates using RPNB-L were less dispersed when compared to the RPNB
model, according to the estimated standard deviation of random parameters. The RPNB-L model’s proficiency in accounting
for highly dispersed data led to its ability to achieve around 6 percent and more than 8 percent improvement in DIC, respec-
tively, for the Indiana and South Dakota datasets when compared to the RPNB model. The estimated skewness of the crash
count was 11.624 for the South Dakota data. Shirazi et al. (Shirazi et al., 2017) recommended that the NB-L (and RPNB-L)
should be used over the NB when the skewness value exceeds 1.92. In conclusion, both the fixed and random parameters
of NB-L GLMs offer a viable alternative to the traditionally fixed and random parameters NB GLMs when analyzing over-
dispersed crash datasets.

The random parameters defined in this study were independent and characterized by a single normal distribution to
account for unobserved heterogeneity in crash occurrences. The independence assumption restricts the interaction between
random parameters. It is possible that the sources of heterogeneity are correlated due to the interactions between explana-
tory variables (Mannering et al., 2016). Mannering et al. (2016) suggested developing a random parameters model with cor-
related parameters to account for correlation among random parameters; however, using a simple distribution to
characterize the random parameter mean and variance may not fully capture the underlying nature of unobserved hetero-
5 DIC is a hierarchical modeling generalization of the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), defined as
DIC ¼ DðhÞ þ pD and pD ¼ DðhÞ � DðhÞ, where h represents the collection of parameters.
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geneity in the dataset which could result in erroneous model inferences. Unobserved heterogeneity can be tracked in a more
sophisticated manner when heterogeneity is included in the mean and variance, as additional flexibility is included in the
heterogeneity capturing process (Behnood and Mannering, 2017b,a; Seraneeprakarn et al., 2017). The proposed model
should be developed further, and more reliable parameter estimates should be obtained by applying an RPNB-L with corre-
lated random parameters and an RPNB-L with heterogeneity in the mean and variance. Additionally, more work should be
performed to examine the ‘‘identification” of random parameters under the Bayesian framework in order to match those
identified under the frequentist approach.
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