

Title: Modeling Techniques for Hydrogeology (GEO SCI 730)

Term: Spring 2023

Credits: 3 Credits Graduate

Description: Study and application of modelling techniques in hydrogeology. Includes finite difference and finite element techniques for groundwater flow, contaminant transport, and geochemistry.

Duration: 1 hour lecture plus 1.5 hours computer lab per week

Prerequisites: grad st; Geo Sci 463; knowledge of fortran or equiv; cons instr.

Lecture: 8:30 AM to 11:10 PM, Fri., Jan. 23 to May 11, Lapham Hall, Room 262 (lecture) and Room 249 (computer lab)

Teacher: Dr. C.J. Paradis, paradisc@uwm.edu, Lapham 348

Textbook: None

Grading Weights: 40% mid-term project, 40% final project, 20% participation

Grading Scale: A (93-100), A- (90-92), B+ (87-89), B (83-86), B- (80-82), C+ (77-79), C (73-76), C- (70-72), D+ (67-69), D (63-66), D- (60-62), F (<60)

Final Exam: None

Time Investment: No less than 48 hours (lecture, laboratories, examinations, preparation, etc.) per 1 credit hour per semester, i.e., no less than $(3 \text{ credits})*(48 \text{ hour/credit}) = \underline{144 \text{ hours}}$ ($\approx 9 \text{ hours/week}$)

Syllabus: GEO SCI 730 v1 Page 1 of 2

Course Schedule

rence Steady-State Flow Confined Aquifer (Laplace)
• • • • • • • • • • • • • • • • • • • •
rence Iterative Solutions
rence Steady-State Flow Confined Aquifer with Source/Sink
rence Steady-State Flow Unconfined Aquifer (Dupuit)
rence Transient Flow Confined and Unconfined Aquifers
Solution Techniques
ect Presentations
ng Break)
Calibration and Verification
Dispersion-Reaction (ADR) Equation
Solutions (Laplace Transforms)
Advection, Dispersion, Sorption, and Reaction
versus Numerical Transport Modeling
Model Calibration and Verification
resentations

Syllabus: GEO SCI 730 v1 Page 2 of 2