
Few-fs resolution of a photoactive protein 
traversing a conical intersection

In the format provided by the 
authors and unedited

Nature  |  www.nature.com/nature

Supplementary information

https://doi.org/10.1038/s41586-021-04050-9



 1 

Supplementary Information 1 

Few-fs resolution of a photoactive protein traversing a conical intersection 2 

 3 

A. Hosseinizadeh
1
, N. Breckwoldt

2,3,4
, R. Fung

1
, R. Sepehr

1
, M. Schmidt

1
, P. Schwander

1
, 4 

R. Santra
2,3,4

, A. Ourmazd
1
* 5 

 6 

1
 University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee WI 53211, USA 7 

2
 Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 8 

Notkestrasse 85, 22607 Hamburg, Germany 9 

 
3
 Department of Physics, Universität Hamburg, Notkestr. 9-11, 22607 Hamburg, Germany 10 

4
 The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany 11 

 12 

 13 

* Corresponding author: Ourmazd@uwm.edu 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 



 2 

List of Contents 22 

 23 

Section Page 

1. Data-analytical approach 3 

2. Computing Euclidean distances and dot products  3 

3. Modifications needed to handle sparse data matrices 7 

4. Time-labeling of reconstructed videos  8 

Supplementary Fig. 1 10 

Supplementary Fig. 2 11 

Supplementary Fig. 3 12 

Supplementary Fig. 4 13 

Supplementary Fig. 5 14 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 



 3 

1. Data-analytical approach 35 

Our approach is based on manifold-based machine learning, including Nonlinear Laplacian 36 

Spectral Analysis 
 19

.  In this approach, data vectors are ordered based on their known 37 

timestamps, and concatenated to form the supervector matrix  . The supervectors are then 38 

projected onto their manifold,  39 

viz.      .   [1] 40 

Here,   and   are respectively the Riemannian measure and the Diffusion Map empirical 41 

orthogonal functions (EOF). 42 

Singular Value Decomposition:              [2] 43 

and back projection:  ̃                   [3] 44 

are applied to yield the reconstruction matrix  ̃, which must be unwrapped to give individual 45 

reconstructed data vectors 
 16,19

. 46 

 47 

Independent orthogonal dynamical modes can be studied by reconstructing with specific SVD 48 

modes:  ̃        
    ,  ̃        

    , …,  ̃        
    .   [4] 49 

 50 

2. Computing Euclidean distances and dot products 51 

For   data vectors with   pixels each, and concatenation parameter  , the supervector matrix   52 

(dimensions    (     )) can be huge, even for modest values of N and D.  It is, however, 53 

not necessary to explicitly store or manipulate  .  For instance, the SVD step above (Equation 54 

[2]) can be more efficiently carried out by using the following steps: 55 

(i) calculate the dot products amongst the supervectors, i.e.    , in blocks (more details below) 56 

(ii) form the     matrix, i.e.     (  )    (  );     [5] 57 
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(iii) solve for the eigenvalues and eigenvectors of the     matrix; 58 

(iv) the right singular vectors ( ) of   are the eigenvectors of    ; and the singular values ( ) of 59 

  are the square roots of the eigenvalues of    , or in other words, 60 

    (  ) (   )         ;        [6] 61 

(v) the left singular vectors ( ) of   are obtained from          .   [7] 62 

 63 

Note that if we are using a small number      of Diffusion Map EOFs, say         , the 64 

matrix    , of dimensions                  , is rather small, and can be accumulated 65 

using a double loop through the block structure of    . Also, since a full reconstruction results 66 

in up to   copies of each individual snapshot, which might be too many, it is not necessary to 67 

calculate the full   matrix. Equation [7] can thus be used to compute   in a row-wise/ block-68 

wise fashion to only generate enough copies of each individual snapshot for our reconstruction. 69 

 70 

Squared Euclidean distances and dot products amongst supervectors are calculated in Nonlinear 71 

Laplacian Spectral Analysis (NLSA). For   data vectors with   pixels each, and concatenation 72 

parameter  , runtimes for these steps scale as      . Calculations with  ,  , and   in the tens 73 

or hundreds of thousands can, literally, take years on a desktop machine. 74 

 75 

For this paper, we have developed a so-called Shift-and-Add algorithm, which reduces the 76 

runtime scaling to            ( ). Calculations with  ,  , and   in the tens or hundreds of 77 

thousands now take only days on a desktop machine, and only hours on computer clusters with 78 

fairly modest resources. To describe this algorithm in more detail, we define:  79 

 ⃑   data vector   , 80 
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 ⃑ 
  = supervector   with concatenation parameter   , and 81 

    
  = the squared Euclidean distance between supervectors   and   .    [8] 82 

By definition, we have: 83 

    
  | ⃑ 

   ⃑ 
 |
 
 .          [9] 84 

 85 

Writing out the constituent data vectors of the supervectors explicitly, Equation [9] becomes: 86 

    
  ∑ | ⃑     ⃑   |

      
    .         [10] 87 

 88 

For concatenation parameter  , where    , we break up the sum in Equation [10] to give: 89 

    
  ∑ | ⃑     ⃑   |

      
    ∑ | ⃑     ⃑   |

      
    .     [11] 90 

 91 

Substituting       in the second sum above yields: 92 

    
  ∑ | ⃑     ⃑   |

      
    ∑ | ⃑       ⃑     |

        
        

          
    .  [12] 93 

 94 

Using Equation [12], the matrix of squared Euclidean distances amongst supervectors for any 95 

concatenation parameter can be built from the matrices with lower concatenation parameters. 96 

For example, starting with the matrix of squared Euclidean distances amongst data vectors, the 97 

matrices of squared Euclidean distances between supervectors with concatenation parameters 98 

c=2 and c=4 can be successively assembled as: 99 

    
    | ⃑   ⃑ |

 
 , 100 

    
        

            
    , 101 

    
        

            
    .         [13] 102 
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After the calculation of     
   , it takes     ( ) steps of “doubling” (    additions each) to reach 103 

the concatenation parameter  . Runtime thus scales as            ( ).  [14] 104 

 105 

Matrices of squared Euclidean distances amongst supervectors for arbitrary concatenation 106 

parameters can be assembled, for instance 107 

    
        

            
    , 108 

    
        

            
    , 109 

    
        

            
    .         [15] 110 

 111 

Starting with the elements of the matrix of squared Euclidean distances between data vectors in 112 

files (blocks), the results for successively higher concatenation parameters can be obtained as 113 

follows: 114 

  (i) Read files two at a time; 115 

  (ii) Shift the content of one with respect to the other; and  116 

  (iii) Add and save the results in files. 117 

The above algorithm is named “Shift-and-Add”. 118 

 119 

By replacing |   |  with (   ) in the discussion above, it is obvious that Shift-and-Add can 120 

be used to calculate the matrix of dot products amongst supervectors with arbitrary concatenation 121 

parameters. 122 

 123 

 124 

 125 
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3. Modifications needed to handle sparse data matrices 126 

Since our data matrix initially contains undefined elements (see Methods section entitled “Data 127 

preprocessing”), we must adjust the way we calculate squared distances and projection in NLSA.  128 

This adjustment is based on the number of times each unique reflection has been measured 129 

(across the dataset), and by pre-normalizing (dividing) each row of the data matrix by the 130 

number of times the corresponding Bragg reflection has been measured. 131 

 132 

For squared distances:  133 

i. Squared distance between two data vectors is calculated using only pixels defined in both 134 

vectors; 135 

ii. Squared distance between two data vectors with no common pixels is set to infinity, and 136 

any supervector squared distance they contribute to will also be infinity (see section 137 

above for the “Shift-and-Add” algorithm); 138 

iii. Infinities in the squared distance matrix are removed/ignored in Diffusion Map where 139 

only a small number of nearest-neighbor squared distances are kept. 140 

 141 

To project on to the manifold (        ) in NLSA: 142 

i. Undefined pixels in the data matrix are set to 0; 143 

ii. The dot-product     is calculated using Shift-and-Add (see section above for the “Shift-144 

and-Add” algorithm); 145 

iii.   and   are obtained by solving for the eigenvectors/ eigenvalues of the matrix 146 

(  ) (   )  , i.e. (  ) (   )        ; 147 

iv.   is obtained from          . 148 
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4. Time-labeling of reconstructed videos 149 

In the time-lagged embedding used in this paper, the data vectors are ordered based on their 150 

known timestamps, and concatenated to form the supervector matrix  . This matrix is then 151 

projected onto its manifold  , and singular value decomposition and back projection are applied 152 

to obtain the reconstructed matrix  ̃ in the data space, which must be unwrapped to give the 153 

individual (reconstructed) data vectors 
 16,19

. 154 

 155 

When applied to data with inaccurately known timestamps, our data-analytical pipeline has been 156 

shown to recover the dynamics on a uniform grid of timepoints with negligible timing error 
 16

. 157 

 158 

Defining the timestamp of a supervector as the average of the timestamps of its constituent data 159 

vectors, the concatenation parameter   is chosen so that: 160 

i. The set of time steps    between consecutive supervectors in   becomes more or less 161 

uniform; and 162 

ii. The time step    between consecutive supervectors remain more or less constant as the 163 

concatenation parameter is further increased. 164 

 165 

For the present study,        , and          . 166 

 167 

The columns of the reconstruction matrix  ̃ have the same supervector timestamps as the matrix 168 

 , the individual constituent data vectors in  ̃ are, however, uniformly spaced with time step   .  169 

 170 

The start time (      ) of a reconstructed movie is determined by 171 
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i. Knowing the timestamp of the first supervector:  ̃ ; 172 

ii. Noting that the first data vector is half a concatenation window behind the supervector to 173 

which it belongs:  
   

 
  ; 174 

iii. Knowing the number ( ) of early data vectors that have been dropped, because they have 175 

too few copies in the reconstruction:     . 176 

Finally,         ̃  (  
   

 
)    .        [16] 177 

 178 

For the results presented in this paper,          , and  ̃          . The start time of our 179 

reconstructed movies is therefore:  180 

                (      
       

 
)                 .    [17] 181 

 182 
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 185 

Supplementary Fig. 1 |  Histograms of the snapshot delay times. a, Outcome of experiment.  186 

b, After random subsampling of the experimental data to obtain a statistically uniform 187 

distribution in delay time.  188 

 189 

 190 
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 192 

Supplementary Fig. 2 | Flowchart of the analytical pipeline. 193 

 194 

 195 

 196 
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 198 

Supplementary Fig. 3 | Pearson correlation and R-factor between synthetic (input) and 199 

output diffraction volumes obtained from step 7 of Supplementary Fig. 2. a, Correlation. 200 

The average of correlation coefficients is 0.996.  b, R- factor.  Diffraction volumes in both cases 201 

were reconstructed using all non-noise NLSA modes. 202 

 203 

 204 
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 205 

Supplementary Fig. 4 | Comparing difference electron density maps at 3 ps delay 206 

obtained by:      a, Standard time-resolved crystallographic analysis; b, Machine learning 207 

algorithm used in this paper.  Contour level for both maps: 3 .  c, R-factor between the 208 

diffraction volumes at 3ps obtained by standard crystallographic approaches and that 209 

obtained by the analytical pipeline in this paper.    210 

 211 
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 216 

Supplementary Fig. 5 | 
2
 landscape of a typical best-fit, in this case for the mode2-mode5 217 

combination, for different trajectory segments. The index    refers to the center of the 100-fs 218 

timespan, which corresponds to the turning point in chronos. 219 
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