IN-SITU CHARACTERIZATION & REMEDIATION OF CONTAMINATED AQUIFERS

Dr. Charles J. Paradis

Assistant Professor of Physical Hydrogeology

University of Wisconsin at Milwaukee

Department of Geosciences

OUTLINE

- Background
- Objectives
- •Groundwater Velocity $(\vec{v} = \frac{\Delta x}{\Delta t})$
- •Uranium Immobilization $(U^{6+} \rightarrow U^{4+})$
- •Nitrate Reduction $(NO_3^- \rightarrow NO_2^-)$
- *Future Research Throughout

OUTLINE

- Background
- Objectives
- •Groundwater Velocity $(\vec{v} = \frac{\Delta x}{\Delta t})$
- •Uranium Immobilization $(U^{6+} \rightarrow U^{4+})$
- •Nitrate Reduction $(NO_3^- \rightarrow NO_2^-)$
- *Future Research Throughout

GROUNDWATER FACTS

- 30% world freshwater
- In the USA:
- 38% use it for drinking
- Irrigation #1 user
- You can't see it!!!

GROUNDWATER CONTAMINATION

- Impact major aquifers
- Natural & human activity
- Microorganisms (E.coli)
- Radionuclides (**Uranium**)
- Heavy metals (Chrome)
- Fertilizers (Nitrate)
- Emerging (1,4-Dioxane)
- Emerging (Nanomaterial)

Nolan & Weber, 2015 ES&T

GROUNDWATER CONTAMINATION

- DOE Legacy Management
- Former nuclear sites (94)
- Uranium
- Technetium
- Vanadium
- Nitrate
- Mercury
- Riverton, WY
- Grand Junction, CO
- Oak Ridge,TN

GROUNDWATER FLOW & CONTAMINANT TRANSPORT (MACRO)

GROUNDWATER FLOW & CONTAMINANT TRANSPORT (MICRO)

- Transport governed by:
- I. Advection (\overrightarrow{v})
- 2. Mechanical dispersion (α)
- 3. Molecular diffusion (D)

AQUIFER CHARACTERIZATION (STANDARD METHODS)

Pump tests are common practice

CONTAMINANT REMEDIATION (STANDARD METHODS)

Pump & Treat and
Dig & Haul are
standard practice

HYDROGEOLOGY & ENVIRONMENTAL MICROBIOLOGY

- "The role of the infinitely small is infinitely powerful"
- Uranium immobilization $(U^{6+} \rightarrow U^{4+})$
- Microbial mediated

HYDROGEOLOGY & ENVIRONMENTAL MICROBIOLOGY

- "The role of the infinitely small is infinitely powerful"
- Nitrate reduction $(NO_3^- \rightarrow NO_2^-)$
- Microbial mediated

OUTLINE

- Background
- Objectives
- •Groundwater Velocity $(\vec{v} = \frac{\Delta x}{\Delta t})$
- •Uranium Immobilization $(U^{6+} \rightarrow U^{4+})$
- •Nitrate Reduction $(NO_3^- \rightarrow NO_2^-)$
- *Future Research Throughout

OBJECTIVES: BROAD

Improve existing and develop new methods of in-situ characterization and remediation

Incorporate microbiology to better understand and predict contaminant transport

OBJECTIVES: SPECIFIC

- New method characterize groundwater velocity $(\vec{v} = \frac{\Delta x}{\Delta t})$
- •Improve method to immobilize uranium $(U^{6+} \rightarrow U^{4+})$
- •Demonstrate molybdenum-limited bioreduction of nitrate $(NO_3^- \rightarrow NO_2^-)$

OUTLINE

- Background
- Objectives
- •Groundwater Velocity $(\vec{v} = \frac{\Delta x}{\Delta t})$
- •Uranium Immobilization $(U^{6+} \rightarrow U^{4+})$
- •Nitrate Bioreduction $(NO_3^- \rightarrow NO_2^-)$
- *Future Research Throughout

GROUNDWATER VELOCITY (\vec{v})

- "Average rate water moves between two points (A → B)"
- Why do we care?
- Primaryparameter ofcontaminanttransport*
- * = typically...

MULTI-WELL NATURAL-GRADIENT

- Gold standard for \vec{v}
- Inject non-rxn tracer Cl-
- Monitor Cl⁻ transport
- Travel distance Δx
- Travel time Δt
- $\vec{v} = \frac{\Delta x}{\Delta t}$

MULTI-WELL NATURAL-GRADIENT

- ullet Gold standard for \overrightarrow{v}
- Inject non-rxn tracer Cl-
- Monitor Cl⁻ transport
- Travel distance Δx
- Travel time Δt

•
$$\vec{v} = \frac{\Delta x}{\Delta t} = \frac{42 m}{461 days} \approx \frac{0.1 m}{day}$$

• <u>††† time, \$\$\$, expertise</u>

RESEARCH QUESTION #1

- Can a single well be used to characterize groundwater velocity quickly, cheaply, & easily?
- Pros: Investigate the aquifer directly with non-rxn tracer (Br^{-})
- Pros: Generate little to no wastewater
- In theory, yes...
- Single-well Injection-Drift Test

SINGLE-WELL INJECTION-DRIFT TEST (MODEL)

- Injection phase: forced-gradient, radial-divergent transport
- Assume: natural-gradient (dh/dx) transport is negligible vs. forced-gradient

SINGLE-WELL INJECTION-DRIFT TEST (MODEL)

- Drift phase: natural-gradient, horizontal transport
- Assume: natural-gradient (dh/dx) transport is dominant

DRIFT-PHASE BREAKTHROUGH CURVES (MODEL)

Point phase:
mean travel time (\bar{t}) should be
inversely
proportional to
velocity (\vec{v})

DRIFT-PHASE BREAKTHROUGH CURVES (MODEL)

Drift phase: mean travel time (\bar{t}) should be inversely proportional to velocity (\vec{v})

SINGLE-WELL INJECTION-DRIFT (FIELD TEST)

 \blacksquare 6 injection-drift tests at Oak Ridge, TN, FW222, Br^- tracer

SINGLE-WELL INJECTION-DRIFT (MODEL & DATA)

- Data & model yield nearly identical mean travel times (\bar{t})
- Model fits velocity (\vec{v})
- Velocity (\vec{v}) agrees with previous multi-well natural-gradient tests

SINGLE-WELL INJECTION-DRIFT (MODEL & DATA)

- Data & model nearly identical mean travel times (\bar{t})
- Characterize temporal variations in \vec{v} , slow and fast \vec{v}

NEW CHARACTERIZATION METHOD: FUTURE RESEARCH QUESTION

- How accurate can new method characterize the TRUE groundwater velocity (\vec{v}) ?
- True groundwater velocity (\vec{v}) in the field is unknown...
- Grad. project 1: test new method physical model, know (\vec{v})
- Grad. project 2: test new method numerical model, know (\vec{v})

NEW CHARACTERIZATION METHOD: FUTURE PHYSICAL MODELS

- Flow in (Q_{in}) equal to flow out (Q_{out})
- $\vec{v} = \frac{Q}{An_e}$
- Start simple: clean sand, confined aquifer, homogeneous, isotropic

Physical Models

I-D Column

2-D Ant Farm

3-D Fish Tank

NEW CHARACTERIZATION METHOD: FUTURE NUMERICAL MODELS

- Flow in (Q_{in}) equal to flow out (Q_{out})
- $\vec{v} = \frac{Q}{An_e}$
- Easily increase complexity: unconfined, heterogeneous, anisotropic

OUTLINE

- Background
- Objectives
- •Groundwater Velocity $(\vec{v} = \frac{x}{\bar{t}})$
- •Uranium Immobilization $(U^{6+} \rightarrow U^{4+})$
- •Nitrate Reduction $(NO_3^- \rightarrow NO_2^-)$
- *Future Research Throughout

URANIUM BIOGEOCHEMISTRY

- $^{\bullet}U^{4+}$ (uraninite) immobile
- $^{\bullet}U^{6+}$ (uranyl) mobile

Immobilization/Reduction

$$U^{6+} + EtOH \rightarrow U^{4+} + CO_2$$

- Mobilization/Oxidation
- $NO_3^- + U^{4+} \rightarrow U^{6+} + N_2$

URANIUM THERMODYNAMICS

- Thermo predicts oxidation of reduced sulfur-bearing species by NO_3^- preferential to uraninite $(UO_{2(im)})$
- $UO_{2(im)} + NO_3^- \approx -405 \, kJ$
- $S^0 + NO_3^- \approx -430 \, kJ$
- $FeS + NO_3^- \approx -459 \, kJ$
- $FeS_2 + NO_3^- \approx -423 \ kJ$
- $MnS + NO_3^- \approx -479 \, kJ$

RESEARCH QUESTION #2

- Can promoting sulfur-reducing conditions limit uranium (U^{4+}) re-mobilization/re-oxidation in presence of NO_3^- ?
- Field experiment at uranium- and nitrate-contaminated site

OAK RIDGE, TN $(U^{6+} \& NO_3^-)$

FIELD EXPERIMENT

URANIUM & SULFATE DATA

- Extraction-phase breakthrough curves post- NO_3^- injection
- $^{-}NO_3^{-}$ decrease
- NO_2^- increase
- SO_4^{2-} increase
- U^{6+} stable

URANIUM & SULFATE DATA

- ■≈I0x more sulfate extracted relative to bromide
- Uranium and bromide extracted nearly equal
- Improved method for sustained immobilization of uranium

Treatment ID	Well	Amendments	U(VI)	SO ₄ ²⁻
Control	FW224	30 mM EtOH, 20 mM SO_4^{2-}	0.2	0.5
Cluster 1	FW219	120 mM NO ₃	1.0	14.4
	FW220		1.5	8.6
	FW225		1.5	13.0

Paradis et. al., (2016) Journal of Contaminant Hydrology

IMPROVED REMEDIATION METHOD: FUTURE RESEARCH QUESTION

- What is mineralogy of uranium-bearing and sulfurbearing species pre- and post-ethanol & -nitrate injections?
- Mineralogy in the field is unknown...
- Grad project 3: characterize mineralogy and geochemistry to better understand mechanisms of uranium/sulfur re-oxidation

IMPROVED REMEDIATION METHOD: FUTURE PHYSICAL MODELS

- Pack columns w/seds from Oak Ridge, TN site
- $UO_{2(m)}^{2+} + EtOH \rightarrow UO_{2(im)} + CO_2$
- $NO_3^- + FeS_{2(im)} \rightarrow SO_{4(m)}^{2-} + N_2$
- $NO_3^- + UO_{2(im)} \rightarrow UO_{2(m)}^{2+} + N_2$
- Sequence sacrifice columns, pre- and post- injections for mineralogy & geochemistry

Physical Models

I-D Columns

XRF (elemental abundance)

(Q)XRD (mineral & quantity)

NITRATE BIOGEOCHEMISTRY

Molybdenum (Mo) **KEY** for nitrate reductase

Mo not always bioavailable, ppt w/Fe/Al

RESEARCH QUESTION #3

Can lack of bio-available Mo contribute to persistent NO₃?

FIELD DATA SUGGESTS YES

Soluble Mo decrease w/increase in Al and Fe and low pH

LAB EXPERIMENT DATA

- Test w/Oak Ridge isolate, growth media, synthetic groundwater
- Data demonstrates lack of bio-Mo contributes to persistent NO₃=

Mo-LIMITED NITRATE BIO-REDUCTION: FUTURE RESEARCH QUESTIONS

- Are results from Ge et al., (2018) repeatable during conditions that better represent the field?
- Ge et al., (2018) used microbial isolate, growth media, synthetic groundwater
- Graduate student project 4: repeat Ge et al., (2018) experiments with microbial community and native sediments and groundwater

OBJECTIVES: BROAD (SUMMARY)

Improve existing and develop new methods of in-situ characterization and remediation

Incorporate microbiology to better understand and predict contaminant transport

NEW METHOD CHARACTERIZE \vec{v}

IMPROVED METHOD IMMOBILIZE U^{6+}

OBJECTIVES: BROAD (SUMMARY)

Improve existing and develop new methods of in-situ characterization and remediation

 Incorporate microbiology to better understand and predict contaminant transport

DEMONSTRATE GEO-LIMITATION ON BIO-REDUCTION OF NITRATE

FUTURE RESEARCH: GRADUATE STUDENTS

Physical Models

I-D Column

2-D Ant Farm

3-D Fish Tank

Numerical Model
MODFLOW code
MODPATH code
ModelMuse GUI

Physical Models

I-D Columns

XRF (elemental abundance)

(Q)XRD (mineral & quantity)

ACKNOWLEDGEMENTS: SPONSORS

Office of Science

QUESTIONS & COMMENTS?