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Physics 782 
 
Homework #3 – Due in class, Thurs March 11.  
 
1. Suppose your MRI scanner should sample data, f^(km,kn)  at points (km,kn) = Δk(m,n) for 

m,n=-N/2, -N/2+1, … N/2-1.  Due to eddy currents, it actually samples at points (mΔk+ε1, 

nΔk+ε2).  How can you recover the desired function f(x1,x2)? What shortcut could you take 
knowing a priori that f(x1,x2) represents density of hydrogen nucleii?   

 
2. Suppose in problem 1 (ε1, ε2) = ε (1/3,1/2) for and f(x1,x2) =  χ(x1) χ(x2)  where χ(x)=1 for 

|x|<1/4 and χ (x)=0 for all other x.  Show the naive reconstructions obtained when your k-
space trajectories are shifted by ε =0,1,2.  Use N=512 with the image field of view (FOV) 
normalized to 1.  (Δk=1 and Δx=1/512)  What happens to the magnitude and phase images for 
each ε=0,1,2?   

 
3. (1/4 detector offset) Assume a linear xray CT detector array with individual channel 

width Δs and 100% fill factor.   
a) How would you use this detector to sample at the Nyquist rate?   
b) How would you use a detector with 67% fill factor?  

 
4. Copy & paste the following lines into MATLAB simply to get familiar with radon.m 

 
P = phantom(128); 
R = radon(P,0:179); 
I1 = iradon(R,0:179); 
subplot(1,2,1), imshow(P), title('Shepp-Logan Orig Image'), colorbar, 
subplot(1,2,2), imshow(I1), title('Filtered backprojection'), colorbar, 

 
5. (Detector averaging w/o noise.)  Suppose you measure the 2D Radon transform of 

the indicator function on a disc of radius ¼ with an xray detector covering s∈[-1/2, 
½) with Δs=1/128 and 100% fill factor.  
a. In the same graph, plot data measured by this averaging detector and an ideal 

detector, being certain to display the regions of “interesting” behavior. 
b. What is the Fourier transform of the measured and ideal projections?  Plot them 

on the same graph to highlight differences.    
c. For a given Δs what Δθ would you set?  
d. Use MATLAB’s Radon.m routine to numerically create a sinograms of the  

indicator function.  Use 2D image array sizes nxn = 8x8, 32x32, 128x128, 
512x512.  Create and turn in images of both your function 

! 

"  and sinogram. 
e. Evaluate the analytic/ideal sinogram numerically in MATLAB using the exact 

same sampling rate as created in problem d.  Compare analytic vs. numerical 
sinograms. Why do results agree better for large n? (ignore scaling factors) 

f. Reconstruct sinograms from parts A & B using MATLAB’s iradon.m & compare 
results. Show me images and profiles. 

NOTE:  for problems e & f be sure to sample at the same points as MATLAB.    
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6. Mammography is typically performed while the breast is compressed.  In this question we will look at 
how compression improves the contrast-to-noise ratio of an infiltrating ductal carcinoma (IDC) in the 
breast.    A schematic of the breast with and without compression is shown in the following figure.  
Let’s assume the breast is glandular tissue with a single lump of IDC. 

 
 
Contrast-to-noise ratio (CNR) is defined as: 
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where NA and NB are the output number of x-ray photons for rays A and B respectively, where ray A 
travels only through glandular breast tissue and ray B travels through both the breast tissue and the tumor.  
The linear attenuation coefficient of glandular tissue is  µg = 0.8cm-1 and  
the linear attenuation coefficient of IDC    µidc = 0.9cm-1.   
Using these numbers and the initial number of photons No = 1000, calculate the CNR of both the 
uncompressed and compressed breast.  What is the percent improvement in CNR with compression?   
 
7.  Beam Hardening – Toy Problem.   Assume the following xray spectra and attenuation coefficients 
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Start with Eo = 120keV, δ=2/Eo.  Note that µ is independent of x and when ε=0, µ(x,E) = µo  (see plot 
below).  Compute the CT projection of the disc of radius 1/4, allowing now for beam hardening according 
to the spectra (Io) and LAC, µ(x,E), given above.  You must integrate over energy as below  

! 

I
meas

= I
o
(E)   e

" µ x,E( )  dx

L

#
# dE  

Do the integral analytically for this toy example.   
For both ε=0 and ε=1 compute the measured projections, which requires taking 
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Reconstruct using iradon.m and compare images with and without beam hardening.  
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