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We work throughout over an algebraically closed field k of characteristic
zero. If g is a simple Lie algebra different from sf(n), Joseph shows in [J2],
that there is a unique completely prime ideal, .Jy whose associated variety is
the closure of the minimal nilpotent orbit in gx. When g is the symplectic
algebra g = sp(2r), this ideal may be constructed as follows. It is well known
that the symmetric elements of degree two in the r** Weyl algebra A, form
a Lie algebra isomorphic to sp(2r) [D, Lemma 4.6.9]. Hence there is an
algebra map ¢ : U(g) — A, whose kernel is clearly completely prime and
primitive. Since the image of ¢ has Gel'fand Kirillov dimension 27, and this
is the dimension of the minimal nilpotent orbit in g by [CM, Lemma 4.3.5],
we have ker ¢ = Jj.

Now if g is a classical simple Lie superalgebra, and U(g) contains a com-
pletely prime primitive ideal different from the augmentation ideal, then g is
isomorphic to an orthosymplectic algebra osp(1,2r) (Lemma 1). We observe
that if g = osp(1, 2r), then there is a surjective homomorphism U(g) — A,
whose kernel J satisfies JNU(g,) = Jo. It follows that g acts via the adjoint
representation on A,, and we determine the decomposition of this represen-
tation explicitly.

This turns out to be a useful setting in which to study the Lie structure
of certain associative algebras. A result of Herstein [He| states that if A is a
simple algebra with center Z, then [A, A]/[A, A]N Z is a simple Lie algebra,



unless [A : Z] = 4, and Z has characteristic two. Additional results have
been obtained for various generalized Lie structures in [BFM]| and [Mo].
Let A, be the 7" Weyl algebra over k with generators z1, ..., z,,01,...,0,
such that 0;z; — x;0; = d;;.
If A is any Zs-graded associative algebra, we can regard A as a Lie
superalgebra by setting

[a,b] = ab — (—1)*ba

where a,b are elements of A of degree «, 3 respectively. We regard A, can
be made into a Zs-graded algebra by setting deg; = degd; = 1.

In [Mo] Montgomery shows that if we consider the 7 Weyl algebra A, as
a Zo-graded algebra, then [A,, A,]/([A,, A;]Nk) is a simple Lie superalgebra,
and that when r =1, A; = k & [Ay, Aq].

Using the adjoint representation of g on A, we show that A, = k®[A,, A,]
for all 7. In addition if r # s, then [A,, A,] is not isomorphic to [Ag, A,] as a
Lie superalgebra. This answers a question of Montgomery.

Much is known about the enveloping algebras of the Lie superalgebras
osp(1,2r) [M1], [M2]. However, we have tried to keep this paper as self
contained as possible.

Lemma 1. If g is a classical simple Lie superalgebra which is not isomorphic
to osp(1,2r) for any r, then the only completely prime ideal of U(g) is the
augmentation ideal.

Proof. It is shown in [B, pages 17-20], that if g # osp(1, 2r), then g contains
an odd element x such that [x,z] = 0. Hence if P is a completely prime
ideal, then 22 = 0 € P forces x € P. Since PN g is an ideal of g, this implies
gCc P

Lemma 2. If g = osp(1, 2r), there is a surjective homomorphism U(g) —
A,

Proof. Set
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We may identify g, with the second symmetric power S%g; of g;. Then
g = gy P g, becomes a Lie superalgebra under the bracket

[a,b] = ab — (=1)*’ba

where a € g, and b € gz. It follows immediately from the description of
osp(m,n) given in [K, 2.1.2, supplement| that g = osp(1, 2r).

Now let a, be the r** Heisenberg Lie algebra with basis X1, ..., X,,Y1,...,
Y,, Z and nonvanishing brackets given by [X;,Y;] = 6;;Z. Thus U(a,)/(Z—-1)
is isomorphic to A, via the map sending X; to z; and Y; to y;. By [D,
Lemma 4.6.9], g, = sp(2r) acts by derivations on a,, and hence on U(a,) and
on the symmetric algebra S(a,). Therefore by [D, Proposition 2.4.9], the
symmetrisation map w : S(a,) — U(a,) is an isomorphism of g,-modules.
Set S = S(a,)/(Z—1). Clearly w induces an isomorphism w : S — A,.. Now
S is a polynomial algebra in 2r variables, and we let S(n) be the subspace
of homogeneous polynomials of degree n. Clearly S(n) is a gy-module. Set

A(n) =w(S(n)). Our main result is the following.

Theorem 3. Under the adjoint action
1) A(n) is a simple gy-module for all n.
2) A(2n) @ A(2n — 1) is a simple g-module for all n.

In order to prove the theorem, we need some notation.
For 1 <i <r — 1, consider the elements of g given by

€ = $i+13¢, fi= wz‘@iﬂ
and
h; = [% fi] = 2i110i41 — 1;0;.

In addition, set e, = 0,, f, = z, and h, = —le,, f;]/2 = — (2,0, + O,x,)/2.
Then h = span{h;|1 <1i < r}isa Cartan subalgebraof g. Welet ay, ..., q, €
h* be the positive roots determined by [h,e;] = «;(h)e; for all h € h. The



values a;(h;) are the entries in the (symmetrized) Cartan matrix

2 -1
-1 2 -1
-1 2
-o—1
-1 2 -1
-1 1

Let n be the subalgebra of g generated by e;,...,e, and ng=nng. If L
is a g-module (resp. g,-module) we say that v € L is a highest weight vector
for g (resp. for g,) of weight A\ € h* if hv = A(h)v for all h € h and nv =0
(resp. ngv = 0).

The bilinear form (, ) defined on h* by (o, o;) = c;(h;) is invariant under
the action of the Weyl group. For later computations involving (,) it is
convenient to use the following alternative description [K, 2.5.4]. Identify h*
with &” with standard basis €y, ..., €, and (,) with the usual inner product.
Then o; = ¢; — €;41 for 1 < i <r —1and a, =¢,.. Let py (resp. p;) denote
the half-sum of the positive even (resp. odd) roots of g and p = po — p1.
Under the identification above we have po = SI_ (r —i+1)e;, p1 = 5 Si_1 €
and p = 330, (2r — 2i + 1)e;.

We now return to the homomorphism ¢ : U(g) — A,. Set J = Kerg.
Note that R =C[zy,...,z,] is a simple A,-module and hence a faithful sim-
ple U(g)/J-module. Also 1 € R is a highest weight vector of weight A where
A(h;)) =0for 1 <i<r—1,and A(h,) = —1/2. An easy computation shows
that A\ = —% i_1ia; = —p1. Thus we have shown.

Corollary 4. J is the annihilator of the simple highest weight module with
weight —p;.

Lemma 5. Under the adjoint action of g, or g on A,,
1) 07 is a highest weight vector for g, of weight ne;.
2) If n is even, 07 is a highest weight vector for g.
Proof. A simple computation.

If A € h*, we denote the simple g,-module with highest weight A by L(\).
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Lemma 6. We have dimL(ne;) = ( ar +7:L -1 ) for all n.
Proof. By Weyl’s dimension formula
(>‘ + Po; a)

N
where the product is taken over all positive even roots a. The even roots «
for which (e, ) > 0 are listed in the first column of the table below. The
other columns give the information we need.

o (po,a) | (e, a)
€1 — €41, 1< <r—1 i n
€1+¢,2<j<r 2r-j+1 n
261 2r 2n

Therefore

. Tn4i e 2r+n—j5+1 2r+n—1
dim Lney) = ] 1= 2r —j+1 :< n )

i=1 =2

Proof of Theorem 3. Set A = A,. Part 1) of the Theorem follows from
2r +§ -1 . Thus B(n) = A(2n) ®
A(2n —1) is a direct sum of two nonisomorphic simple g,-modules. Also the
highest weight vectors 97" and 07"~ for these g,-modules satisfy

Lemmas 5 and 6, since dimA(n) =

(21,07 = —2n97" !

01,0271 = 20"

Let M be the adg-submodule of A generated by 9?". It follows that
B(n) € M. Also M is a finite dimensional image of a Verma module (which
has a unique simple quotient). On the other hand all finite dimensional
simple g-modules are completely reducible by [DH]. It follows that M is a
simple adg-module. (c.f. the argument in [Jan, Lemma 5.14]).



We do not know yet that B(n) is an adg-module. This can be seen as
follows. We define a filtration {B,} on A by setting B,, = @<, B(m). Note
that this filtration is the image of the filtration {U,} of U(g) defined by
U, = U} where Uy = k @ g. Hence the associated graded ring @,>0B,/Bn-1
is supercommutative. It follows that [g, B,] C B, and so M C B,. If M
strictly contained B(n), we would have MN(B(n—1)®...®@B(1)®&k) # 0. By
induction, the B(i) with i < n are simple adg-modules, so M would contain
0% for some i < n. However a simple U(g)-module cannot contain more
than one highest weight vector. This contradiction shows that M = B(n)
and completes the proof.

Theorem 7. We have [A,, A,| = @,-0A(n). In particular A, = k@ [A,, A,].

Proof. Note that if a,b, ¢ € A have degrees «,  and ~, then as noted in [Mo,
Lemma 1.4 (3)]
[ab, ¢] = [a, bc] + (—=1)*FN[b, cal.

Therefore, since A, is generated by the image of g, we have [A,, A.] = [A,, g].
The result now follows from Theorem 3.

Remark. From [Mo, Theorem 4.1] it follows that [A,, A,] is a simple Lie
superalgebra for all 7.

A question raised in [Mo] is whether, for different r the [A,, A,] are all
nonisomorphic. We show this is the case by finding the largest rank of a
finite dimensional simple Lie superalgebra contained in [A,, A,]. Note that
sp(2r) = A(2) C [A,, A,]. On the other hand we have

Lemma 8. If L is a finite dimensional simple Lie subalgebra of [A,, A,], then
rank(L) <r.

Proof. Note that under the stated hypothesis, L is a Lie subalgebra of A,
with the usual Lie bracket [a,b] = ab — ba. Now in [J1], Joseph investigates
for each simple Lie algebra L, the least integer n = n4(L) such that L is
isomorphic to a Lie subalgebra of A,. (The integer na(L) is determined to

within one for all classical Lie algebras.) In particular it follows from Lemma
3.1 and Table 1 of [J1] that na(L) > rank(L).



Corollary 9. If [A,, A,] = [A,, As] as Lie superalgebras, then r = s.

For the sake of completeness, we give a proof of Corollary 9 which is inde-
pendent of [J1]. It is enough to show that if g, = sp(2r) is a Lie subalgebra
of a Weyl algebra A,,, then n > r. The elements zix;, 10;, with 2 < ¢ <r
and z? span a Heisenberg subalgebra a = a,_; of g, with center spanned by
2%, The inclusion g, C A, induces a homomorphism ¢ : U(g,) — A,. If
I =ker¢gNU(a) # 0, then we have GK(U(a)) = 2r — 1 < GK(A,) = 2n,
where GK( ) denotes Gel’fand-Kirillov dimension, and so r < n. However if
I # 0, then since the localization of U(a) at the nonzero elements of k[z?] is
a simple ring, we would have 2 — « € I for some scalar . This would imply
that z? is central in g,, a contradiction.

Finally, we note that the proof of Theorem 7 works for certain other al-
gebras.

Theorem 10. Let g be a semisimple Lie algebra, and A a primitive factor
algebra of U(g), then A =k @ [A, A].

Proof. As before we have [A, A] = [A,g]. Also A = @V, a direct sum of
finite dimensional simple submodules under the adjoint representation. Since
[V, g] is a submodule of V' for any such V', and the center of A equals k, we
obtain [A, A] = @y, V, and the result follows.
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