DECADAL-SCALE CHANGES IN RADIUM CONCENTRATIONS IN GROUNDWATER AND RELATION TO ROAD SALT APPLICATION

BRUCE LINDSEY

U.S. GEOLOGICAL SURVEY

EARTH SYSTEMS PROCESSES DIVISION

COAUTHORS – CHARLES A. CRAVOTTA III, ZOLTAN SZABO, KENNETH BELITZ, AND PAUL STACKELBERG

OVERVIEW

- National Groundwater Quality Monitoring: Rotational Surveillance network
- Highlights of national sodium, chloride, and radium results
- Relations between road-salt, sodium, chloride, and radium in New Jersey
- Changes in radium concentrations in other aquifers

pubs.acs.org/estwater

🔤 @ 🖲 😒 🖃

Article

Relation between Road-Salt Application and Increasing Radium Concentrations in a Low-pH Aquifer, Southern New Jersey

Bruce D. Lindsey,* Charles A. Cravotta III, Zoltan Szabo, Kenneth Belitz, and Paul Stackelberg

Cite This: ACS EST Water 2021, 1, 2541-2547

ACCESS

III Metrics & More

Article Recommendations

s Supporting Information

ABSTRACT: The Kirkwood–Cohansey aquifer in southern New Jersey is an important source of drinking-water supplies, but the availability of the resource is limited in some areas by high concentrations of radium, a potential carcinogen at elevated concentrations. Radium (²²⁶Ra plus ²²⁸Ra) concentrations from a network of 25 drinking-water wells showed a statistically significant increase over a decadal time scale (p < 0.05), with a median increase of 0.35 picocuries per liter. Increases in Ra are correlated with road-salt application rates, and we hypothesize that the correlation is causal. Geochemical processes associated with road-salt applications that can mobilize Ra into solution include competition by excess sodium for sorption sites and formation of chloride complexes (RaCl⁺ and RaCl₂). The largest increases in Ra were in groundwater with low pH (\leq 5), which is an indirect surrogate for low cation-sorption capacity. Correlations with other potential anthropogenic causes for the increase in Ra were not observed, further suggesting a road-salt effect. Given the significant increase in Ra, are concentrations in this drinking-water source, the known carcinogenic risks from Ra,

the direct link to road-salt application, and the likelihood for continued increases, additional monitoring is necessary in areas with similar hydrogeologic and geochemical settings.

KEYWORDS: radium, road salt, deicing, groundwater trends, sodium, chloride, salinization

DECADAL NETWORKS

- National network
- Decadal change mapper: how are concentrations of contaminants in groundwater changing during decadal periods across the Nation.
- Each network of 25-30 wells represents a specific aquifer, region and sometimes land use.
- Nutrients, metals, radionuclides, and organic contaminants in groundwater are evaluated in a total of 88 networks.
- Decadal intervals: 1988-2001; 2002-2012; 2013-2020.

- Each network of 25-30 wells represents aquifer, region and sometimes land use.
- Icons on the national map represent a group of wells with similar characteristics.

RADIUM RESULTS FROM DECADAL NETWORK

- Radium was not sampled during 1st and 2nd decades at all networks
- By 2020, 10 networks had sufficient data for statistical analysis
 - That is a minimum of 18 sites sampled over a near-decadal time period
- As used herein radium is sum of ²²⁶Ra and ²²⁸Ra
- The EPA Maximum Contaminant Level (MCL) for radium is 5 picocuries per liter (pCi/L)
- 5 networks increasing, 2 decreasing, 3 no change

State	Aquifer	Probability	Median Change (in pCi/L)	Number of samples	Percent modern
Arizona	Basin and Range aquifers Glacial aquifer	0.03	0.01	29	21%
Iowa	system Floridan aquifer	0.20	0.12	19	53%
Georgia/Florida	system Glacial aquifer	0.01	0.10	25	8%
Michigan	system	0.01	0.33	23	38%
New Jersey	Kirkwood- Cohansey aquifer Glacial aquifer	0.001	0.35	25	76%
Illinois (lower)	system	0.22	-0.02	26	4%
Texas	Edwards-Trinity aquifer system Cambrian- Ordovician aquifer	0.011	-0.28	21	81%
Illinois (upper)	system Cambrian-	0.78	0.09	25	4%
Minnesota	System Glacial aquifer	0.01	0.03	26	58%
Wisconsin	system	0.001	(-0.34)	18	72%

- Kirkwood-Cohansey aquifer
- Known for high radium concentrations
- Very low pH median is less than 5 pH units
- Sandy aquifer with low sorption capacity

- Decadal change showed increase
- Subset of sites sampled 3 times

GEOCHEMICAL CONDITIONS IN NEW JERSEY NETWORK ARE UNIQUE

- Changes in concentration, 2006-2018
- Radium showed correlation with Cl, Na, and dissolved solids.
- Stronger in low pH samples
- What is the mechanism driving this?

- Changes in concentration, 2006-2018
- Radium showed correlation with road salt application rate
- So did Cl, Na, and dissolved solids.
- So did Mg, Ca, Ba, and Sr

- Cl/Br mass ratios
- Open circles are 2006, filled circles are 2018
- Sites labeled A-D are largest increases in Ra
- Sites with highest increases in Ra moving toward halite/deicing salt mixing curve
- Brines not used in this area

- Cl/Br mass ratios
- Sites labeled A-D are largest increases in Ra
- Sites with highest increases in Ra moving toward higher Cl/Br mass ratios (road salt indicator)

Displacement of Ra by Na

- Na is a weak competitor for sorption to displace Ra
- However large quantities of Na may replace Ca, Mg, Ba, Sr, and other divalent cations that are weakly bound
- Cascading effect Na displaces Ca and Mg, which displace Ra
- Some Ca and Mg in salt may compete with Ra
- Increases in Na are less than increases in Cl supporting Na being retained on sorption sites.

Complexing of Ra with Cl

- RaCl+ and RaCl₂ complexes (RaClx) are more soluble
- RaClx/RaTOT ratios greater in second decade than in first decade
- Indicates increase in Cl complexation

Other issues explored

- Ra in the road salt not large enough to cause change in concentration
- Septic systems, population density, fertilizer use, and agricultural land use not correlated with changes in Ra.

Other networks with changes in Ra

- Glacial aquifer, Michigan
- Glacial aquifer, Wisconsin
- Cambrian-Ordovician aquifer, Minnesota
- No correlation with road salt
- 2 of 3 have older groundwater
- Further study needed to understand changes in Ra

SUMMARY

- Na, Cl, and dissolved solids are increasing in a large percentage of networks across the country
- Road salt is a likely contributor to these increases in urban areas with a cold climate where road salt is used for deicing
- Increases in concentrations of Na and Cl are directly related to increases in Ra in a low pH aquifer
- Causes of changes in Ra in other aquifers have not been identified
- Effects of road salt on aquifers and other hydrologic systems cause issues beyond the increases in Na and Cl

QUESTIONS?

REFERENCES

Lindsey, Bruce D., Cravotta, Charles A. III, Szabo, Zoltan, Belitz, Kenneth, and Stackelberg, Paul, 2021, Relation between Road-Salt Application and Increasing Radium Concentrations in a Low-pH Aquifer, Southern New Jersey, ACS EST Water, v. 1. p. 2541-2547. https://doi.org/10.1021/acsestwater.1c00307

Lindsey, B.D., Johnson, T.D., Privette, L.M., and Estes, N.J., 2018, Decadal changes in groundwater quality: U.S. Geological Survey Web page, https://nawqatrends.wim.usgs.gov/Decadal/

Lindsey, B.D, Levitt, J.P., and Johnson, T.D., 2021, Data from Decadal Change in Groundwater Quality Web Site, 1988-2020: U.S. Geological Survey data release https://doi.org/10.5066/P9KE5YV7