THE UNIVERSITY OF WISCONSIN-MILWAUKEE College of Engineering and Applied Science
 FACULTY MEETING

Friday, February 23, 2018 1:30 P.M. EMS E180

AGENDA

I. ANNOUNCEMENTS

A. Active Shooter Training
II. INFORMAL REPORTS - See Attachment 1
A. Opportunity for questions regarding Informal Reports

III. AUTOMATIC CONSENT BUSINESS

A. New Course and Course Changes - See Attachment 2
B. BME Program Modification - See Attachment 3
C. Computer Engineering B.S. Program Modification - See Attachment 4
D. Web Development Certificate Program Modification - See Attachment 5
IV. NEW BUSINESS
A. CEAS Awards and Recognition Committee Charter - See Attachment 6
B. Resolution on TA Position Appointments - See Attachment 7

V. GENERAL GOOD AND WELFARE

VI. ADJOURNMENT

John R. Reisel, Secretary CEAS Faculty

ATTACHMENT 1

INFORMAL REPORTS

Office of Student Services - Todd Johnson

No Report
Career Services - Juli Pickering
No Report

Curriculum Committee - Prof. Church

The Curriculum Committee is considering first-year engineering course content that is approachable for students at the pre-calculus level. A major goal is to enhance early engineering experiences and to better engage students that currently have few options beyond math, sciences, and general education courses. This is at an initial stage where we are collecting ideas with a general goal of infusing these topics in either existing or new 100-level CEAS courses. If you have ideas about activities, topics, or course content that is applicable/valuable to pre-calc engineering students from all CEAS majors, please contact the Curriculum Committee member from your program or the committee chair, Ben Church.

Graduate Program Subcommittee - Prof. Liao

No Report

Academic Planning Committee - Prof. Misra

APC met three times since last informal report and the following is a summary of actions.

- Drafted a formula to address the CEAS faculty salary compression issue and recommended to Dean Peters for its implementation in 2018 year.
- Advised Dean Peters for implementation of an annual assessment of each department following a format that the committee formulated.
- CEAS faculty committee charters and the committee structure were reviewed. Committee chairs have been contacted for further actions.
- Discussed the UG engineering core courses and potential opportunities. It was decided to continue discussions with the Curriculum Committee and departments/ programs.
- Plans to hold a faculty retreat to identify potential multidisciplinary research area(s) and the faculty teams for the CEAS to invest on to attract large/ multimillion Dollar projects.

Biomedical and Health Informatics - Prof. McRoy
No Report
Faculty Senate - Prof. Boyland
No Report

ATTACHMENT 2

NEW COURSE
BME 305 INTRODUCTION TO BIOMECHANICS, 3 cr., U
Introduction to biomechanics principles applied to the musculoskeletal system and human body for analysis of human movement.
Prereq: BioSci 203 (P), BME 302 (P)

COURSE CHANGES

BME 320 ENGINEERING OF BIOMEDICAL DEVICES I, 4 cr., U Physiological and biomechatronic systems, sensors and actuators, signal processing, hearing aid and implants. Laboratory experiments sessions included.
Prereq: jr st, BME 101 (P) and BME 302 (P).
had been
BME 320 ENGINEERING OF BIOMEDICAL DEVICES I, 3 cr., U
Physiological and biomechatronic systems, sensors and actuators, signal processing, hearing aid and implants.
Prereq: jr st, BME 101(P), ElecEng 234(P), MechEng 101(C), Physics 210(P)

COMPSCI 537 INTRODUCTION TO OPERATING SYSTEMS, 3 cr , U/G Process management including process creation, switching, multithreading, scheduling, communication and concurrency control; memory management including paging, segmentation and virtual memory; Systems programming. Prereq: jr st; CompSci 458(C) or ElecEng 458(C); CompSci 337(P).
had been
COMPSCI 537 INTRODUCTION TO OPERATING SYSTEMS, $3 \mathrm{cr}, \mathrm{U} / \mathrm{G}$
Process management including scheduling, concurrency, synchronization, and deadlock; memory management, I/O management and disk scheduling, file systems. Systems programming. Prereq: jr st; CompSci 458(P) or ElecEng 458(P); CompSci 337(P).

CAPSTONE PROJECT, 4 cr., U
Students will integrate their knowledge of the undergraduate computer science curriculum by implementing a significant computer science team project.
Prereq: sr st, CompSci 351 (P), CompSci 361 (P), and credit in at least 6 credits of 400 or higher CompSci courses.

COMPSCI 595 CAPSTONE PROJECT, 4 cr., U
Students will integrate their knowledge of the undergraduate computer science curriculum by implementing a significant computer science team project.
Prereq: sr st, CompSci 361(P), 458(C), 535(C), 537(C).

ATTACHMENT 3

REVISIONS TO BIOMEDICAL ENGINEERING CURRICULUM

The following two pages contain the revised BME curriculum, with changes highlighted. The next two pages contain the currently-approved BME curriculum.

University of Wisconsin - Milwaukee College of Engineering and Applied Science BIOMEDICAL ENGINEERING CURRICULUM

The minimum number of credits required to complete the Bachelor of Science in Engineering with a major in Biomedical Engineering is $\mathbf{1 2 0}$ credits. Students who need background preparation courses may need additional credits. See information below regarding placement examinations.

Engineering Core Courses (26 credits)	Credits	Prerequisite
BME 101 Fundamentals of Biomedical Engineering	3	MechEng 101 (C)
Civ Eng 201 Statics	3	Math 232
Civ Eng 202 Dynamics	3	Civ Eng 201, Math 233(C)
EAS 200 Professional Seminar	1	None
ElecEng 301 Electrical Circuits I	3	Physics 210(C)
ElecEng 305 Electrical Circuits II	4	ElecEng 234, 301
MatlEng 201 Engineering Materials	4	Math 231 (C), Chem 100* or score 1 on chem placement test
MechEng 101 Computational Tools for Engineers	2	Math 221(C) or 231(C)
MechEng 301 Basic Engineering Thermodynamics	3	Math 233, Physics 209
${ }^{\wedge}$ Biomedical Engineering Major (38 credits)		
Bio Sci 202 Anatomy \& Physiology I		None
Bio Sci 203 Anatomy \& Physiology II	4	Bio Sci 202* or 315*
Bio Sci 465 Brastatistics or	3	Jr St, Bio Sci 150, Math 105
IndEng 467 Intro. Statistics for Physical Science \& Engineering Students	3	Jr St, Math 233
BME 302 Analysis and Modeling of Dynamic Systems	4	MechEng 101 (P), ElecEng 234 (P), Physics 210 (P)
BME 305 Introduction to Biomechanics	3	BioSci 203 (P), BME 302 (P)
BME 320 Engineering of Biomedical Devices I	4	BME 101(P), BME 302(P)
BME 325 Engineering of Biomedical Devices II	3	BioSci 203(P), BME 320(P)
BME 385 Introduction to Biomaterials	3	Jr St, MatEng 201
BME 495 Biomedical Instrumentation Lab/Senior Lab	3	BME 325, MechEng 479 (C) or BME 305(P)
BME $595 \quad$ Capstone Design Project	4	BME 495
ElecEng 310 Signals \& Systems	3	ElecEng 305(C)
${ }^{\wedge}$ M Mathematics (14-16 credits)		(16 credits typical: Math 231,232.233, ElecEng 234)
One of the following Calculus sequences must be completed:Math 231-232-233		
	12	Math placement score, or previous course with at least "C" grade.
Or Math 221-222 (Honors)	10	Math 232*
And ElecEng 234 Analytical Methods in Engineering	4	Math 232*

Physics (10 credits)

Physics 209 \& 214 (Lab), and Physics $210 \& 215$ (Lab) $10 \quad$ Physics 209: Math 232(C)
Physics 210: Math 233(C), C- or better in Physics 209

General Education Requirements	
Distribution Requirements (15 credits)	
Art	3
Humanities	3
Social Science	6
English 310 Writing, Speaking \& Technoscience in the $21{ }^{\text {st }}$ Century	3 English Competency
Cultural Diversity - One of the arts, humanities, or social science courses selected must also meet the UWM cultural diversity requirement.	
Competency Requirements	
${ }^{\wedge}$ ^English Composition (0-6 credits)	
The English Composition requirement is satisfied by:	
1. Earning a satisfactory score on the English placement test, or	
2. Earning a grade of C or higher in English 102	
3. Transferring a grade of C or better in a course equivalent to English 102 or higher level expository writing course	
Foreign Language (0-8 credits) (for new freshman starting fall 1999)	
The foreign language requirement can be completed with one of these options:	
1. Two years of a single foreign language in high school	
2. Two semesters of a single foreign language in college	
3. Demonstrate ability by examination	

*C or better in prerequisite

(C) Concurrent Enrollment in Designated Course

^Advancement to Major: 1 . Complete a minimum of 24 credits required for major (Excludes: general education, prerequisite and orientation courses). 2. Complete
Math 232 (or 222) with a "C" or better grade. 3. Complete EAS 200 Professional Seminar. 4. Complete the English composition requirement. 5. Obtain a 2.0 GPA in
all courses in item 1. The program may impose major status as a prerequisite for courses numbered $\mathbf{3 0 0}$ or above.
${ }^{\wedge}$ Placement Examinations: Students without previous college level credits in Math, Chemistry or English may be required to take placement exams. The results of these tests determine the appropriate course in which to register. Background prerequisite courses may be required in addition to the courses listed above.

Technical Electives - Biomedical Engineering Major

The Biomedical Engineering program requires a total of 15 credits of technical electives, chosen from the following list:
All non-required Biomedical Engineering courses numbered 400-699 are Technical Electives.
Bio Sci $150 \quad$ Foundations of Biological Sciences I
Chem 100 or 102 or Conc Reg
Bio Sci $152 \quad$ Foundations of Biological Sciences II
C- or better in Bio Sci 150
Bio Sci $315 *$ or Psych 254^{*}
Bio Sci 152, 315(C), or Psych 254
Sr St or G
Sr St , cons instr.
Jr St
Jr St, cons instr \& CEAS Assoc Dean
Jr St, BusAdm 350
Chemistry Plmt or Chem 100*; Math Plmt or Math 105*
Chem 102*
Chem 104*
Chem 343*, 345(C)(R)
Chem 343*, Chem 344(C)
Civ Eng 201, Math 233(C)
Math 116 or 211
Prior Cons Co-Op Dir
Acceptance to Study Abroad Program
ElecEng 234, Math 233*, Physics 210
Jr St, ElecEng310
Jr St, ElecEng 305
Sr St, ElecEng 310
Sr St, ElecEng 310, 330
Sr St, ElecEng 437
Jr St, ElecEng 310 and 361
Jr St
Jr St, Civ Eng 202(C), ElecEng 234
Civ Eng 202, ElecEng 234, MechEng 301(C)
Civ Eng 202, 303, ElecEng 234, MechEng 101, 111
Sr St, Civ Eng 202*, Elec Eng 234*, 301
Jr St or Cons Instr
OccThpy 401(P) or Cons Instr
Jr St or Cons Instr
B+ or better in Physics 209; Physics 210(C) strongly recommended
Chem 104 or 105, Physics 122 or 201
Psych 101

Pre-Medicine Suggested Courses: Students considering medical school should consult with the pre-medical advisor early in their undergraduate career for help in planning a program. The courses listed below are suggested for pre-medical students.

Science Courses			
Bio Sci 150	Foundations of Biological Sciences I	4	(Technical Elective for BME)
Bio Sci 152	Foundations of Biological Sciences II	4	(Technical Elective for BME)
One Advanced course in Bio Sci with lab	5		
Chem 102	General Chemistry	5	(Technical Elective for BME)
Chem 104	General Chemistry \& Quantitative Analysis	5	(Technical Elective for BME)
Chem 343	Organic Chemistry	3	(Technical Elective for BME)
Chem 344	Organic Chemistry Laboratory	2	(Technical Elective for BME)
Chem 345	Organic Chemistry	3	(Technical Elective for BME)
Chem 501	Introduction to Biochemistry	3	
Math - a semester of calculus	4	(Required for BME)	
Physics 209	General Physics I	4	(Required for BME)
Physics 210	General Physics II	4	(Required for BME)
Physics 214	Lab Physics I	1	(Required for BME)
Physics 215	Lab Physics II	1	(Required for BME)
Statistics - Any statistics course	3	(Required for BME)	
General Education Courses			
Psych 101	Introduction to Psychology	3	(UWM Social Science GER)
Sociol 101	Introduction to Sociology	3	(UWM Social Science GER)
PH 101	Introduction to Public Health	3	(UWM Social Science GER)

*C or better in prerequisite
(C) Concurrent Enrollment in Designated Course

Degree Requirements: Students must maintain an average GPA of at least 2.0 on all work attempted at the University and in all courses offered by the College. Students majoring in Biomedical Engineering must maintain an average GPA of at least 2.0 in all 300-level required major courses. Transferable courses will be included as appropriate. Advancement to major status is required for graduation.

College of Engineering and Applied Science University of Wisconsin - Milwaukee
P.O. Box 784

Milwaukee, WI 53201

Office of Student Services (414) 229-4667
Engineering \& Mathematical Science Building (EMS) Room E386
Department of Biomedical Engineering (414) 229-4768
Engineering \& Mathematical Science Building (EMS) Room 503

University of Wisconsin - Milwaukee College of Engineering and Applied Science BIOMEDICAL ENGINEERING CURRICULUM

The minimum number of credits required to complete the Bachelor of Science in Engineering with a major in Biomedical Engineering is $\mathbf{1 2 0}$ credits. Students who need background preparation courses may need additional credits. See information below regarding placement examinations.

Engineering Core Courses (26 credits)	Credits	Prerequisite
BME 101 Fundamentals of Biomedical Engineering	3	MechEng 101 (C)
Civ Eng 201 Statics	3	Math 232
Civ Eng 202 Dynamics	3	Civ Eng 201, Math 233(C)
EAS 200 Professional Seminar	1	None
ElecEng 301 Electrical Circuits I	3	Physics 210(C)
ElecEng 305 Electrical Circuits II	4	ElecEng 234, 301
MatlEng 201 Engineering Materials	4	Math 231 (C), Chem 100* or score 1 on chem placement test
MechEng 101 Computational Tools for Engineers	2	Math 221(C) or 231(C)
MechEng 301 Basic Engineering Thermodynamics	3	Math 233, Physics 209
${ }^{\wedge}$ Biomedical Engineering Major (37 credits)		
Bio Sci 202 Anatomy \& Physiology I	4	None
Bio Sci 203 Anatomy \& Physiology II	4	Bio Sci 202* or 315*
Bio Sci 465 biostatistics or	3	Jr St, Bio Sci 150, Math 105
IndEng 467 Intro. Statistics for Physical Science \& Engineering Students	3	Jr St, Math 233
BME 320 Engineering of Biomedical Devices I	3	BME 101(P), ElecEng 234(P), Physics 210(P)
BME 325 Engineering of Biomedical Devices II	3	BioSci 203(P), BME 320(P)
BME 385 Introduction to Biomaterials	3	Jr St, MatEng 201
BME 495 Biomedical Instrumentation Lab/Senior Lab	3	Bio Sci 203, BME 101, ElecEng 301, 436, MechEng 479 (C)
BME $595 \quad$ Capstone Design Project	4	BME 495 ,
ElecEng 310 Signals \& Systems	3	ElecEng 305(C)
MechEng 469 Introduction to Biomechanical Engineering	3	Civ Eng 202,303
Mech Eng 474 Introduction to Control Systems	4	Sr St, Civ Eng 202*, Elec Eng 234*, 301
${ }^{\wedge}$ Mathematics (14-16 credits)		(16 credits typical: Math 231,232.233, ElecEng 234)
One of the following Calculus sequences must be completed:		
Math 231-232-233	12	Math placement score, or previous course with at least "C" grade.
Or Math 221-222 (Honors)	10	
And ElecEng 234 Analytical Methods in Engineering	4	Math 232*
Physics (10 credits)		
Physics 209 \& 214 (Lab), and Physics 210 \& 215 (Lab)	10	Physics 209: Math 232(C) Physics 210: Math 233(C), C- or better in Physics 209

General Education Requirements	
Distribution Requirements (15 credits)	
Art	3
Humanities	3
Social Science	6
English 310 Writing, Speaking \& Technoscience in the $21{ }^{\text {st }}$ Century	English Competency
Cultural Diversity - One of the arts, humanities, or social science courses selected must also meet the UWM cultural diversity requirement.	
Competency Requirements	
${ }^{\wedge}$ English Composition (0-6 credits)	
The English Composition requirement is satisfied by:	
1. Earning a satisfactory score on the English placement test, or	
2. Earning a grade of C or higher in English 102	
3. Transferring a grade of C or better in a course equivalent to English 102 or higher level expository writing course	
Foreign Language (0-8 credits) (for new freshman starting fall 1999)	
The foreign language requirement can be completed with one of these options:	
1. Two years of a single foreign language in high school	
2. Two semesters of a single foreign language in college	
3. Demonstrate ability by examination	

*C or better in prerequisite
 (C) Concurrent Enrollment in Designated Course

^Advancement to Major: 1 . Complete a minimum of 24 credits required for major (Excludes: general education, prerequisite and orientation courses). 2. Complete
Math 232 (or 222) with a "C" or better grade. 3. Complete EAS 200 Professional Seminar. 4. Complete the English composition requirement. 5. Obtain a 2.0 GPA in
all courses in item 1. The program may impose major status as a prerequisite for courses numbered $\mathbf{3 0 0}$ or above.
${ }^{\wedge}$ Placement Examinations: Students without previous college level credits in Math, Chemistry or English may be required to take placement exams. The results of these tests determine the appropriate course in which to register. Background prerequisite courses may be required in addition to the courses listed above.

Technical Electives - Biomedical Engineering Major

The Biomedical Engineering program requires a total of 16 credits of technical electives, chosen from the following list:
All non-required Biomedical Engineering courses numbered 400-699 are Technical Electives.
Bio Sci $150 \quad$ Foundations of Biological Sciences I
Bio Sci 152 Foundations of Biological Sciences II
Foundations of Biological Scien
Introduction to Neuroscience I
Introduction to Neuroscience II
Advanced Biomaterials
Senior Thesis
Topics in Biomedical Engineering
Independent Study
Entrepreneurship
General Chemistry
General Chemistry \& Quantitative Analysis
Organic Chemistry
Organic Chemistry Laboratory
Organic Chemistry
Organic Chemistry
Strength of Materials
Introductory Computer Programming
Co-op Work Period
Study Abroad
Electromagnetic Fields
Principles of Discrete Systems \& Digital Signal Processing
Introduction of Medical Instrumentation
Introduction to Biomedical Imaging
Bioanalytics \& Biomedical Diagnostics
Fundamentals of Neuroimaging Technology
Introduction to Magnetic Resonance Imaging
Engineering Economic Analysis
Biodynamics of Human Motion
Introduction to Fluid Mechanics
Computer Aided Engineering Laboratory
Introduction to Biomedical and Rehabilitation Instrumentation
Introduction to Assistive and Rehabilitation Technology
Design and Disability
Medical Physics
Introduction to Biophysics
Physiological Psychology

Chem 100 or 102 or Conc Reg
C- or better in Bio Sci 150*
Bio Sci 315^{*} or Psych 254*
Bio Sci 152, 315(C), or Psych 254
Sr St or G
Sr St , cons instr.
Jr St
Jr St, cons instr \& CEAS Assoc Dean
Jr St, BusAdm 350
Chemistry Plmt or Chem 100*; Math Plmt or Math 105*
Chem 102*
Chem 104*
Chem 343*, 345(C)(R)
Chem 343*, Chem 344(C)
Civ Eng 201, Math 233(C)
Math 116 or 211
Prior Cons Co-Op Dir
Acceptance to Study Abroad Program
ElecEng 234, Math 233*, Physics 210
Jr St, ElecEng310
Jr St, ElecEng 305
Sr St, ElecEng 310
Sr St, ElecEng 310, 330
Sr St, ElecEng 437
Jr St, ElecEng 310 and 361
Jr St
Jr St, Civ Eng 202(C), ElecEng 234
Civ Eng 202, ElecEng 234, MechEng 301(C)
Civ Eng 202, 303, ElecEng 234, MechEng 101, 111
Jr St or Cons Instr
OccThpy 401(P) or Cons Instr
Jr St or Cons Instr
B+ or better in Physics 209; Physics 210(C) strongly recommended
Chem 104 or 105, Physics 122 or 201
Psych 101

Pre-Medicine Suggested Courses: Students considering medical school should consult with the pre-medical advisor early in their undergraduate career for help in planning a program. The courses listed below are suggested for pre-medical students.

Science Courses			
Bio Sci 150	Foundations of Biological Sciences I	4	(Technical Elective for BME)
Bio Sci 152	Foundations of Biological Sciences II	4	(Technical Elective for BME)
One Advanced course in Bio Sci with lab	5		
Chem 102	General Chemistry	5	(Technical Elective for BME)
Chem 104	General Chemistry \& Quantitative Analysis	5	(Technical Elective for BME)
Chem 343	Organic Chemistry	3	(Technical Elective for BME)
Chem 344	Organic Chemistry Laboratory	2	(Technical Elective for BME)
Chem 345	Organic Chemistry	3	(Technical Elective for BME)
Chem 501	Introduction to Biochemistry	3	
Math - a semester of calculus	4	(Required for BME)	
Physics 209	General Physics I	4	(Required for BME)
Physics 210	General Physics II	4	(Required for BME)
Physics 214	Lab Physics I	1	(Required for BME)
Physics 215	Lab Physics II	1	(Required for BME)
Statistics - Any statistics course	3	(Required for BME)	
General Education Courses			
Psych 101	Introduction to Psychology	3	(UWM Social Science GER)
Sociol 101	Introduction to Sociology	3	(UWM Social Science GER)
PH 101	Introduction to Public Health	3	(UWM Social Science GER)

*C or better in prerequisite
(C) Concurrent Enrollment in Designated Course

Degree Requirements: Students must maintain an average GPA of at least 2.0 on all work attempted at the University and in all courses offered by the College. Students majoring in Biomedical Engineering must maintain an average GPA of at least 2.0 in all 300-level required major courses. Transferable courses will be included as appropriate. Advancement to major status is required for graduation.

College of Engineering and Applied Science University of Wisconsin - Milwaukee
P.O. Box 784
Milwaukee, WI 53201

Office of Student Services (414) 229-4667
Engineering \& Mathematical Science Building (EMS) Room E386
Department of Biomedical Engineering (414) 229-4768
Engineering \& Mathematical Science Building (EMS) Room 503

Web Site: www.ceas.uwm.edu

Action CHANGE
Major Computer Engineering
UW-MILWAUKEE ONLINE PROGRAM CHANGE FORM
I. Current

Chemistry Requirement: 5 credits suggested** One of the following Chemistry sequences must be completed:

```
Chem 105 (5 credits suggested)
or
Chem 102-104 (10 credits)
```

II. Proposed Change Summary

```
permit biology to substitute for chemistry
```

III. Effects

Additional Faculty Required
Four-Year Faculty Needs
Library Resources
Required Additional Facilities and Equipment
Program Costs
Resource Reallocation
IV. Justification

Biology is now just as useful for Computer Engineers as Chemistry
V. New Copy

Chemistry or Biology Requirement: 4-5 credits

 Choose one of the following courses:Chem 105 (5 cr.), Chem 102 (5 cr.), BioSci 150 (4 cr.), or BioSci

202 (4 cr.)

VI. Proposed Effective Date Fall 2018
VII. Comment
VIII. Approval

Vice Chancellor's Signature
Date

Action CHANGE

Certificate Web Development Certificate
Level of Certificate Undergraduate Only
New Level of Certificate Same
UW-MILWAUKEE ONLINE PROGRAM CHANGE FORM
I. Current

Web Development Certificate. The Web Development Certificate is designed to offer students the opportunity to complement their major field of study with an additional concentration in web programming. This certificate is also available to those who have already graduated. The 18 -credit certificate requires one course selected from CompSci 202 and CompSci 351; one course selected from CompSci 113, InfoSt 320, and ART 325; one course selected from CompSci 361 and CompSci 481; and CompSci 482. The remaining 6 credits are selected from Art 218, 224, 325, BusAdm 531, 532, Commun 313, 413, CompSci 112, 425, 444, 552, CurrIns 530, 547, English 439, HCA 444, 542, INFOST 325, 370, 430. At least 8 credits must be completed at UWM. The student must maintain a minimum GPA, as specified by department, in courses used to complete the certificate.
II. Proposed Change Summary

Courses added to reflect program changes, InfoSt 430
removed at the department's request.
III. Effects

Additional Faculty Required
Four-Year Faculty Needs
Library Resources
Required Additional Facilities and Equipment
Program Costs
Resource Reallocation
IV. Justification

Changes in the certificate reflect changes in the CompSci
and InfoSt programs.
V. New Copy

Web Development Certificate. The Web Development Certificate is designed to offer students the opportunity to complement their major field of study with an additional concentration in web programming. This certificate is also available to those who have already graduated. The 18 -credit certificate requires one course selected from CompSci 202 and CompSci 351; one course selected from CompSci 113, InfoSt 320, and ART 325; one course selected from CompSci 361 and CompSci 481; and CompSci 482. The remaining 6 credits are selected from Art 218, 224, 325, BusAdm 531, 532, Commun 313, 413, CompSci 112, 150, 425, 444, 469, 530, 552, 557, CurrIns 530, 547, English 439, HCA 444, 542, INFOST 325, 370, 375, 685. At least 8 credits must be completed at UWM. The student must maintain a minimum GPA, as specified by department, in courses used to complete the certificate.
VI. Proposed Effective Date Fall 2018
VII. Comment

The currently approved program is not currently in the UG catalog (the UG catalog contains information on the program before it was modified in May 2017).

The current text should be available in approved OPC \#2356.
VIII. Approval

Vice Chancellor's Signature
Date \qquad

ATTACHMENT 6

3.7 AWARDS AND RECOGNITION COMMITTEE

3.7.1 Membership:

a. The Awards and Recognition Committee shall consist of five (7) voting members and one ex-officio representing CEAS administration: six faculty members and one student..
b. The faculty members shall be elected with one member from each department.
c. The student member shall be a CEAS student in good standing. The student will be selected yearly by the Council of Engineering Student Organizations (CESO).
d. The Office of the Dean shall designate one CEAS staff member to serve as a voting member of the committee for two (2) years.
3.7.2 Responsibilities:
a. The Committee shall be responsible for soliciting nominations from faculty, and staff_or the following awards:

1. Outstanding Faculty \& Staff Teaching Award (Spring)
2. Outstanding Faculty Research Award (Spring)
3. Outstanding Faculty Service Award (Spring)
4. Outstanding Staff Service Award (Spring)
5. Outstanding Student Award (Fall and Spring)
b. No more than one person shall be selected for each of the first four awards.
c. The committee shall also make recommendations to the Dean related to establishment and awarding of scholarship funds to students within the College.

3.7.3 Election Procedures:

a. Nominations may be made by faculty, groups of faculty, or departments.
b. The Secretary of the Faculty conducts the election in April of each year. Three members are to be elected in even years, and three members are to be elected in odd years.
c. The first faculty in alphabetical order shall call the first meeting to elect a chairperson.

RESOLUTION ON TA POSITION APPOINTMENTS

Whereas -

The primary mission of a university is the education of students; and according to UWM Policies and Procedures, ' the title 'Teaching Assistant' (TA) is used for graduate students enrolled in the University of Wisconsin System who are regularly assigned teaching and related responsibilities (other than manual or clerical responsibilities) under the supervision of a member of the faculty. (and) ... teaching assistants are counted as instructional staff"; and

Whereas -

Requiring a TA to also serve as a research assistant by maintaining a particular faculty member as his or her major advisor does not serve any direct educational goal (for either the TA or the students he or she helps teach); and

Whereas -

Linking the position of a TA to having a particular faculty advisor for his/her dissertation may lead to several negative consequences including: devaluing the importance of quality teaching, increasing the likelihood of personal conflict among faculty members competing for TAs to support their research, reducing the academic opportunities of graduate students to freely choose their advisor or research path, and making it harder for the CEAS to recruit and retain the highest quality graduate students;

Be it resolved -

That Computer Science faculty and GPSC propose CEAS adopt a college-wide policy disallowing making teaching positions contingent on the student's maintaining a particular faculty member as their academic (e.g. dissertation) advisor.

