

Charles Paradis

University of Wisconsin at Milwaukee, Department of Geosciences

Objective and Methods

- Objective: elucidate the mechanism(s) of uranium mobility, e.g., de-sorption, re-oxidation, in groundwater during in-situ surface water flooding events
 - Driven by observation of increased uranium concentrations in groundwater during natural river flooding events
- Methods
 - 1. Conduct in-situ flooding experiments at small-scale experimental plot on the banks of river
 - 2. Model flow and transport of uranium with MODFLOW and PHREEQC
 - Start basic with MODFLOW code via ModelMuse GUI
 - Both open-source USGS

The Data, Model, & Motivation

Uranium Re-oxidation: Conceptual Model

Biotic Processes Under electron donor Bioreduced U (U(IV), nanometer limited conditions and sized amorphous and crystalline presence of O₂, NO₂-, particles) N₂O, NO, carbonates, leftover Mn(VI) and Fe(III), organic ligands, and various reoxidized bioreduced U Various electron donors, shuttles, Aqueous acceptors, and subsurface bacteria

Uranium Re-oxidation: Quantitative Model

Uranium De-sorption: Conceptual Model

Uranium De-sorption: Quantitative Model

Uranium Re-ox + De-sorb: Quantitative Model

Why Re-oxidation and De-sorption?

- Consider mixing two fluids of different geochemistry
 - Fluid A: Groundwater
 - Reducing conditions (↓mV)
 - High concentration of uranium (↑C)
 - Fluid B: River Water
 - Oxidizing conditions (↑mV)
 - Low concentration of uranium (↓C)
- Consider fundamental chemistry
 - $U^{4+}_{(solid)}$ [Aquifer] 2e⁻ [River water] $\rightarrow U^{6+}_{(liquid)}$
 - \uparrow S [Aquifer] $\rightarrow k_d \downarrow C$ [River water]

The Field Site: Riverton, Wyoming

The Field Site: Hydrogeology

The Field Site: Uranium Plume

The Field Site: Horses...

Experimental Design & Grad Students

Cullen Meurer MS Student

GW to GW Sat. Zone Injection (DONE)

GW to GW Sat. Zone Injections w/added Alkalinity #1 (DONE)

GW to GW Sat. Zone Injections w/added Alkalinity #2 (DONE)

Jiyan Hatami

MS Student

SW to GW Sat. Zone Injection (DONE)

SW to GW Unsat. Infiltration (DONE)

SW to GW Unsat. Infiltration w/added Alkalinity (SU-21)

Rakiba Sultana PhD Student

Kendyl Hoss MS Student

Experimental Design & Scale

- Former Tailings Area (FTA)
 - 1. GW to GW Sat. Zone Injection
 - 250 gallons injected in 8 hours
 - Test ran for 9 days after injection
 - 2. GW to GW Sat. Zone Injection with added alkalinity #1
 - 250 gallons injected in 8 hours
 - Test ran for 10 days After injection
 - 3. GW to GW Sat. Zone Injection with added alkalinity #2
 - 100 gallons in 4 hours
 - Test ran for 9 days after injection

- St. Steven's Mission Area (SSMA)
 - 1. SW to GW Sat. Zone Injection
 - 100 gallons injected in 8 hours
 - Test ran for 18 days after injection
 - 2. SW to GW Unsat. Infiltration
 - 2000 gallons infiltrated over 8 days
 - Test ran for 21 days after the end of the infiltration
 - 3. SW to GW Unsat. Infiltration with added alkalinity
 - 2000 gallons infiltrated over 8 days
 - Test ran for 21 days after the end of the infiltration

Field Research During COVID

- Health & Safety Plan Approval
- Individual Transportation
- Individual Lodging
- Self Screening for Symptoms
- On-site Temperature Checks
- Social Distancing
- Disinfecting
- Contingency Plans

Pre-experiment Characterization: Model Input

Modeling Approach

Figure 8.28 Flowchart of the trial-and-error calibration process (after Neuman, 1973a).

Pumping Test Data

Pumping Test Data Visualization 3D

Cooper-Jacob Method for T, S_y, & K_{sat}

Pumping Test Data Analysis

Model Input Parameters: MODFLOW

Well	K	S _y or n _e	Gradient	Analyst
ID	m/s	-	-	-
1004	3.4E-05	0.25	-	KH
1005	2.7E-05	0.41	-	KH
1006	2.5E-05	0.17	-	KH
1004, 5, 6	5.1E-05	0.25	-	СР
Average	3.4E-05	0.27	1.1% 167° CW-N	KH,CP
Std. Deviation	1.2E-05	0.10	-	KH,CP

Model Set Up: MODFLOW/ModelMuse

Model Simulation: Time Step One End

Model Simulation: Time Step Two End

Data versus Model: Calibration 1

Modeling Approach

Figure 8.28 Flowchart of the trial-and-error calibration process (after Neuman, 1973a).

Model Simulation: Time Step Two End

Data versus Model: Calibration 2

Modeling Approach

Figure 8.28 Flowchart of the trial-and-error calibration process (after Neuman, 1973a).

Conclusion Flow Calibration

- We're gettin' there!!!
 - 1. Need to georeference wells (make sure orientation is good)
 - 2. Generate time vs. drawdown simulations at wells (gw chart package)
 - 3. Need to automate calibration (write some code)
 - 4. Need to quantify/minimize error (residual sum of squares)
 - 5. Need to build flow unsaturated zone (cal. w/infiltration test data)
 - 6. Need to build flow model for FTA (sat. and unsat. zones)
- Worth testing model inputs (K, i, and n) for transport?
 - Recall $v = Ki/n = (3.4E-05m/s*1\%)/0.25 \approx 0.4 ft/day$
 - Sure, let's give it a try...1-D analytical model (SIMPLE)

Pre-experiment Characterization: Model Input

Tracer Test Data and Model

Fig. 6 Breakthrough curve of fluorescence in down-gradient observation well (1005) at the SSMA, radial distance between up-gradient injection well (1001) observation well (1005) approximately 3 feet, solid circles are data, solid line is 1-D analytical model

What about the BIG experimental data?

- Some of the data is still in the analytical lab
- Data that is available is ready for analysis
- Want to get flow and transport model going from preexperimental characterization
- Want to test how well model can predict experimental data
- Then calibrate models, if necessary, likely necessary...
- However, let's have a look at some published data from similar tests at Grand Junction, Colorado site

Similar/Previous Study

Journal of Contaminant Hydrology 229 (2020) 103581

Contents lists available at ScienceDirect

Journal of Contaminant Hydrology

journal homepage: www.elsevier.com/locate/jconhyd

Field experiments of surface water to groundwater recharge to characterize the mobility of uranium and vanadium at a former mill tailing site

Charles J. Paradis^{a,*}, Raymond H. Johnson^b, Aaron D. Tigar^b, Kirsten B. Sauer^a, Oana C. Marina^a, Paul W. Reimus^a

^a Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA

b Navarro Research and Engineering, Inc., Contractor to the United States Department of Energy, Office of Legacy Management, Grand Junction, CO, USA

Field Site: Banks of Gunnison River

Data: River Water to Groundwater Recharge/Injection

Conclusions & Future Work

- Initial model inputs show good agreement to measured outputs
 - Need to include unsaturated zone in flow model
 - Need to calibrate flow model with field data
 - Need to run transport model, after flow model is calibrated
- A ton of data in hand and in the queue and likely several stories to tell
 - Two sites (FTA & SSMA) and two tests (natural, added alkalinity)
 - Need Support for Undergraduate Research Fellows (SURF), Dec. 1 deadline

Acknowledgements

Los Alamos

EST. 1943

UWM Grads: Meurer, Hatami, Hoss, Sultana

UWM GeoSci: New faculty start up

UWM GeoSci: Nelson Cherkauer Lasca Legacy Scholarship

GSA: Graduate Student Research Grants

Navarro: Raymond Johnson, Aaron Tigar,

LANL: Paul Reimus, Katherine Telfeyan, Brent Newman, Nate Conroy

LANL: Graduate Research Assistantship

