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ABSTRACT 

As the most important real-time traveler information, travel time can be either experienced or 1 

expected (i.e. to be experienced). When a vehicle completes a trip, the travel time refers to the 2 

experienced travel time. In contrast, when a vehicle starts its journey, the travel time is unknown 3 

but can be predicted, which is the expected travel time. Although the experienced travel time is 4 

termed as the real-time travel time, a traveler may encounter a somewhat different travel time 5 

(from expected travel time) due to the changing traffic conditions. Therefore, expected travel 6 

time needs to be predicted. In this study, the expected travel time was predicted from the 7 

experienced travel time using the data mining techniques such as k-nearest neighbor (k-NN), 8 

least squares regression boosting (LSBoost) and Kalman filter (KF) methods. After comparing 9 

the performances of KF to corresponding modeling techniques from both link and corridor 10 

perspectives, it is concluded that the KF method offers superior prediction accuracy in a link-11 

based model. Moreover, the effect of different noise assumptions was examined and it is found 12 

that the steady noise computed from the full-dataset had the most accurate prediction. A data 13 

processing algorithm, which processed more than a hundred million records reliably and 14 

efficiently was also introduced. 15 

Keywords: experienced and expected travel time, arrival and departure time based travel time, 16 

travel time prediction, data mining, Kalman filter, modeling Kalman filter noise, K-nearest 17 

neighbor method, Boosting, LSBoost. 18 

1. Introduction 19 

Travel time is an important component of Advanced Traveler Information Systems (ATIS), 20 
as it is a key factor for travelers who are faced with non-recurring congestion (Khattak et al., 21 

1996). Aside from measuring transportation system performance, travel time has been used to 22 
predict future travel time and traffic state, which help the traffic operations room in versatile 23 
ways. Amongst all available techniques, Bluetooth has emerged as one of the fastest growing 24 
data collection technologies whose market share is continuing to rise, mainly due to its cost 25 
effectiveness (Blogg et al., 2010, Moghaddam and Hellinga, 2013). Bluetooth is a probe-based 26 
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(Puckett and Vickich, 2010) Automatic Vehicle Identification (AVI) technique used for 1 

collecting travel time data. Each Bluetooth device contains a unique electronic identifier known 2 
as a Media Access Control (MAC) address/identifier. Devices with MAC addresses that are in 3 
range can be logged as long as a simple antenna is mounted adjacent to the roadway. Travel time 4 
and corresponding traffic speed can be estimated by the timestamp difference between two 5 
consecutive stations with matching MAC addresses (Bachmann et al., 2013). 6 

Travel time is measured by the time elapsed when a traveler moves between two distinct 7 
spatial positions (Carrion and Levinson, 2012). Over a decade, various studies have attempted to 8 
define travel time estimation (e.g. instantaneous travel time, experienced travel time (Xiao et al., 9 
2014), and predicted travel time (Bhaskar et al., 2011)), but the definitions lack clarity, which 10 
has created confusion and inconsistency in data collection and analysis (Bhaskar et al., 2011, 11 
Toppen and Wunderlich, 2003). Recently, one study made clear the distinction between arrival 12 

time-based link travel time and departure time-based link travel time (Kim et al., 2009).  13 

Arrival time-based link travel time (ATT) and departure time-based link travel time (DTT) 14 
have two different estimation algorithms. ATT refers to the travel time associated with arrival at 15 
the destination, while DTT refers to the travel time associated with departure from the origin. In 16 

practice, ATT is the experienced travel time (     ) that is calculated using arrival and departure 17 

times of the vehicles when both are available. On the other hand, DTT is the expected travel time 18 

(     ) that is predicted at the time of departure when arrival time is unavailable. To get ATT or 19 

       and DTT or        , assume that two vehicles (   and   ) start at 8:30am and 9:00am from 20 

point A, respectively. If the assumed clock time is now 9:00am and the first vehicle (  ) has just 21 

arrived at point B. Then, the arrival time based travel time for link AB,              22 

       (based on the experienced travel time of   ). The departure time based link travel time, 23 

                    . If the arrival time for    at point B could be predicted (say, 24 

9:25am), the departure time based travel time would be,                     (based on the 25 

expected travel time of   ). Since the DTT at 9:00am is unavailable until a later time, i.e., until 26 

the    travels the link AB, it is understandable that the DTT at 9:00am requires a prediction of 27 

travel time. Fig. 1 illustrates the concept of estimating ATT or       and DTT or       for a route 28 

considering multiple vehicles: 29 

 30 

 31 

 32 

 33 

 34 

Fig. 1. Estimating ATT and DTT of link AB at 9am. 35 

Practitioners usually treat ATT (or      ) as the travel time due to the lack of available DTT 36 

(or      ); however, this reported ATT is one-step (step interval = travel time) earlier than the 37 

actual travel time to be experienced (DTT) by drivers. Although ATT and DTT differ slightly in 38 
a free-flow condition, the difference can sharply escalate at the onset and end of traffic 39 
congestion. ATT usually lags behind DTT during a transition of traffic state, and the difference 40 
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starts to decrease when the traffic state becomes stable. Information on travel time during a 1 

transitional state, as opposed to a stable state, is more important to travelers. Ideally, the travel 2 
time should be the predicted travel time that will be experienced by a traveler, or DTT. This 3 
predicted travel time also helps ensure proper and proactive operations and management of 4 
traffic in a network. Unfortunately, few studies have distinguished between DTT and ATT or 5 
attempted to estimate DTT (Kim et al., 2009). 6 

The overarching goal of this study is to develop a comprehensive model for short-term 7 
freeway travel time prediction using Bluetooth data. A dynamic filtering algorithm was proposed 8 
to accurately estimate ATT and thus, reliably predict DTT. An efficient computer algorithm was 9 
developed to process, refine, and integrate a massive Bluetooth dataset, which filtered the travel 10 
time. Finally, prediction algorithms were examined to predict DTT from real-time ATT, and the 11 
better performance of the proposed prediction was observed. 12 

 13 

2. Literature review 14 

Travel time data are subject to outliers. The main purpose of outlier detection algorithms is to 15 
detect extreme travel times that result from sampling bias. Fixed-range outlier filtering methods 16 
are not suitable for travel time filtering due to local travel time turbulences, especially when they 17 
occur at the onset or end of congestion. To avoid imposing arbitrary fixed-bound, researchers 18 
have introduced moving average speed based lower and upper-bound (Haghani et al., 2010) and 19 
data-driven real-time adaptive-bound methods (Dion and Rakha, 2006). (Dion and Rakha, 2006) 20 
incorporated a few simple yet significant alterations in their proposed adaptive method, which 21 
offers an alternative to conventional algorithms like percentile, deviation, and traditional 22 

(modified) z- or t-statistical test (Liu, 2008, Clark et al., 2002). The main alteration includes 23 
expanding the data validity window when three consecutive observations fall either above or 24 
below (same side) the window. While this key adjustment helps capture sudden changes in travel 25 
time trends, it is prone to the inclusion of extreme outliers, and therefore compromises the 26 
accuracy of travel time estimation. In response to (Dion and Rakha, 2006) method, (Moghaddam 27 
and Hellinga, 2014) proposed a proactive method that uses a pattern recognition model, which 28 
showed superior performance. But the author acknowledged that the performance of outlier 29 
detection algorithms cannot be objectively quantified when the algorithms are applied to field 30 
data. Appropriate estimation of travel time is possible only when an effective outlier filter is 31 
used. Many studies have examined accurate estimation of travel time in a real-time fashion (Dion 32 
and Rakha, 2006, Skabardonis and Geroliminis, 2005, Moghaddam and Hellinga, 2014, Rice and 33 
Van Zwet, 2004). In most cases, the sophistication of filtering algorithms to maximize the 34 
accuracy led to a certain level of complexity in real-time applications. Therefore, a simplified 35 

version of these proposed algorithms is preferred. 36 

Broadly, travel time prediction methods can be classified into the classical approach (Oda, 37 
1990) including statistical (Rice and Van Zwet, 2004) and time series models (Al-Deek et al., 38 
1998, Hamed et al., 1995), and the data mining approach (Vlahogianni et al., 2014, Zheng and 39 
Van Zuylen, 2013, Zhang et al., 2014, Wu et al., 2004, Myung et al., 2011). Due to the instability 40 
of traffic states, most classical approaches have shown to be incapable of better prediction, 41 
especially with regard to structured and unstructured data (Vlahogianni et al., 2014). Therefore, 42 
advanced data mining methods have become popular to predict travel time. As such, (Jenelius 43 
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and Koutsopoulos, 2017) proposed a multivariate probabilistic principal component analysis 1 

method that predicts travel time based on the expected distribution of link travel times. The 2 
method provides superior results to the k-NN method. (Zhong et al., 2017) introduced an online 3 
travel time prediction system without sacrificing computational efficiency. The system adopts 4 
functional principal component analysis framework and utilizes historical and real-time travel 5 
time data to predict link travel time. (Zhang et al., 2015) applied a two-component generalized 6 
autoregressive conditional heteroskedasticity (GARCH) model that captures trend and seasonal 7 
components to improve prediction results. (Fei et al., 2011) employed a Bayesian inference-8 
based dynamic linear model (DLM) to predict online short-term travel time. (Sumalee et al., 9 
2013) estimated dynamic stochastic journey time distribution and predict travel time based on 10 
stochastic cell transmission model. (Zhan et al., 2013) extracted travel time data from origin-11 
destination dataset by minimizing the least squared error between the observed and expected 12 
path travel times. (Zou et al., 2014) exploited a space-time diurnal method to predict travel time 13 

that considers spatial and temporal correlation and diurnal pattern of travel times. In addition to 14 
vehicle trajectory-based methods, (Celikoglu, 2013) used flow model to predict travel time that 15 
not only increases accuracy but also reduces computational complexity. Since data mining 16 
approaches fit easily with massive datasets, researchers have also applied neural networks 17 
(Zheng and Van Zuylen, 2013), fuzzy and evolutionary techniques (Zhang et al., 2014), support 18 
vector regression (Wu et al., 2004), and the k-nearest-neighbor (k-NN) (Myung et al., 2011) 19 
model to directly or indirectly predict travel time. According to Myung et al., the use of non-20 
representative samples to train the artificial neural-network (ANN) model may lead to a non-21 
negligible error in prediction (Myung et al., 2011). These data mining approaches require 22 
representative samples (Smith et al., 2002) and sometimes suffer from a lack of interpretability 23 
and transferability. On the other hand, simple methods (e.g. instantaneous, historic average and 24 
clustering over specific days) exhibit low accuracy (Van Hinsbergen et al., 2007). Although 25 

LSBoost, a data mining technique, has been widely used (Jiang, 2001a, Jiang, 2001b, 26 
Barutçuoğlu and Alpaydın, 2003, Jiao et al., 2006, Darwish, 2013) in different fields for many 27 
years, only recently being popular in transportation studies such as perception reaction time 28 
(Elhenawy et al., 2017), congestion duration (Ghosh et al., 2016), freight flow (Moscoso‐ López 29 
et al., 2016) and emission (Oduro et al., 2015) prediction. 30 

KF, an optimal recursive data processing algorithm, has been widely used with various 31 
modifications (e.g. adaptive KF (Guo et al., 2014) and extended KF (Liu et al., 2006)) in several 32 
studies including those on travel time prediction (Chien and Kuchipudi, 2003, Nanthawichit et 33 
al., 2003, Yang, 2005, Chen and Chien, 2001). KF incorporates all information that can be 34 
provided and processes all available measurements to estimate the current value of the variables 35 
of interest (Maybeck, 1990). The KF method has two components: process/system/state-space 36 

and measurement/observation. Nanthawichit et al. formed their state-space equation by declaring 37 
traffic density and space mean speed as state variables, developed their observation equation by 38 
declaring traffic volumes and spot speeds as observation variables (Nanthawichit et al., 2003). 39 
Chen and Chien used travel time as the input variable in both of these equations; previous step 40 
travel time was multiplied by a transition matrix to obtain the state update equation (Chen and 41 
Chien, 2001). A similar study was conducted using field data (Chien and Kuchipudi, 2003) 42 
rather than simulated data (Chen and Chien, 2001). Despite promising results, these studies lack 43 
details about sources of process and measurement (variables’) values.  44 
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Researchers (Chen and Chien, 2001, Chien and Kuchipudi, 2003, Nanthawichit et al., 2003, 1 

Yang, 2005, Chen and Rakha, 2014) have modeled the state-space as a linear system to which 2 
KF was applied. The KF model uses both a priori (derived by state-space/process) and the 3 
observation of the same timestamp to get a posterior by using the update equation. Within this 4 
procedure, the model combines all available observations and prior knowledge of a system in a 5 
way that statistically minimizes errors (Maybeck, 1990). The model can be directly applied to 6 
signal processing and control systems (when observations are available) in order to filter out the 7 
noise. KF has also been widely applied to time series forecasting with a state-space model 8 
(Durbin and Koopman, 2012, Hamilton, 1994, Harvey, 1990) where the update equation 9 
(Commandeur and Koopman, 2007, Durbin and Koopman, 2012) clearly states a time latency; 10 
the next step is predicted using the observations from the current step. Hence, predicting DTT 11 
from ATT is more advantageous over a single source time series data models.  12 

3. Data preparation and reduction 13 

Bluetooth data contains three variables: the MAC ID of the detector, MAC IDs of the 14 
detected devices, and the detection timestamp. In spite of a simple data format, a complex 15 
processing algorithm is required to produce the final dataset from the source, which stores the 16 
entire network data in a single table. For a logged MAC ID, recorded timestamps at two 17 
consecutive stations are processed to estimate travel time and the corresponding traffic speed. 18 
The detailed description of the processing algorithm is beyond the scope of this paper; therefore, 19 
a brief description is included below with a limited description of the data characteristics. 20 

The selected study area consists of a 62.8-mile long route, or approximately 47.5 miles on I-21 
90 and the remaining on the Beltline Highway in Madison, Wisconsin. The route is equipped 22 
with 41 unequally spaced Bluetooth stations, resulting in 40 links. The first 21 links are on I-90, 23 

the 22
nd

 link is on both corridors, and the remaining links are on the Beltline. The spacing varies 24 
from 1.3-3.4 miles on I-90 and 0.4-1.3 miles on the Beltline Highway. Forty-seven days’ worth 25 
of data (11/16/2015-01/01/2016) containing more than 100 million records was collected from 26 
traffic in both directions. Half of the records were from outside the study-area. Each station of 27 
the one hundred stations selected captured around one million records for 47 days, or 67,680 28 
minutes. However, a large portion (approx. three-fourths) of the data are either corrupted or 29 
contaminated due to multiple detections and unsuccessful detections (i.e. not detected in two 30 
consecutive stations). Fig. 2 shows the complete procedure of data processing. 31 
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 1 

Fig. 2. Data processing procedures. 2 

A Bluetooth station usually detects a Bluetooth device in its range more than once. The 3 
number of such detections can increase significantly due to planned or unplanned slowing 4 

down/stopping of vehicles. A general inspection of the dataset revealed that such detections 5 
usually vary two to four times. Oracle queries helped clean up the multi-detection, resulting in 6 
the total number of records decreasing from 105 million to 26 million. The data was then 7 
separated by each station for the selected routes, further reducing the records to 10 million. 8 
Unsuccessful detections were automatically ignored due to the vehicle’s detection timestamps 9 
from two adjacent stations. Travel times were calculated. Next, the reduced dataset of 8 million 10 
samples was processed through a robust Java-based pre-processing module that investigated each 11 
record individually and cleaned all redundant records based on the following principle: 12 

Two detections of a vehicle at a station (    ) are valid separate detections if the vehicle is 13 

detected at least once at its upstream station (    ) within the time gap of two detections 14 

at     .  15 

For example, a vehicle detected on 08:59am, 09:01am and 09:08am at     , and on 09:04am at 16 

    . Detection on 09:01am is redundant since there is no detection at upstream station      in 17 
between 08:59am and 09:01am. In addition, neither 09:01am nor 09:08am is a redundant 18 

detection since there is a detection at upstream station      on 09:04am. Note that the Bluetooth 19 
stations were capturing both directions of traffic and the vehicle used as an example made a U-20 
turn/return-trip. The pre-processed dataset of 7 million records was further processed to filter 21 
outliers. Finally, a Java-based programming module produced the travel time and speed data 22 
using the outlier-filtered data. Since travel direction is pertinent to travel time, this study used 23 
northbound data.  24 
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 1 

4. Methodology 2 

The methodology section details the algorithms for outlier filtering, ATT, DTT, travel speed 3 
estimation, and travel time prediction.  4 

 5 

4.1. Outlier Filtering 6 

A preset upper and lower boundary helped filter out the outliers. The following equation 7 
defines the lower boundary: 8 

         
     

 
    (1) 9 

where,        and      stand for lower bound and free flow travel time, respectively. A vehicle 10 

was considered to be an outlier if its speed exceeded more than double the posted speed limit. 11 

A dynamic validation window works best in outlier filtering (Dion and Rakha, 2006). The 12 
upper boundary is defined by the following equation: 13 

                   (2) 14 

where            and    are upper bound, expected travel time, and expected standard deviation 15 

of travel time (samples), respectively.           . 16 

 17 

4.2. Speed Estimation 18 

The following equation estimates the space mean speed of a link AB with length L: 19 

  
 

 

 
     

 (3) 20 

where n is the observation count in a defined interval and     is the travel time of  th
 observation. 21 

 22 

4.3. Travel Time Prediction 23 

4.3.1. K-Nearest Neighbor (k-NN) method 24 

Travel time at any timestamp is related to the travel time of its close temporal proximity. 25 
Therefore, DTT is modeled by the nearest ATT. 26 

                  (4) 27 

where      = predicted difference of ATT and DTT at a time-step t. 28 

Travel time difference,      is predicted by the distance weighted k-NN method using 29 
historic daily data: 30 

     
            

      
  (5) 31 
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where        is the difference between ATT and DTT on a historic day, d at a time-step, t and 1 

     is the corresponding weight which is the measure of the similarity between two traffic 2 
patterns: the traffic pattern of the present day and of the historic day, d. This similarity is the 3 
reciprocal of the measure of the variation between those two traffic patterns. This variation is 4 
measured by the Euclidian squared distance of two n-dimensional vectors representing the latest 5 
travel times (ATT of n-steps) from the present day, p and historic day, d: 6 

                                    and                                    . 7 

Since, the n-steps should be the steps that have the most significant impact on the current step t 8 
to reflect the traffic pattern, the determination of n is a heuristic approach. In this study, travel 9 
time was predicted for n = 1, 2, 3, …, 10. 10 

 11 

4.3.2. Boosting: Least Square Regression (LSBoost) method 12 

LSBoost is a least square regression boost approach that fits regression ensembles to 13 
minimize mean-squared error. At each step, a new learner is fitted to the difference between the 14 
observed response and the aggregated prediction of all learners grown previously. The following 15 
figure represents the algorithm: 16 

                      17 

                  18 

                       19 

                                  
     20 

                           21 

        22 

Output the final regression function      . 23 

Fig. 3.  The lest square regression boost algorithm (Friedman, 2001). 24 

4.3.3. Kalman Filter method 25 

ATT is chosen for observation, as it is the observation nearest the DTT to be predicted. After 26 

rearranging Equation 4 as                  and treating        as the observation noise 27 

(  ), observation equation shows a linear relationship between ATT and DTT in Equation 6: 28 

               (6) 29 

where,   denotes the observation noise. This equation is equivalent to a standard KF observation 30 

equation such as             where z and x represents observation and state variables (or 31 
ATT and DTT in this case) respectively. The observation matrix, H is assumed to be 1. 32 

The current traffic condition is more correlated with close conditions than it is with distant 33 
conditions. The proposed state-space equation is: 34 

                     (7) 35 

And the transition function,     : 36 
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  (8) 1 

where   denotes the state-space noise. The proposed state-space equation is similar to a standard 2 

KF state-space model,                  where  , the state variable, is replaced with the 3 
DTT. 4 

The proposed KF model based on (Welch and Bishop, 2006) is described below: 5 

Fig. 4. KF model. 6 

The most recent DTT (                 ) is unavailable until the vehicles have finished 7 
travelling the route; therefore, the DTT from the latest and same historical day of week at 8 

                  are used to estimate   .   and   are assumed to be independent of each 9 

other and follow the normal probability distributions:             and             . 10 

A priori (    
 
 ), according to its definition, should be equal to a corresponding DTT. 11 

Therefore, the differences between a priori (i.e. state-space projection) and DTT are considered 12 

the state-space noise. the State-space noise (  ) is measured by: 13 

            
 
  (9) 14 

where     
 
 = Corresponding a priori of DTT at time t. 15 

The observation - after the noise is removed - should be equal to the predicted DTT or a 16 
posterior, according to eq. (6). Therefore, the difference between observation and predicted time 17 

(i.e. DTT-ATT) is considered as the observation noise. The observation noise (  ) at time t can 18 
be expressed as: 19 

             (10) 20 
Considering computational simplicity and the availability of sufficient data, noise from 21 

historic all-days (instead of same-days) was used to estimate the noise covariance. Assumptions 22 
regarding the temporal characteristics of noise can be categorized into three types: 23 

 

    
 
        

    

  
          

    

Time Update (“Predict”): 

1. Project the state ahead 

2. Project the error covariance ahead 
    

  
 

   
    

 

    
       

 
              

 
   

           
  

Observation Update (“Correct”): 

1. Compute the Kalman gain 

2. Update estimate with observation      

3. Update the error covariance 

Initial estimates for     
  and    
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a) Steady Noise (SN): Regardless of time of day, noise is assumed to be the same for a day and 1 

estimated from the complete training dataset. 2 
b) Contextual Noise (CN): Noise is assumed to vary by traffic state (free-flow, delay, recurrent, 3 

and non-recurrent congestions). Therefore, the entire dataset is divided into four subsets – 4 
free-flow, delay, recurrent, and non-recurrent congestions – based on the travel time. Four 5 

covariance matrices (            and     ) are estimated using these sub-datasets.  6 

c) Time-varying Noise (TVN): Noise is assumed to vary with every time step of prediction; 7 

hence, the covariance matrix (  ) is estimated by the noise of a training dataset at time t. In 8 
other words, covariance matrices are estimated by splitting the entire dataset into 1,440 9 

subsets for 1,440 intervals of a day. Therefore,    {             } depending on     10 
interval of a day. 11 

 12 

4.4. Prediction Performance Evaluation Criteria 13 

The mean absolute error (MAE), mean absolute percentage error (MAPE) and root-mean-square 14 
error (RMSE) were applied to evaluate the performance of travel time prediction methods. In 15 
general, lower value of the MAE, MAPE and RMSE indicates the superiority in prediction. 16 
However, a lower MAE, MAPE and RMSE for a corridor that experiences free-flow condition, 17 
not necessarily prove that the prediction method is superior. Since travel time of such a corridor 18 
mostly remains unchanged for a short time interval, a naïve method (e.g. using current travel 19 
time as the 5-min ahead prediction), as opposed to an advanced method, might work best. 20 
Therefore, it is important to quantify the performance of the naïve method and compare the 21 
results with the results of advance methods for better understanding. The comparison helps to 22 
quantify the overall improvements made by an advance method. In this study, the MAE, MAPE 23 

and RMSE from the prediction results of a naïve method, considering that using ATT as the 24 
prediction of DTT is a naïve method, was termed as Actual MAE, Actual MAPE and Actual 25 
RMSE (i.e. AMAE, AMAPE and ARMSE) respectively. 26 

 27 

5. Results & discussion 28 

The complete dataset in this study was divided into two sets: Training and Validation. 29 
Twenty-eight of forty-seven days’ worth of data was used for the training dataset, and the rest of 30 
the data was used as the validation dataset. It was more appropriate to use link speed data as 31 
opposed to link travel time due to the variability in link lengths. The prediction performance 32 
index was utilized to perceive global performance (i.e. the performance of the entire network). 33 
The MAPE was calculated based on the travel time dataset in order to discern the local 34 

performance at each link. Quantifying improvement is impossible without knowing the AMAPE 35 
or actual lag/gap, considering that using ATT as the prediction of DTT is a naïve method. 36 
AMAPE (i.e. MAPE of ATT) was used as the benchmark for MAPEs generated by other 37 
methods. 38 

The k-NN method showed different prediction performance of different values of n (n = 1, 2, 39 
…, 10). Fig. 5 represents the local (i.e. each link) performance of the k-NN model for validation 40 
dataset when n=1, 3 and 5. When evaluating criteria of local performance, the MAPE of the 41 
prediction for each link should be smaller than that of the actual lag/gap (AMAPE or the 42 
benchmark). 43 
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 1 

Fig. 5.  MAPE of k-NN model at each link vs. actual gap. 2 

In Fig. 5, MAPEs of travel times predicted by the k-NN method using n = 1, 3 and 5 are 3 
compared to the actual lag/gap. The local performance is unacceptable since the MAPEs of more 4 

than half of the links are greater than the actual lag/gap. Performance shows a decreasing trend 5 
(i.e. MAPE increases) with the increase of n. Moreover, the global performance measured by the 6 
MAPE over entire route is poor. The overall MAPEs are higher than the actual gap or AMAPE 7 
(6.70%), suggesting the lack of repeating traffic condition over the entire period. Therefore, k-8 
NN is not an appropriate method to predict DTT from ATT when the traffic conditions in the 9 
training dataset are not similar to the conditions in the validation dataset. 10 

Two new variables, day of the week and time of the day, were included besides ATT in the 11 
LSBoost application. In addition, the latest ATTs (2, 3, 5, 10 minutes etc.) were combined with 12 
the current ATT to create a new variable. Similar prediction performances were observed for 13 
different numbers of newly added ATT columns (n = 2, 3, 5 and 10). In other words, this 14 
algorithm shows limited sensitivity to the size of the combined ATTs. For visual clarity, only 15 
two selected results with the actual gap are shown in Fig. 6 below:  16 
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 1 

Fig. 6.  MAPE of LSBoost at each link vs. actual gap. 2 

In Fig. 6, MAPEs of travel times predicted by LSBoost using two, three and five previous-3 
step ATTs (n = 2, 3 and 5 respectively) with current ATT are compared to the actual lag/gap. 4 
The MAPEs and AMAPEs of different links on I-90 have very similar values which indicate the 5 
shortcoming of this method on a freeway that experiences free-flow. The performance of 6 

LSBoost prediction is notably well for the Beltline Highway that experiences congestion. The 7 
link (22

nd
) that connects I-90 and Beltline corridor performs very poorly showing MAPE much 8 

higher than that of AMAPE. Therefore, LSBoost is not recommended at this point to predict 9 
DTT from ATT for freeways. 10 

Spatial noise characteristics for KF models were assumed in this study by considering that a) 11 
noise of different links in a particular corridor can have similar characteristics, and b) noise of 12 
different links, regardless of corridor, can have different characteristics. Previously, three 13 
categorical assumptions regarding temporal characteristics of noise have been discussed; 14 
therefore, the output of the KF model would be affected by six different estimation procedures of 15 
noise covariance regarding the spatial-temporal characteristics of noise. The six methods are: 16 
corridor-based steady noise (CB-SN), contextual noise (CB-CN), time-varying noise (CB-TVN), 17 
link-based steady noise (LB-SN), contextual noise (LB-CN), and time-varying noise (LB-TVN). 18 

Appropriate noise characteristics of KF should be determined through the evaluation of local 19 
performance. Fig. 7, Fig. 8, and Fig. 9 represent the local (i.e. each link) performance of the KF 20 
model for validation dataset with different noise assumptions. When evaluating criteria of local 21 
performance, the MAPE of the prediction for each link should be smaller than that of the actual 22 
lag/gap (AMAPE or the benchmark). In Fig. 7, MAPEs of prediction by the KF model using CB-23 
SN and LB-SN are compared to the actual lag/gap. The prediction performances of the KF model 24 
using both CB-SN and LB-SN for each individual link are acceptable, as no link shows a MAPE 25 
greater than the actual lag/gap. 26 
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 1 

Fig. 7.  MAPE of KF at each link for steady noise assumption vs. actual gap. 2 

In Fig. 8, MAPEs of travel times predicted by the KF model using CB-CN and LB-CN are 3 
compared to the actual lag/gap. It is clear that the KF model with both CB-CN and LB-CN has a 4 
few links’ MAPE greater than AMAPE. In general, the context-based noise assumption is 5 
supposed to perform better for the corridor that experiences congestion. The poor performance 6 
could be due to the stability of travel time resulting from the saturated traffic flow rate under 7 
congestions. At a saturated flow, the variations between ATT and DTT become similar to the 8 

variations in free flow or delay conditions.  9 

 10 

Fig. 8.  MAPE of KF at each link for contextual noise assumption vs. actual gap. 11 
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In Fig. 9, MAPEs of travel times predicted by the KF model using CB-TVN and LB-TVN 1 

are compared to the actual lag/gap. The assumption of CB-TVN is invalid for a corridor with 2 
some links that experience traffic congestion. Despite the improvement from contextual noise 3 
assumption, Fig. 9 shows that the noise homogeneity assumption of CB-TVN is violated at Link 4 
28, as its performance exceeds the actual lag/gap (AMAPE).  5 

 6 

Fig. 9.  MAPE of KF at each link for time varying noise assumption vs. actual gap. 7 

The above discussion provides a comprehensive description of local/link performance of 8 
different noise assumptions in a KF model. The unambiguous analyses reflect the suitability of 9 
CB-SN, LB-SN and LB-TVN. Table 1 shows the global performance of prediction expressed by 10 
the MAE and RMSE of speed data calculated from travel time, which reaffirms the most 11 
appropriate noise assumption for the dataset is LB-SN.  12 

Table 1 13 

Overall (global) performance of KF model for selected noise assumptions. 14 

Noise 

Assumption 

Training Dataset  Validation Dataset  

MAE RMSE MAE RMSE 

CB-SN 2.25 6.31 2.41 6.75 

LB-SN 2.17 5.96 2.31 6.33 

LB-TVN 2.15 6.78 2.45 7.47 

 15 

The KF model with LB-SN assumption is more accurate and computational efficient. For 16 
instance, the run time of KF with corridor-based noise assumptions is approximately 15mins, 17 
whereas link-based assumptions take only a minute or two. Corridor-based noise homogeneity 18 
assumption calls for extra processing of data since Bluetooth data is collected over each link; this 19 
way, noise covariance can be estimated over the entire corridor. This extra processing increases 20 
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the run time significantly. The link-based model is the most suitable for an on-line application. 1 

KF with LB-SN was selected to predict DTT from ATT. 2 

The MAPEs of the training and validation datasets using LB-SN KF are 4.27% and 4.53%, 3 
respectively, whereas, the actual lags/gaps (i.e. AMAPEs) are 6.43% and 6.70%, respectively, 4 
based on travel time dataset. Improvements are significant when the smaller actual lag/gap is 5 
considered, including a 50% reduction in AMAPE in some links. When the KF model with LB-6 
SN assumption is applied, the validation dataset shows that a 40-50% gap between ATT and 7 
DTT is minimized in different links of the I-90 corridor, and a nearly 30-40% gap is minimized 8 
in different links of the Beltline Highway corridor. 9 

Moreover, the KF model with the LB-SN assumption has a superior prediction performance 10 
in cases of traffic state transition (e.g. onset and end of congestion). Fig. 10(a) represents the 11 
DTT, ATT, and predicted travel time, and Fig. 10(b) demonstrates the actual lag/gap and 12 

prediction error corresponding to Fig. 10(a). 13 

 14 

Fig. 10.  Prediction performance between free flow and congested conditions. 15 

Fig. 10 clearly depicts that the ATT, DTT, and predicted travel time are almost equal at free 16 
flow conditions (before 16:30:00). Actual and prediction errors are negligible after 18:15:00 17 
when congestion is stable. Fig. 10(a) Box A shows the onset of congestion where the actual 18 
lag/gap is more than 50s, and Fig. 10(b) shows prediction lag is less than 20s. Box B in Fig. 19 
10(a) shows the end of the congestion situation where the actual and prediction lags show little 20 
difference (less than 20s). However, at 17:15:00, the mid-point of the end of congestion, the 21 
ATT is off by 100s from DTT while the prediction error is around 30s. Despite of having a 22 
moderate improvement (around 40%) according to MAPE (global performance), the prediction 23 
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shows excellent improvement (around 70%) in cases such as that in box B where there is a state 1 

transition. Since such cases cover shorter time periods compared to the complete study period, 2 
the overall performance (local or global) indices are unable to represent the robustness of the 3 
prediction algorithm. Therefore, the selected noise assumption based on the KF model is capable 4 
of predicting travel time from the travelers’ point of interest (the onset and end of congestion 5 
rather than free-flow or stable congested conditions). 6 

To conclude, to predict the current traffic state as well as travel time, k-NN and LSBoost 7 
utilize the full dataset whereas the KF method uses most recent dataset. Intrinsically, the 8 
heteroscedasticity of traffic condition captured by the most recent data is more resemble to the 9 
current. Perhaps, this gives KF advantages over other methods. Moreover, the noise modeling 10 
capability offers additional benefits such as the selection of a subset of data to represent the 11 
outstanding heteroscedasticity that may not be adequately represented by the most recent data 12 

used in the state projection. Hence, prediction performances of the KF method with noise 13 
assumptions are more consistent than that of the k-NN and LSBoost in context of different 14 
roadway links. 15 

 16 

6. Conclusion 17 

ATT (or      ) is the most available form of travel time, but DTT (or      ) is the most 18 

desirable. The k-NN, LSBoost and KF algorithms were used to predict DTT and thus assist 19 

motorists by providing a more accurate and reliable travel time. Overall, KF outperformed other 20 

two methods. Although ATT and DTT differ slightly when the flow of traffic is stable, the 21 

variation becomes significant when the traffic state is in transition (e.g. moving from unstable to 22 

stable or vice versa). The KF algorithm with steady noise assumption captured a state of 23 

transition property accurately and provided an excellent prediction. KF is fast for link-based 24 

applications, making it desirable for data sources that contain route travel time split into shorter 25 

links (e.g. loop detectors/Bluetooth data). Although KF is applied (by default) to each link that is 26 

isolated as a different model, it demonstrates a higher level of accuracy and faster speed due to 27 

its flexibility, simplicity and compatibility with data characteristics. The application was 28 

demonstrated during peak periods on freeways covering two corridors – one with fewer 29 

transitions in traffic state and the other with frequent transitions. Diversity in noise assumptions 30 

showed negligible impact on the former, while steady noise assumption showed better 31 

performance on the latter. Steady noise (SN) refers to a fixed covariance estimated from the 32 

complete training dataset, which indicates that the KF model performs better with the 33 

generalized noise assumption. Hence, the KF with LB-SN assumption was preferred over other 34 

assumptions. Better performance was observed during a time when transitions in traffic state 35 

occurred more frequently.   36 

Since arterial highways are supposed to exhibit more state transitions, future research should 37 

examine the performance of predicting arterial highway travel time to test the robustness of this 38 

method. Furthermore, as firstly pointed out in Guo et al. 2012, vehicular traffic condition series 39 

is heteroscedastic in nature, new research is needed to investigate the second-order moment of 40 

travel time, i.e., the uncertainty of the time series data of travel time. Future research can 41 
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substantiate and expand on the pioneering research methodologies in the travel time uncertainty 1 

domain (Guo et al. (2014), Huang et al. (2017), Guo et al. (2017) and Cao et al., (2017)).  2 
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