

Title: Physical Hydrogeology (GEO SCI 463/463G)

Term: Fall 2021

Credits: 4 Credits Undergraduate/Graduate

Description: Study of groundwater occurrence, its interrelationship with surface water, aquifer properties, groundwater flow and water supply development, including well hydraulics, water quality, and groundwater law

Duration: 3 hours lecture per week and 3 hours lab per week

Prerequisites: junior/senior status; GEO SCI 100(P) or GEO SCI 101(P); MATH 232(P).

Lecture: 12:30 PM to 1:45 PM, Mon. and Wed., Sept. 2 to Dec. 14, In Person, Lapham Hall, Room 262

Lab Section 801: 3:30 PM to 6:20 PM, Mon., Sept. 2 to Dec. 14, In Person, Lapham Hall, Room 262

Lab Section 802: 3:30 PM to 6:20 PM, Wed., Sept. 2 to Dec. 14, In Person, Lapham Hall, Room 262

Teacher: Dr. C.J. Paradis, E-mail: paradisc@uwm.edu, Office Phone: 414-229-2493, Office Hours, In Person, Lapham 348: Fri., 10:00 AM to 12:00 PM or by appointment

Teacher's Assistant: Kendyl Hoss, E-mail: knhoss@uwm.edu, Office Hours, In Person, Lapham 332, Thu. 11:00 AM to 1:00 PM or by appointment

Textbook: Groundwater, R. Allan Freeze and John A. Cherry, 1979, ISBN 0-13-365312-9, free download at: http://hydrogeologistswithoutborders.org/wordpress/original-groundwater-by-freeze-and-cherry-1979-now-available-online/

Grading: 50% lab assignments, 25% mid-term exam, 25% final exam

Final Exam: Mon., Dec. 20, 12:30 PM to 2:30 PM, Lapham Hall, Room 262

Graduate Student Requirement: Apply knowledge gained towards substantial advancement of your thesis or professional development

Time Investment: No less than 48 hours (lecture, laboratories, examinations, preparation, etc.) per 1 credit hour per semester, i.e., no less than (4 credits)*(48 hour/credit) = $\underline{192 \text{ hours}}$ ($\approx 13 \text{ hours/week}$)

Syllabus: GEO SCI 463 v3

Grading: A (93-100), A- (90-92), B+ (87-89), B (83-86), B- (80-82), C+ (77-79), C (73-76), C (70-72), D+ (67-69), D (63-66), D- (60-62), F (<60)

Course S	Schedule		
Week	Lecture Topic	Textbook	Lab
of:		Chapter	Assignment
8/30	M: No Class	None	No Lab
	W: No Class		
9/6	M: No Class (Labor Day)	None	No Lab
	W: Fundamentals		
9/13	M: Darcy's Law	2.1	Particle Density (ρ_p) & Bulk
	W: Darcy's Law	2.1	Density (ρ_b)
9/20	M: Hydraulic Head & Conductivity	2.2, 2.3	Porosity (n), Specific Yield (S _v) &
	W: Heterogeneity & Porosity	2.4, 2.5	Specific Retention (S _r)
9/27	M: Aquifers & Aquitards	2.7	Error Propagation of ρ_p , ρ_b , n, S _v , &
	W: Steady & Transient Flow	2.8	Sr
10/4	M: Compressibility & Stress	2.9	Grain Size Distribution (d) Sieve
	W: Transmissivity & Storativity	2.10	and Hydraulic Conductivity (K)
10/11	M: Groundwater Flow Equations	2.11	Falling Head Permeameter (K)
	W: Groundwater Flow Equations	2.11	Homemade Apparatus
10/18	M: Limits to Darcy's Law	2.12	Falling Head Permeameter (K)
	W: Hydrodynamic Dispersion	2.13	ASTM Apparatus
10/25	M: Mid-term Exam Review	2	Transient Pumping Test for
	W: Mid-term Exam		Hydraulic Conductivity (K)
11/1	M: Aquifer Pumping	8.3	Steady-State Pumping Test for
	W: Aquifer Pumping	8.3	Hydraulic Conductivity (K)
11/8	M: Laboratory Parameter Tests	8.4	Field Trip to Cedarburg Bog or
	W: Piezometer Parameter Tests	8.5	Slug Test Data Analysis
11/15	M: Pumping Parameter Tests	8.6	Solute/Contaminant Transport
	W: Pumping Parameter Tests	8.6	(v, α)
11/22	M: No Class (Thanksgiving-ish)	None	No Lab
	W: No Class (Thanksgiving Break)		
11/29	M: Numerical Simulations	8.8	Groundwater Flow Modeling
	W: Numerical Simulations	8.8	USGS Code & Software
12/6	M: Groundwater Contamination	9.2	Groundwater Flow Modeling
	W: Groundwater Contamination	9.2	USGS Code & Software
12/13	M: Final Exam Review	2, 8, 9	No Lab
	W: No Class		

Syllabus COVID Statement

Panther Community Health and Safety Standards: UWM has implemented reasonable health and safety protocols, taking into account recommendations by local, state and national public health authorities, in response to the COVID-19 pandemic. As a member of our campus community, you are expected to abide by the Panther Interim COVID-Related Health & Safety Rules, which were developed in accordance with public health guidelines. These standards apply to anyone who is physically present on campus, UWM grounds, or participating in a UWM-sponsored activity:

- All individuals visiting UWM facilities must wear face coverings while indoors;
- Unvaccinated students coming to campus are required to test weekly for COVID-19; and,
- You should check daily for COVID-19 symptoms and not come to campus if you are feeling sick.

Additional details about student and staff expectations can be found on the UWM COVID-19 webpage.