Important constants:

$$h = 6.6260755 \cdot 10^{-34} \, J \, s^{-1}$$
 Planck's constant $h = h/(2\pi)$

$$\begin{array}{ll} c = 2.99792458 \cdot 10^8 \, m \; s^{\text{-}1} & speed \; of \; light \; in \; vacuum \\ k = 1.380658 \cdot 10^{\text{-}23} \; J \; K^{\text{-}1} & Boltzmann \; constant \\ N_A = 6.022 \cdot 10^{23} \; mol^{\text{-}1} & Avogadro \; constant \\ \end{array}$$

$$N_A=6.022\cdot 10^{23} \text{ mol}^{-1}$$
 Avogadro constant $\gamma_H=2.67522\cdot 10^8 \text{ rad } T^{-1} \text{ s}^{-1}$ proton gyromagnetic ratio carbon gyromagnetic ratio

$$\omega = 2\pi v$$
 Relation between angular frequency and frequency

Important definitions and relations:

Symbo	ol description	Relationship to experiment
\mathbf{B}_0	main magnetic field (static along z axis)	Field of superconducting magnet
\mathbf{B}_{1}	rotating RF field, in rotating frame along x (or y)	pl1 (power level of pulse)
$\tau_{_{P}}$	length of RF pulse	p1, p2,
$\mathbf{v}_0, \mathbf{\omega}_0$	precession frequency of spins in laboratory frame	signal that induces voltage in receiver coil
ω_{RF}	frequency of the RF field $B_1.\;$ Normally $\omega{\approx}\omega_0$	sfo1, set with o1p
ω_1, v_1	rotation rate of spins during pulse about rf field B ₁	determines length of pulse
Ω	free precession in rotating frame: $\Omega = \omega_0 - \omega$	Observed NMR signal after mixing with reference frequency

 ω_0 depends on main field (precession in laboratory frame)

$$\vec{\mathbf{\omega}}_0 = -\gamma \vec{\mathbf{B}}_0 \qquad or \qquad \mathbf{v}_0 = \frac{\gamma \mathbf{B}_0}{2\pi}$$

 ω_1 depends of strength of B_1 field (rotation during pulse)

$$\vec{\mathbf{\omega}}_1 = -\gamma \vec{\mathbf{B}}_1 \qquad or \qquad \mathbf{v}_1 = \frac{\gamma \mathbf{B}_1}{2\pi}$$

flip angle depends on strength and duration of B_1 field

$$\theta = \omega_1 \tau_P = \gamma B_1 \tau_P$$

Change in magnetization **during** pulse
$$B_1$$
 with length $\tau_p = p_1$ along x-axis:

$$\begin{aligned} \boldsymbol{M}_z &= \mathbf{M}_0 \ \mathbf{I}_z \ \mathrm{cos}(\boldsymbol{\omega}_1 \boldsymbol{\tau}_\mathrm{p}) \\ \boldsymbol{M}_y &= - \ \mathbf{M}_0 \ \mathbf{I}_y \ \mathrm{sin}(\boldsymbol{\omega}_1 \boldsymbol{\tau}_\mathrm{p}) \\ \boldsymbol{M}_x &= 0 \end{aligned}$$

Free precession and relaxation of a single signal **after** a 90° pulse along x-axis:

$$\vec{M}_{z}(t) = M_{0}\vec{I}_{z}[1 - e^{-\frac{t}{T_{1}}}]$$

$$\vec{M}_{y}(t) = -M_{0}\vec{I}_{y}\cos(\Omega t) e^{-\frac{t}{T_{2}^{*}}}$$

$$\vec{M}_{x}(t) = M_{0}\vec{I}_{x}\sin(\Omega t) e^{-\frac{t}{T_{2}^{*}}}$$

Energy of spin state:

$$E_m = \gamma \hbar B_0 m_S$$

transition energy of $m_S = + \frac{1}{2}$ to $m_S = -\frac{1}{2}$

$$\Delta E = \gamma \hbar B_0 = \hbar \omega_0$$

excess magnetization for one spin in high temperature approximation

$$\Delta N = N \frac{\gamma \hbar B_0}{2kT}$$

dwell time of receiver

DW =
$$1/(2 v_{max}) = 1 /(2 \cdot SWH)$$

acquisition time

$$AQ = TD \cdot DW = TD / (2 \cdot SWH)$$

width at half height

$$\Delta v_{1/2} = \frac{1}{\pi T_2^*}$$