THE UNIVERSITY OF WISCONSIN-MILWAUKEE College of Engineering and Applied Science

FACULTY MEETING

Friday, April 26, 2019 10:30 A.M. EMS E180

AGENDA

I. DEAN UPDATE

II. ANNOUNCEMENTS

- A. 2019-20 CEAS Committee Representatives See Attachment 1
- B. Accessibility Resource Center Ethan Munson
- C. Corporate Relations Update Mike Andrew
- D. Gender Bias Informal Survey Results Brian Armstrong

III. INFORMAL REPORTS – See Attachment 2

A. Opportunity for Questions regarding Informal Reports

IV. DETERMINATION OF THE PRESENCE OF A QUORUM FOR FACULTY MEETING

V. AUTOMATIC CONSENT BUSINESS

- A. Minutes of February 1, 2019 meeting
- B. New Courses and Course Changes See Attachment 3
- C. Revision to Electrical Engineering B.S. Program. See Attachment 4
- D. Revision to the Industrial Engineering B.S. Program See Attachment 5
- E. Graduation

VI. SPECIAL ORDER OF BUSINESS - Nominations

A. Awards and Recognition Committee

[&]quot;The faculty recommends to the Board of Regents those students whose names are submitted by the Office of the Registrar as having completed the requirements for the degree of Bachelor of Science in their respective majors."

<u>Faculty</u>: Only members of Biomedical Engineering, Electrical Engineering and Computer Science, and Materials Engineering may be nominated. One member is to be elected.

Nominations Already Received:

Professor Pradeep Rohatgi – Materials Engineering Professor Ichiro Suzuki – Electrical Engineering and Computer Science

Continuing Members:

Professor Konstantin Sobolev – Civil and Environmental Engineering Professor Kevin Renken – Mechanical Engineering

<u>Academic Staff</u>: Nominations are open for the Academic Staff member of the committee.

VII. NEW BUSINESS

A. GPSC Charter – See Attachment 6

VIII. GENERAL DISCUSSION

IX. ADJOURNMENT

John R. Reisel, Secretary CEAS Faculty

JRR Attachments

CEAS COMMITTEES FOR 2019-20

1)	CURRICULUM COMMITTEE	
,	Professor Ben Church – Materials Science and Engineering	2021
	Professor Rohit Kate – Computer Science	2021
	Professor – Industrial Engineering	2021
	Professor – Biomedical Engineering	2021
	Professor Roshan D'Souza – Mechanical Engineering	2020
	Professor Adeeb Rahman–Civil and Environmental Engineering	2020
	Professor Robert Cuzner – Electrical Engineering	2020
2)	GRADUATE PROGRAM SUBCOMMITTEE	
ĺ	Professor Jenny Zheng – Biomedical Engineering	2021
	Professor – Civil and Environmental Engineering	2021
	Professor – Electrical Engineering	2021
	Professor – Industrial Engineering	2021
	Professor Ichiro Suzuki – Computer Science	2020
	Professor Ryo Amano – Mechanical Engineering	2020
	Professor Hugo Lopez – Materials Science and Engineering	2020
	Professor– GFC Representative	
	Professor– GFC Representative	
3)	ACADEMIC PLANNING COMMITTEE	
	Professor – Industrial Engineering	2022
	Professor – Mechanical Engineering	2022
	Professor Nidal Abu-Zahra – Materials Science & Engineering	2021
	Professor Dev Misra – Electrical Engineering	2021
	Professor Hosseini – Computer Science	2020
	Professor Adeeb Rahman – Civil and Environmental Engineering	2020
4)	SCHOLASTIC APPEALS COMMITTEE	
	Professor Susan McRoy – Computer Science	2021
	Professor – Industrial Engineering	2021
	Professor – Mechanical Engineering	2021
	Professor Yi Hu – Electrical Engineering	2020
	Professor Junjie Niu – Materials Science and Engineering	2020
	Professor – Civil and Environmental Engineering	2020
5)	AWARDS AND RECOGNITION COMMITTEE	
	Professor	2021
	Academic Staff Representative	2021
	Professor Kevin Renken – Mechanical Engineering	2020
	Professor Konstantin Sobolev – Civil and Environmental Engineering	2020

INFORMAL REPORTS

<u>Office of Student Services</u> – Todd Johnson No Report

<u>Career Services</u> – Juli Pickering No Report

<u>Curriculum Committee</u> – Prof. A. Rahman No Report

<u>Graduate Program Subcommittee</u> – Prof. Liao No Report

<u>Academic Planning Committee</u> – Prof. Patrick No Report

Faculty Senate - Prof. Reisel

In its February meeting, the Faculty Senate approved a number of changes to P&P, and new academic policies. In the March meeting, the Senate approved the authorization to implement a B.S. in Environmental Engineering, as well as some graduate policy revisions. In the April meeting, the Senate again approved policy revisions. If you give Incomplete grades, you may want to review the new policy and how it treats extended incompletes.

NEW COURSES

EAS 121 AUTOMATION CONTROLS AND SENSORS, 4 cr., U

Industrial automation principles; controller technology and programming;

controller applications and troubleshooting; network infrastructure

technology; basic instrumentation technology.

Prereq: None

EAS 122 MOTION CONTROL AND SAFETY, 3 cr., U

AC drive and motor technology; visualization and information software;

machine safety technology; motion control technology.

Prereq: None

<u>COURSE CHANGES</u> (Changes Indicated in Red)

BME 495 BIOMEDICAL INSTRUMENTATION LABORATORY, 3 cr., U

Characteristics of measurement systems, experiment planning, sensor and system calibration, measurement of basic quantities, first and second order systems, data acquisition and processing, experimental projects.

BME 495 and MechEng 495 are jointly offered and count as repeats of

one another.

Prereq: BME 305 (C), BME 310 (C), BME 325 (P), MechEng 469 (C).

COMPSCI 481 SERVER-SIDE INTERNET PROGRAMMING, 3 cr., U/G

Introduces students to the concept of server-side programming and web applications development. Topics include dynamic web site development,

session management, security, and relational databases.

Prereq: jr st; one of CompSci 113 (P), InfoSt 320 (P), or Art 324 (P); C or

better in CompSci 202(P), CompSci 361(P) or CompSt 702(P)

ELECENG 101 FUNDAMENTALS OF ELECTRICAL ENGINEERING, 3 cr., U

Principles of electrical engineering including intro to fundamental electrical quantities and circuit analysis. Lab with reenforcing experiments, introduction to electrical test equipment, computer simulation techniques, and team project. Counts as repeat of ElecEng 299 with same topic. Not open to students who have completed ElecEng 301, must be replaced with an additional group A technical elective.

Prereq: Math 116 (C)

ELECENG 595 CAPSTONE DESIGN PROJECT, 5 cr., U

Team project in simulated industrial environment. Each team develops solutions to complex real world design problems and reports results in professional writing and oral presentation. Counts as a repeat of ElecEng

355.

Prereq: sr st; ElecEng 335(P), ElecEng 367(P).

ELECTRICAL ENGINEERING, BSE

In Workflow

- 1. CIM Registrar's Office (chinn@uwm.edu; ebilicki@uwm.edu; rothmann@uwm.edu; jenstein@uwm.edu)
- 2. CEAS Dean Programs (johnsont@uwm.edu; munson@uwm.edu)
- 3. Academic Affairs (candres@uwm.edu)
- 4. APCC Chair (candres@uwm.edu)
- 5. Provost's Office (candres@uwm.edu)
- 6. CAT Reminder (ebilicki@uwm.edu; chinn@uwm.edu)

Approval Path

 Mon, 15 Apr 2019 14:02:57 GMT Emily Kuhnen (ebilicki): Approved for CIM Registrar's Office

History

- 1. Aug 18, 2018 by clmig-jwehrheim
- 2. Sep 18, 2018 by Emily Kuhnen (ebilicki)

Date Submitted: Fri, 12 Apr 2019 21:47:57 GMT

Viewing: Electrical Engineering, BSE

Last approved:Tue, 18 Sep 2018 21:25:24 GMT

Last edit:Fri, 12 Apr 2019 21:47:52 GMT

Changes proposed by: bsra

Reviewer Comments

Emily Kuhnen (ebilicki) (Mon, 15 Apr 2019 14:02:52 GMT):ELECENG 595 is currently in workflow to be approved for the increase from 4 to 5 credits.

Is this a proposal to create a new submajor or concentration?

No

Title of program:

Electrical Engineering, BSE

Program Level:

Undergraduate Only

Program Type:

Major

Department or Functional Equivalent

Units:

Electrical Engineering

College, School, or Functional Equivalent

Units

College of Engineering and Applied Science

Proposed Effective Catalog:

2019-2020

Proposed Effective Term:

Fall 2019

Summary of proposed changes or request:

EE 595 Senior Design, a required Undergraduate course, is very intensive and was increased from 4 to 5 credit hours. This was compensated by reducing the free electives from 3 to 2, keeping the total program at 126 credits.

Program Curriculum (for the Catalog)

Electrical Engineering Curriculum

The minimum number of credits required to complete the Bachelor of Science in Engineering with a major in electrical engineering is 126. Engineering students may apply for major status with their academic advisor at any time they believe they meet the requirements. Admission to major is a graduation requirement. Programs may impose major status as a prerequisite for courses numbered 200 or above.

Code	Title	Credits
Engineering Core		
COMPSCI 240	Introduction to Engineering Programming	3
COMPSCI 241	C Programming for Embedded Systems	3
EAS 200	Professional Seminar	1
ELECENG 101	Fundamentals of Electrical Engineering	3
ELECENG 301	Electrical Circuits I	3
MATLENG 201	Engineering Materials	4
Major Requirements		
ELECENG 305	Electrical Circuits II	4
ELECENG 310	Signals and Systems	3
ELECENG 330	Electronics I	4
ELECENG 335	Electronics II	4
ELECENG 354	Digital Logic	3
ELECENG 361	Electromagnetic Fields	3
ELECENG 362	Electromechanical Energy Conversion	4
ELECENG 367	Introduction to Microprocessors	4
ELECENG 420	Random Signals and Systems	3
ELECENG 595	Capstone Design Project	5
Mathematics Requirement		
Select one of the following Calculus seque	nces: ¹	10-12
Sequence 1:		
MATH 231	Calculus and Analytic Geometry I	
& MATH 232	and Calculus and Analytic Geometry II	
& MATH 233	and Calculus and Analytic Geometry III	
Sequence 2:		
MATH 221	Honors Calculus I	
& MATH 222	and Honors Calculus II	
ELECENG 234	Analytical Methods in Engineering	4
Chemistry Requirement		
CHEM 105	General Chemistry for Engineering	5
or CHEM 102	General Chemistry	
Physics Requirement		
Select one of the following options:		10
Option 1:		
PHYSICS 219	Physics I: Calculus-Based, Studio Format	
& PHYSICS 220	and Physics II: Calculus-Based, Studio Format	
Option 2:		
PHYSICS 209	Physics I (Calculus Treatment)	
& PHYSICS 214	and Lab Physics I (Calculus Treatment)	
PHYSICS 210 & PHYSICS 215	Physics II (Calculus Treatment) and Lab Physics II (Calculus Treatment)	
GER Distribution Requirement	and Lab Physics if (Calculus Treatment)	
Arts		2
Humanities		3
Social Science		6
ENGLISH 310	Writing, Speaking, and Technoscience in the 21st Century	3
	cial Science course must also satisfy UWM Cultural Diversity Requirement	3
Free Electives	dai ocience course must also satisty ovivi cultural diversity nequirement	
Select 2 credits		2
		2
English Composition Requirement		0.6
Satisfied by one of the following:		0-6

Credits

Earning a satisfactory score on the English placement test; or

Earning a grade of C or higher in ENGLISH 102; or

Transferring a grade of C or higher in a course equivalent to ENGLISH 102 or higher expository writing course; or

Foreign Language Requirement

Satisfied by one of the following: 0-8

Two years of a single foreign language in high school;

Two semesters of a single foreign language in college; or

Demonstrate ability by examination.

Placement Examinations. Once admitted to UWM, most engineering students are required to take placement examinations in mathematics, English, and chemistry. Students with previous college-level credits in these areas may not be required to take placement exams. The placement exams are administered by the UWM Testing Center, Mellencamp Hall, Room B28, (414) 229-4689. The results of these tests help students determine the appropriate course in which to register. Background prerequisite courses may be required in addition to the courses listed above.

Technical Electives

Code

The electrical engineering program requires a total of 24 credits of technical electives, chosen as follows.

Group A Technical Electives

All non-required Electrical Engineering courses numbered 400-699 are Group A Technical Electives. Title

echnical Electives	Title	Credits
east 18 credits from the follow	ıina·	18-24
0M 477	Purchasing and Supply Management	1021
CI 459	Fundamentals of Computer Graphics	
CI 520	Computer Networks	
CI 530	Computer Networks Laboratory	
	Engineering Co-op Work Period ¹	
7	Study Abroad: ²	
IG 410	Digital Signal Processing	
IG 421	Communication Systems	
IG 436	Introduction to Medical Instrumentation	
IG 437	Introduction to Biomedical Imaging	
IG 451	Introduction to VLSI Design	
IG 457	Digital Logic Laboratory	
IG 458	Computer Architecture	
IG 461	Microwave Engineering	
IG 462	Antenna Theory	
IG 464	Fundamentals of Photonics	
IG 465	Broadband Optical Networks	
IG 471	Electric Power Systems	
IG 472	Introduction to Wind Energy	
IG 474	Introduction to Control Systems	
IG 482	Introduction to Nanoelectronics	
IG 490	Topics in Electrical Engineering:	
NG 541	Integrated Circuits and Systems	
IG 545	FPGA Embedded CPUs & Firmware Development	
IG 562	Telecommunication Circuits	
IG 565	Optical Communication	
IG 568	Applications of Digital Signal Processing	
IG 572	Power Electronics	
IG 574	Intermediate Control Systems	
IG 575	Analysis of Electric Machines and Motor Drives	
IG 588	Fundamentals of Nanotechnology	
IG 599	Senior Thesis	
G 360	Engineering Economic Analysis	
NG 321	Basic Heat Transfer	
NG 301 NG 481 NG 321	Engineering Economic Analysis Basic Engineering Thermodynamics Electronic Materials Basic Heat Transfer	

0-6

4 Electrical Engineering, BSE

Group B Technical Electives

Select up to 6 credits from the following:

Any ATM SCI course 100-level or above

Any BIO SCI course 150-level or above

Any CHEM course 200-level or above, or CHEM 104³

Any COMPSCI course 200-level or above

Any PHYSICS course 300-level or above

Any MATH course 400-level or above, or MATH 313, MATH 321, or MATH 322

- Students who earn 3 or more credits of Co-op may use 3 of those credits as approved technical electives.
- Students who earn 3 or more credits of Study Abroad may use 3 of those credits as approved technical electives.
- Students who takeCHEM 102 andCHEM 104 (equaling a minimum of 8 credits) may use up to 3 credits ofCHEM 104 as Group B technical electives.

This change affects the following types of students (check all that apply):

New freshmen/transfers

Does this program request require a new program code?

No

Does this program request require a new plan code?

Nο

Does this program request require a new subplan code?

No

Is this a change to eliminate a program?

No

Key: 201

Revision to the Industrial Engineering B.S. Curriculum

Credits for Study Abroad will now be included as a technical elective in the Industrial Engineering B.S. Curriculum.

3.5 GRADUATE PROGRAM COMMITTEE (GPC)

- 3.5.1 Membership: The GPC shall consist of:
 - a. One member from each faculty unit (as specified below in 3.5.3.c) to be selected by the voting members of the unit's faculty. That member must be a member of the graduate faculty.
 - b. The Dean or a representative of the Dean serves in an ex-officio non-voting capacity.

3.5.2 Responsibilities:

- a. Review all courses submitted by the departments for graduate credit and submit them to the College Graduate Program Committee. After such approval, transmit the courses, through the Dean's Office, to the Graduate School for further action.
- b. The GPC shall be responsible for the policies and those duties assigned to it by the College Graduate Program Committee, for the administration of interdepartmental programs, and for the students in those programs in CEAS, currently, the Master of Science in Engineering and Doctor of Philosophy in Engineering. Specifically, for these programs, the GPC is responsible for:
 - 1. Planning and policy decisions regarding the programs.
 - 2. Determining entrance requirements, program standards, and guidelines for all students entering the program.
 - 3. Review and approve exceptional aspects of student programs of study. Examples include
 - Ph.D. minors not on the list of automatically approved minors.
 - Interdisciplinary programs of study including substantial course work from outside the department (e.g. for PhD major area of concentration) or outside CEAS (e.g. for students in MS programs of study in concentrations that do not have this quality).
 - 4. Recommend to the Graduate School on admission, continuation, and graduation of students.
- c. The GPC may delegate day-to-day administration of the graduate programs and responsible contact with the Graduate School to faculty units, to subcommittees, or to administrative staff. In each case, the GPC retains basic authority and responsibility.

3.5.3 Election Procedures:

- a. Elections for departmental representatives shall occur each Spring in time to be announced at or before the April College Faculty Meeting.
- b. The Chair shall be elected annually by the Committee from its members at the first meeting of the academic year. The Chair shall be eligible to vote on all matters coming before the Committee.
- c. The terms of office of each member shall be for two years and shall start at the beginning of the contractual period for each academic year. Unexcused absences from the Committee meetings for three consecutive times automatically vacates that position.

<u>Representative</u>	Year of Election
Biomedical Engineering	Odd
Civil and Environmental Engineering	Odd
Computer Science	Even
Electrical Engineering	Odd
Industrial & Manufacturing Engineer	ing Odd
Materials Engineering	Even
Mechanical Engineering	Even

- d. Should a vacancy occur from among the departmental representatives, the procedures outlined in the "CEAS Committee Representative Replacement Policy" shall be followed. New members appointed following this policy will take office immediately.
- e. If the Chairman's position becomes vacant, the vacancy shall be filled according to Section 3.5.3.d, after which the committee shall elect a new chairperson.

3.4 GRADUATE PROGRAM COMMITTEE

3.4.1 Membership:

- a. The College Graduate Program Committee shall be the entire Graduate Faculty of the College of Engineering and Applied Science.
- b. The Chairperson of the Graduate Program Subcommittee shall also be the Chairperson of the College Graduate Program Committee. [EVM1][JER2]

3.4.2 Responsibilities:

- a. Function as an overview committee for all graduate programs in the College.
- b. Delegate the reviewing and screening function of all interdepartmental graduate programs to the Graduate Program Subcommittee (GPSC).
- c. Delegate the reviewing and screening function of all departmental programs to the appropriate departments.

3.5 GRADUATE PROGRAM SUBCOMMITTEE (GPSC)

3.5.1 Membership: The GPSC shall consist of:

- a. One member from each department faculty unit (as specified below in 3.5.3.c) to be selected by the voting members of the departmental unit's faculty. That member must be a member of the graduate faculty.
- b. The College Representative(s) of the University of Wisconsin [JRR3] Milwaukee Graduate Faculty Council (GFC) as voting member(s).
- <u>b</u>e. The <u>dean and Dean or a representative of the Deanassociate deans of CEAS</u> serves in an ex-officio non-voting capacity.

3.5.2 Responsibilities:

- a. Review all courses submitted by the departments for graduate credit and submit them to the College Graduate Program Committee. After such approval, transmit the courses, through the Dean's Office, to the Graduate School for further action.
- b. The GPSCGPC shall be responsible for the policies and those duties assigned to it by the College Graduate Program Committee, for the administration of interdepartmental programs, and for the students in those programs in CEAS, currently, the Master of Science in Engineering and Doctor of Philosophy in Eengineering and computer science.

 Specifically, for these programs, the GPSCGPC is responsible for:
 - 1. Planning and policy decisions regarding the programs.
 - 2. Determining entrance requirements, program standards, and guidelines for all students entering the program.
 - 3. Reviewing the qualifications of, and advising the Credentials

 Committee of the GFC and Graduate Dean, regarding the approval

 of faculty members of the respective departments to be

 authorized to direct dissertation research.
 - 34. Appoint student program advisors and review and approve individual student programs. Review and approve exceptional aspects of student programs of study. Examples include

- Ph.D. minors not on the list of automatically approved minors.
- Interdisciplinary programs of study including substantial course work from outside the department (e.g. for PhD major area of concentration) or outside CEAS (e.g. for students in MS programs of study in concentrations that do not have this quality).
- 45. Recommend to the Graduate School on admission, continuation, and graduation of students.
- c. The GPSCGPC may delegate day-to-day administration of the graduate programs and responsible contact with the Graduate School to departments, faculty units units to subcommittees, or to administrative staff. In each case, the GPSCGPC retains basic authority and responsibility.

3.5.3 Election Procedures:

- a. Elections for departmental representatives shall occur each Spring in time to be announced at or before the April College Faculty Meeting.
- b. The Chair shall be elected annually by the Committee from its members at the first meeting after September 1 of the academic year. The Chair shall be eligible to vote on all matters coming before the Committee.
- c. The terms of office of each member shall be for two years and shall start September 1at the beginning of the contractual period for each academic year. Unexcused absences from the Committee meetings for three consecutive times automatically vacates that position.

<u>Representative</u>	Year of Election
Biomedical Engineering	<u>Even</u> Odd
Civil and Environmental Engineering	Odd
Computer Science	Even
Electrical -Engineering	Odd
Industrial & Manufacturing Engineer	ng Odd
Materials Engineering	Even
Mechanical Engineering	Even

- d. Should a vacancy occur from among the departmental representatives, the procedures outlined in the "CEAS Committee Representative Replacement Policy" shall be followed. New members appointed following this policy will take office immediately. Committee shall immediately notify the Chair of the department concerned, which then must elect a new member within one month to fill out the term of the vacated position.
- New members elected according to procedure (d) above shall take office immediately upon their election. Their term of office shall be the remainder of the term of office of the original member replaced.
- ef. If the Chairman's position becomes vacant, the vacancy shall be filled according to the preceding rules to Section 3.5.3.d, after which the committee shall elect a new chairperson.