METHANE TRANSPORT DURING A FIELD-SCALE METHANE RELEASE

Mark Felice

ROADMAP OF TODAY'S PRESENTATION

- General background
- Research context
- Experiment overview
- Experiment results
 - Methane transport
 - Direct impacts on methanotroph communities
- Wrap up

METHANE IS AN IMPORTANT GREENHOUSE GAS

- 2nd-most important greenhouse gas
- 28x more warming potential than CO₂
- Atmospheric levels ~ 150% of pre-industrial levels
 - Mainly anthropogenic
- Emissions expected to rise: How much?
 - Land-use change
 - Permafrost thaw
 - Peatland warming

METHANE SOURCES ARE NUMEROUS

• Natural sources (35-50%)

- Natural wetlands
 - Lakes
- Geological sources
 - Termites

Anthropogenic sources (50-65%)

- Landfills
- Rice paddies
- Livestock
- Fossil fuel combustion

METHANE SINKS CONSUME ATMOSPHERIC METHANE

Abiotic

- Hydroxyl radicals
 - STABLE

Biotic

- Methanotrophs
- 4% of global sink
 - DYNAMIC

 Methanotrophs consume significant CH₄ BEFORE reaching atmosphere

NOT considered in global sink estimates

METHANOTROPHS CONSUME ATMOSPHERIC METHANE

- Atmospheric methane consumption
- Traditional "sink"
- "High-affinity methanotrophs"
- Low methane oxidation rates

METHANOTROPHS ATTENUATE SUBSURFACE METHANE EMISSIONS

- Methanotrophs oxidize significant methane BEFORE it reaches the atmosphere
- "Low-affinity methanotrophs"
- High methane oxidation rates

METHANOTROPHS ARE FUNCTIONALLY DIVERSE

- Affinity for methane
- Response to resource availability
- Alternate substrate utilization
- N-fixation
- Response to stress
- Spore-forming ability

Need to understand COMMUNITY to predict response of methane cycle to perturbations

LEAKING FUEL FROM UST'S PROVIDES SOURCE FOR METHANE GENERATION

- ~569,000 USTs nationwide
- >60% of CA underground storage tanks (USTs) leaking fuel vapors
- Methane dynamics at LUST sites poorly understood

Xerxes Corporation, Minneapolis, MN

GOALS OF RESEARCHING METHANE AT LUST SITES

- Risk management
 - Explosion hazard
 - Increased vapor intrusion risk
- Unique environment
- Laying groundwork for future experiments
- LUSTs themselves small source globally BUT findings translate to more globally significant methane sources

OBJECTIVES

- Characterize methane migration in shallow subsurface
 - Measure lag time for methane oxidation to begin
 - Determine fraction of methane reaching the atmosphere
 - Measure seasonal variability and identify controls on methane migration
- Characterize the relationships among:
 - Abundance of methanotroph groups and community composition
 - Soil moisture
 - Lag period and steady state methane oxidation rates

CONTINUOUS SUBSURFACE METHANE INJECTION

- Methane injection parameters
 - July 2014 February 2015 (~7 months)
 - 1000 mL/day varying gas composition
 - 25% CH₄ + 75% N₂ ("Low rate")
 - 100% CH₄ ("Hi rate")
 - I m below ground surface (BGS)
 - Continuous injection followed by tracer and inhibitor studies

CONTINUOUS SUBSURFACE METHANE INJECTION

- <u>Continuous monitoring</u>
 - Soil gas --> CH₄ CO₂, O₂, N₂
 - Efflux --> CH_4 , CO_2
 - Soil gas pressure
 - Soil moisture
 - Microbial communities (background and injection point)
 - qPCR
 - Methanotrophs and total bacteria
 - 16S rRNA gene sequencing
- One-time measurements
 - Bulk density
 - Mineral density
 - Organic carbon

Note the vegetation:

Mediterranean climate

=

Seasonal (winter) rainfall

LIGR EFFLUX SYSTEM AND CART

Photo credit: Doug Mackay

MANUAL GAS SAMPLING APPARATUS

HYPOTHESES

- CH_4 oxidation will begin within several days of injection
- CH₄ migration will be tied to soil moisture
- CH₄ inputs will select for competitor methanotroph groups
- Shifts toward competitor methanotroph groups will increase methane oxidation rates
- Methanotroph community composition will be linked to soil moisture

EXPERIMENT SPANNED LONG PERIODS OF DROUGHT

BEFORE INJECTION: SOIL A NET CH₄ CONSUMER

DRY MONTHS FOLLOWING INJECTION: SOIL A LARGE NET CH4 EMITTER

- During dry months:
 - CH₄ efflux high (34-52%)
 - CH₄ oxidation low

WET MONTHS FOLLOWING INJECTION: SOIL A SMALL NET CH4 EMITTER

- Following increased moisture:
 - CH₄ efflux low (<2%)
 - CH₄ oxidation high

TRENDS IN EFFLUX AND SOIL GAS DIVERGE IN FINAL MONTH

Felice et al. 2018

DECREASED POROSITY ALONE CANNOT ACCOUNT FOR DECREASED EFFLUX

VS

• 25x efflux decrease observed

CONCLUSIONS – TRANSPORT

• CH₄ migration was rapid – several days to steady state efflux

- Soil moisture was a primary control on methane migration
 - Physical: decreased air-filled pore space
 - Biological: relief of physiological moisture stress on methanotrophs

METHANOTROPH DATA FOCUSED ON FINAL INJECTION PERIOD

- 3 distinct phases
 - I:Very low soil moisture, no precipitation
 - II: High precipitation, increasing soil moisture
 - III: Low precipitation, decreasing soil moisture

METHYLOBACTER/METHYLOSARCINA RESPONDS TO INCREASED SOIL MOISTURE

• Response observed:

- ~I month after precipitation
- ~6-7 months of methane injection

METHYLOBACTER/METHYLOSARCINA LOCALIZED NEAR INJECTION POINT

METHYLOBACTER/METHYLOSARCINA LOCALIZED NEAR INJECTION POINT

•Methylosinus group dominates under natural conditions (atmospheric methane scavengers?)

•Methylobacter group dominates in region immediately above experimental release, as expected (adaptable to higher methane concentrations)

OBSERVATIONS FIT ECOLOGICAL MODELS FOR PLANTS

CONCLUSIONS – MICROBES

- Methanotroph groups and their ecological niches influence the fate of subsurface methane
- Experiment supports the application of the CSR triangle to methanotrophs

ADDITIONAL STUDIES

- Numerical modelling studies to further elucidate controls on methane migration
- Studies involving gasoline or biofuels injection
 - Determine methane generation rates
 - Identify impacts of fuel constituents on methanotrophs
- Controlled studies to examine interactions between methanotrophs and non-methanotrophic microbes

ACKNOWLEDGEMENTS

- Advisers
 - Kate Scow
 - Doug Mackay
- Dissertation Committee
 - Kate, Doug, and Jorge Rodrigues
- Scow and Mackay Groups
 - Nick DeSieyes
 - Sherry Peng
 - Radomir Schmidt
 - Leah Zivalic
 - Melissa Bolotaolo
 - Maya Buelow

- Jason Emmons
- Mirann Tsumura
- Nicole Spadone
- Evan Dumas
- Jason Brooks
- Approvals and other support
 - Sue Fields
 - Andrew Fulks
 - Brian Newman
 - Gary Lemon
 - Josuwa Bernardo
 - Anthony Endow

- The Rodrigues Lab
- SBG students and faculty
- Funding
 - American Petroleum Institute
 - Chevron Technology Ventures
 - USDA NRCS
 - USDA National Institute of Food and Agriculture
 - Superfund Research Program
 - Henry A. Jastro Award
 - Soils and Biogeochemistry Fellowship

FIGURE/PHOTO REFERENCES

- Felice, M. et al. Methane Transport during a Controlled Release in the Vadose Zone. Vadose Zone J. 17, (2018).
- Felice, M. et al. Methane-oxidizing bacteria communities shift to attenuate a controlled vadose zone methane release. Vadose Zone J. (2018).
- Murrell, J. C. The Aerobic Methane Oxidizing Bacteria (Methanotrophs). in Handbook of Hydrocarbon and Lipid Microbiology (ed. Timmis, K. N.) 1953–1966 (Springer Berlin Heidelberg, 2010Ho, A. et al. Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ. Microbiol. 5, 335–345 (2013).
- IPCC. Climate Change 2013: The Physical Science Basis. (2013).
- Man working in a ricefield. USAID Bangladesh. <u>https://commons.wikimedia.org/wiki/File:Rice_Field.jpg</u>
- Cattle Feedlot. Billy Hathorn. https://commons.wikimedia.org/wiki/File:Cattle Feedlot near Rocky Ford, CO IMG 5651.JPG
- Landfill Compactor. Ropable. <u>https://commons.wikimedia.org/wiki/File:Landfill_compactor.jpg</u>
- Bog lake in Suru Bog, Põhja-Kõrvemaa Nature Reserve, Estonia. Laitche https://commons.wikimedia.org/wiki/File:Suru Bog 10000px.jpg
- German hardwood forest. W. B. Wilson. <u>https://en.wikipedia.org/wiki/File:German_hardwood_forest.jpg</u>
- Pine Forest in Sweden. AB Tetra Pak. <u>https://en.m.wikipedia.org/wiki/File:Pine_forest_in_Sweden.jpg</u>
- Underground storage tank. Xerxes Corporation, Minneapolis, MN.