
Few-fs resolution of a photoactive protein
traversing a conical intersection

In the format provided by the
authors and unedited

Nature  |  www.nature.com/nature

Supplementary information

https://doi.org/10.1038/s41586-021-04050-9

 1

Supplementary Information 1

Few-fs resolution of a photoactive protein traversing a conical intersection 2

 3

A. Hosseinizadeh
1
, N. Breckwoldt

2,3,4
, R. Fung

1
, R. Sepehr

1
, M. Schmidt

1
, P. Schwander

1
, 4

R. Santra
2,3,4

, A. Ourmazd
1
* 5

 6

1
 University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee WI 53211, USA 7

2
 Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 8

Notkestrasse 85, 22607 Hamburg, Germany 9

3
 Department of Physics, Universität Hamburg, Notkestr. 9-11, 22607 Hamburg, Germany 10

4
 The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany 11

 12

 13

* Corresponding author: Ourmazd@uwm.edu 14

 15

 16

 17

 18

 19

 20

 21

 2

List of Contents 22

 23

Section Page

1. Data-analytical approach 3

2. Computing Euclidean distances and dot products 3

3. Modifications needed to handle sparse data matrices 7

4. Time-labeling of reconstructed videos 8

Supplementary Fig. 1 10

Supplementary Fig. 2 11

Supplementary Fig. 3 12

Supplementary Fig. 4 13

Supplementary Fig. 5 14

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 3

1. Data-analytical approach 35

Our approach is based on manifold-based machine learning, including Nonlinear Laplacian 36

Spectral Analysis
 19

. In this approach, data vectors are ordered based on their known 37

timestamps, and concatenated to form the supervector matrix . The supervectors are then 38

projected onto their manifold, 39

viz. . [1] 40

Here, and are respectively the Riemannian measure and the Diffusion Map empirical 41

orthogonal functions (EOF). 42

Singular Value Decomposition: [2] 43

and back projection: ̃ [3] 44

are applied to yield the reconstruction matrix ̃, which must be unwrapped to give individual 45

reconstructed data vectors
 16,19

. 46

 47

Independent orthogonal dynamical modes can be studied by reconstructing with specific SVD 48

modes: ̃
 , ̃

 , …, ̃
 . [4] 49

 50

2. Computing Euclidean distances and dot products 51

For data vectors with pixels each, and concatenation parameter , the supervector matrix 52

(dimensions ()) can be huge, even for modest values of N and D. It is, however, 53

not necessary to explicitly store or manipulate . For instance, the SVD step above (Equation 54

[2]) can be more efficiently carried out by using the following steps: 55

(i) calculate the dot products amongst the supervectors, i.e. , in blocks (more details below) 56

(ii) form the matrix, i.e. () (); [5] 57

 4

(iii) solve for the eigenvalues and eigenvectors of the matrix; 58

(iv) the right singular vectors () of are the eigenvectors of ; and the singular values () of 59

 are the square roots of the eigenvalues of , or in other words, 60

 () () ; [6] 61

(v) the left singular vectors () of are obtained from . [7] 62

 63

Note that if we are using a small number of Diffusion Map EOFs, say , the 64

matrix , of dimensions , is rather small, and can be accumulated 65

using a double loop through the block structure of . Also, since a full reconstruction results 66

in up to copies of each individual snapshot, which might be too many, it is not necessary to 67

calculate the full matrix. Equation [7] can thus be used to compute in a row-wise/ block-68

wise fashion to only generate enough copies of each individual snapshot for our reconstruction. 69

 70

Squared Euclidean distances and dot products amongst supervectors are calculated in Nonlinear 71

Laplacian Spectral Analysis (NLSA). For data vectors with pixels each, and concatenation 72

parameter , runtimes for these steps scale as . Calculations with , , and in the tens 73

or hundreds of thousands can, literally, take years on a desktop machine. 74

 75

For this paper, we have developed a so-called Shift-and-Add algorithm, which reduces the 76

runtime scaling to (). Calculations with , , and in the tens or hundreds of 77

thousands now take only days on a desktop machine, and only hours on computer clusters with 78

fairly modest resources. To describe this algorithm in more detail, we define: 79

 ⃑ data vector , 80

 5

 ⃑
 = supervector with concatenation parameter , and 81

 = the squared Euclidean distance between supervectors and . [8] 82

By definition, we have: 83

 | ⃑

 ⃑
 |

 . [9] 84

 85

Writing out the constituent data vectors of the supervectors explicitly, Equation [9] becomes: 86

 ∑ | ⃑ ⃑ |

 . [10] 87

 88

For concatenation parameter , where , we break up the sum in Equation [10] to give: 89

 ∑ | ⃑ ⃑ |

 ∑ | ⃑ ⃑ |

 . [11] 90

 91

Substituting in the second sum above yields: 92

 ∑ | ⃑ ⃑ |

 ∑ | ⃑ ⃑ |

 . [12] 93

 94

Using Equation [12], the matrix of squared Euclidean distances amongst supervectors for any 95

concatenation parameter can be built from the matrices with lower concatenation parameters. 96

For example, starting with the matrix of squared Euclidean distances amongst data vectors, the 97

matrices of squared Euclidean distances between supervectors with concatenation parameters 98

c=2 and c=4 can be successively assembled as: 99

 | ⃑ ⃑ |

 , 100

 , 101

 . [13] 102

 6

After the calculation of
 , it takes () steps of “doubling” (additions each) to reach 103

the concatenation parameter . Runtime thus scales as (). [14] 104

 105

Matrices of squared Euclidean distances amongst supervectors for arbitrary concatenation 106

parameters can be assembled, for instance 107

 , 108

 , 109

 . [15] 110

 111

Starting with the elements of the matrix of squared Euclidean distances between data vectors in 112

files (blocks), the results for successively higher concatenation parameters can be obtained as 113

follows: 114

 (i) Read files two at a time; 115

 (ii) Shift the content of one with respect to the other; and 116

 (iii) Add and save the results in files. 117

The above algorithm is named “Shift-and-Add”. 118

 119

By replacing | | with () in the discussion above, it is obvious that Shift-and-Add can 120

be used to calculate the matrix of dot products amongst supervectors with arbitrary concatenation 121

parameters. 122

 123

 124

 125

 7

3. Modifications needed to handle sparse data matrices 126

Since our data matrix initially contains undefined elements (see Methods section entitled “Data 127

preprocessing”), we must adjust the way we calculate squared distances and projection in NLSA. 128

This adjustment is based on the number of times each unique reflection has been measured 129

(across the dataset), and by pre-normalizing (dividing) each row of the data matrix by the 130

number of times the corresponding Bragg reflection has been measured. 131

 132

For squared distances: 133

i. Squared distance between two data vectors is calculated using only pixels defined in both 134

vectors; 135

ii. Squared distance between two data vectors with no common pixels is set to infinity, and 136

any supervector squared distance they contribute to will also be infinity (see section 137

above for the “Shift-and-Add” algorithm); 138

iii. Infinities in the squared distance matrix are removed/ignored in Diffusion Map where 139

only a small number of nearest-neighbor squared distances are kept. 140

 141

To project on to the manifold () in NLSA: 142

i. Undefined pixels in the data matrix are set to 0; 143

ii. The dot-product is calculated using Shift-and-Add (see section above for the “Shift-144

and-Add” algorithm); 145

iii. and are obtained by solving for the eigenvectors/ eigenvalues of the matrix 146

() () , i.e. () () ; 147

iv. is obtained from . 148

 8

4. Time-labeling of reconstructed videos 149

In the time-lagged embedding used in this paper, the data vectors are ordered based on their 150

known timestamps, and concatenated to form the supervector matrix . This matrix is then 151

projected onto its manifold , and singular value decomposition and back projection are applied 152

to obtain the reconstructed matrix ̃ in the data space, which must be unwrapped to give the 153

individual (reconstructed) data vectors
 16,19

. 154

 155

When applied to data with inaccurately known timestamps, our data-analytical pipeline has been 156

shown to recover the dynamics on a uniform grid of timepoints with negligible timing error
 16

. 157

 158

Defining the timestamp of a supervector as the average of the timestamps of its constituent data 159

vectors, the concatenation parameter is chosen so that: 160

i. The set of time steps between consecutive supervectors in becomes more or less 161

uniform; and 162

ii. The time step between consecutive supervectors remain more or less constant as the 163

concatenation parameter is further increased. 164

 165

For the present study, , and . 166

 167

The columns of the reconstruction matrix ̃ have the same supervector timestamps as the matrix 168

 , the individual constituent data vectors in ̃ are, however, uniformly spaced with time step . 169

 170

The start time () of a reconstructed movie is determined by 171

 9

i. Knowing the timestamp of the first supervector: ̃ ; 172

ii. Noting that the first data vector is half a concatenation window behind the supervector to 173

which it belongs:

 ; 174

iii. Knowing the number () of early data vectors that have been dropped, because they have 175

too few copies in the reconstruction: . 176

Finally, ̃ (

) . [16] 177

 178

For the results presented in this paper, , and ̃ . The start time of our 179

reconstructed movies is therefore: 180

 (

) . [17] 181

 182

 10

 183

 184

 185

Supplementary Fig. 1 | Histograms of the snapshot delay times. a, Outcome of experiment. 186

b, After random subsampling of the experimental data to obtain a statistically uniform 187

distribution in delay time. 188

 189

 190

 11

 191

 192

Supplementary Fig. 2 | Flowchart of the analytical pipeline. 193

 194

 195

 196

 12

 197

 198

Supplementary Fig. 3 | Pearson correlation and R-factor between synthetic (input) and 199

output diffraction volumes obtained from step 7 of Supplementary Fig. 2. a, Correlation. 200

The average of correlation coefficients is 0.996. b, R- factor. Diffraction volumes in both cases 201

were reconstructed using all non-noise NLSA modes. 202

 203

 204

 13

 205

Supplementary Fig. 4 | Comparing difference electron density maps at 3 ps delay 206

obtained by: a, Standard time-resolved crystallographic analysis; b, Machine learning 207

algorithm used in this paper. Contour level for both maps: 3 . c, R-factor between the 208

diffraction volumes at 3ps obtained by standard crystallographic approaches and that 209

obtained by the analytical pipeline in this paper. 210

 211

 212

 213

 14

 214

 215

 216

Supplementary Fig. 5 | 
2
 landscape of a typical best-fit, in this case for the mode2-mode5 217

combination, for different trajectory segments. The index refers to the center of the 100-fs 218

timespan, which corresponds to the turning point in chronos. 219

	Few-fs resolution of a photoactive protein traversing a conical intersection

