Some Lie Superalgebras Associated to the Weyl algebras

Ian M. Musson
Department of Mathematical Sciences
University of Wisconsin-Milwaukee
email:musson@csd.uwm.edu
website:www.uwm.edu/~musson/

We work throughout over an algebraically closed field k of characteristic zero. If \mathfrak{g} is a simple Lie algebra different from $s \ell(n)$, Joseph shows in [J2], that there is a unique completely prime ideal, J_{0} whose associated variety is the closure of the minimal nilpotent orbit in $\mathfrak{g} *$. When \mathfrak{g} is the symplectic algebra $\mathfrak{g}=s p(2 r)$, this ideal may be constructed as follows. It is well known that the symmetric elements of degree two in the $r^{\text {th }}$ Weyl algebra A_{r} form a Lie algebra isomorphic to $s p(2 r)$ [D, Lemma 4.6.9]. Hence there is an algebra map $\phi: U(\mathfrak{g}) \longrightarrow A_{r}$ whose kernel is clearly completely prime and primitive. Since the image of ϕ has Gel'fand Kirillov dimension $2 r$, and this is the dimension of the minimal nilpotent orbit in $\mathfrak{g} *$ by [CM, Lemma 4.3.5], we have $\operatorname{ker} \phi=J_{0}$.

Now if \mathfrak{g} is a classical simple Lie superalgebra, and $U(\mathfrak{g})$ contains a completely prime primitive ideal different from the augmentation ideal, then \mathfrak{g} is isomorphic to an orthosymplectic algebra $\operatorname{osp}(1,2 r)$ (Lemma 1). We observe that if $\mathfrak{g}=\operatorname{osp}(1,2 r)$, then there is a surjective homomorphism $U(\mathfrak{g}) \longrightarrow A_{r}$ whose kernel J satisfies $J \cap U\left(\mathfrak{g}_{0}\right)=J_{0}$. It follows that \mathfrak{g} acts via the adjoint representation on A_{r}, and we determine the decomposition of this representation explicitly.

This turns out to be a useful setting in which to study the Lie structure of certain associative algebras. A result of Herstein [He] states that if A is a simple algebra with center Z, then $[A, A] /[A, A] \cap Z$ is a simple Lie algebra,
unless $[A: Z]=4$, and Z has characteristic two. Additional results have been obtained for various generalized Lie structures in $[\mathrm{BFM}]$ and $[\mathrm{Mo}]$.

Let A_{r} be the $r^{\text {th }}$ Weyl algebra over k with generators $x_{1}, \ldots, x_{r}, \partial_{1}, \ldots, \partial_{r}$ such that $\partial_{i} x_{j}-x_{j} \partial_{i}=\delta_{i j}$.

If A is any \mathbb{Z}_{2}-graded associative algebra, we can regard A as a Lie superalgebra by setting

$$
[a, b]=a b-(-1)^{\alpha \beta} b a
$$

where a, b are elements of A of degree α, β respectively. We regard A_{r} can be made into a \mathbb{Z}_{2}-graded algebra by setting $\operatorname{deg} \gamma_{i}=\operatorname{deg} \partial_{i}=1$.

In [Mo] Montgomery shows that if we consider the $r^{\text {th }}$ Weyl algebra A_{r} as a \mathbb{Z}_{2}-graded algebra, then $\left[A_{r}, A_{r}\right] /\left(\left[A_{r}, A_{r}\right] \cap k\right)$ is a simple Lie superalgebra, and that when $r=1, A_{1}=k \oplus\left[A_{1}, A_{1}\right]$.

Using the adjoint representation of \mathfrak{g} on A_{r} we show that $A_{r}=k \oplus\left[A_{r}, A_{r}\right]$ for all r. In addition if $r \neq s$, then $\left[A_{r}, A_{r}\right]$ is not isomorphic to $\left[A_{s}, A_{s}\right]$ as a Lie superalgebra. This answers a question of Montgomery.

Much is known about the enveloping algebras of the Lie superalgebras $\operatorname{osp}(1,2 r)$ [M1], [M2]. However, we have tried to keep this paper as self contained as possible.

Lemma 1. If \mathfrak{g} is a classical simple Lie superalgebra which is not isomorphic to $\operatorname{osp}(1,2 r)$ for any r, then the only completely prime ideal of $U(\mathfrak{g})$ is the augmentation ideal.

Proof. It is shown in [B, pages 17-20], that if $\mathfrak{g} \neq \operatorname{osp}(1,2 r)$, then \mathfrak{g} contains an odd element x such that $[x, x]=0$. Hence if P is a completely prime ideal, then $x^{2}=0 \in P$ forces $x \in P$. Since $P \cap \mathfrak{g}$ is an ideal of \mathfrak{g}, this implies $\mathfrak{g} \subseteq P$.

Lemma 2. If $\mathfrak{g}=\operatorname{osp}(1,2 r)$, there is a surjective homomorphism $U(\mathfrak{g}) \longrightarrow$ A_{r}.

Proof. Set

$$
\mathfrak{g}_{1}=\sum_{i} k x_{i}+\sum_{i} k \partial_{i}
$$

and

$$
\mathfrak{g}_{0}=\sum_{i, j} k x_{i} x_{j}+\sum_{i, j} k \partial_{i} \partial_{j}+\sum_{i, j} k\left(x_{i} \partial_{j}+\partial_{j} x_{i}\right)
$$

We may identify \mathfrak{g}_{0} with the second symmetric power $S^{2} \mathfrak{g}_{1}$ of \mathfrak{g}_{1}. Then $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{r}$ becomes a Lie superalgebra under the bracket

$$
[a, b]=a b-(-1)^{\alpha \beta} b a
$$

where $a \in \mathfrak{g}_{\alpha}$ and $b \in \mathfrak{g}_{\beta}$. It follows immediately from the description of $\operatorname{osp}(m, n)$ given in $[\mathrm{K}, 2.1 .2$, supplement] that $\mathfrak{g} \cong \operatorname{osp}(1,2 r)$.

Now let \mathfrak{a}_{r} be the $r^{\text {th }}$ Heisenberg Lie algebra with basis $X_{1}, \ldots, X_{r}, Y_{1}, \ldots$, Y_{r}, Z and nonvanishing brackets given by $\left[X_{i}, Y_{j}\right]=\delta_{i j} Z$. Thus $U\left(\mathfrak{a}_{r}\right) /(Z-1)$ is isomorphic to A_{r} via the map sending X_{i} to x_{i} and Y_{i} to y_{i}. By [D, Lemma 4.6.9], $\mathfrak{g}_{0}=\operatorname{sp}(2 r)$ acts by derivations on \mathfrak{a}_{r}, and hence on $U\left(\mathfrak{a}_{r}\right)$ and on the symmetric algebra $S\left(\mathfrak{a}_{r}\right)$. Therefore by [D, Proposition 2.4.9], the symmetrisation map $w: S\left(\mathfrak{a}_{r}\right) \longrightarrow U\left(\mathfrak{a}_{r}\right)$ is an isomorphism of \mathfrak{g}_{0}-modules. Set $S=S\left(\mathfrak{a}_{r}\right) /(Z-1)$. Clearly w induces an isomorphism $\bar{w}: S \longrightarrow A_{r}$. Now S is a polynomial algebra in $2 r$ variables, and we let $S(n)$ be the subspace of homogeneous polynomials of degree n. Clearly $S(n)$ is a \mathfrak{g}_{0}-module. Set $A(n)=\bar{w}(S(n))$. Our main result is the following.

Theorem 3. Under the adjoint action

1) $A(n)$ is a simple \mathfrak{g}_{0}-module for all n.
2) $A(2 n) \oplus A(2 n-1)$ is a simple \mathfrak{g}-module for all n.

In order to prove the theorem, we need some notation.
For $1 \leq i \leq r-1$, consider the elements of \mathfrak{g} given by

$$
e_{i}=x_{i+1} \partial_{i}, \quad f_{i}=x_{i} \partial_{i+1}
$$

and

$$
h_{i}=\left[e_{i}, f_{i}\right]=x_{i+1} \partial_{i+1}-x_{i} \partial_{i} .
$$

In addition, set $e_{r}=\partial_{r}, f_{r}=x_{r}$ and $h_{r}=-\left[e_{r}, f_{r}\right] / 2=-\left(x_{r} \partial_{r}+\partial_{r} x_{r}\right) / 2$. Then $\mathfrak{h}=\operatorname{span}\left\{h_{i} \mid 1 \leq i \leq r\right\}$ is a Cartan subalgebra of \mathfrak{g}. We let $\alpha_{1}, \ldots, \alpha_{r} \in$ \mathfrak{h}^{*} be the positive roots determined by $\left[h, e_{i}\right]=\alpha_{i}(h) e_{i}$ for all $h \in \mathfrak{h}$. The
values $\alpha_{i}\left(h_{j}\right)$ are the entries in the (symmetrized) Cartan matrix

$$
\left[\begin{array}{rrrrrr}
2 & -1 & & & & \\
-1 & 2 & -1 & & & \\
& -1 & 2 & \ddots & & \\
& & \ddots & \ddots & -1 & \\
& & & -1 & 2 & -1 \\
& & & & -1 & 1
\end{array}\right]
$$

Let \mathfrak{n} be the subalgebra of \mathfrak{g} generated by e_{1}, \ldots, e_{r} and $\mathfrak{n}_{0}=\mathfrak{n} \cap \mathfrak{g}$. If L is a \mathfrak{g}-module (resp. \mathfrak{g}_{0}-module) we say that $v \in L$ is a highest weight vector for \mathfrak{g} (resp. for \mathfrak{g}_{0}) of weight $\lambda \in \mathfrak{h}^{*}$ if $h v=\lambda(h) v$ for all $h \in \mathfrak{h}$ and $\mathfrak{n} v=0$ (resp. $\mathfrak{n}_{0} v=0$).

The bilinear form (,) defined on \mathfrak{h}^{*} by $\left(\alpha_{i}, \alpha_{j}\right)=\alpha_{i}\left(h_{j}\right)$ is invariant under the action of the Weyl group. For later computations involving (,) it is convenient to use the following alternative description $[\mathrm{K}, 2.5 .4]$. Identify \mathfrak{h}^{*} with k^{r} with standard basis $\epsilon_{1}, \ldots, \epsilon_{r}$ and $($,$) with the usual inner product.$ Then $\alpha_{i}=\epsilon_{i}-\epsilon_{i+1}$ for $1 \leq i \leq r-1$ and $\alpha_{r}=\epsilon_{r}$. Let $\rho_{0}\left(\right.$ resp. $\left.\rho_{1}\right)$ denote the half-sum of the positive even (resp. odd) roots of \mathfrak{g} and $\rho=\rho_{0}-\rho_{1}$. Under the identification above we have $\rho_{0}=\sum_{i=1}^{r}(r-i+1) \epsilon_{i}, \rho_{1}=\frac{1}{2} \sum_{i=1}^{r} \epsilon_{i}$ and $\rho=\frac{1}{2} \sum_{i=1}^{r}(2 r-2 i+1) \epsilon_{i}$.

We now return to the homomorphism $\phi: U(\mathfrak{g}) \longrightarrow A_{r}$. Set $J=\operatorname{Ker} \phi$. Note that $R=\mathbb{C}\left[x_{1}, \ldots, x_{r}\right]$ is a simple A_{r}-module and hence a faithful simple $U(\mathfrak{g}) / J$-module. Also $1 \in R$ is a highest weight vector of weight λ where $\lambda\left(h_{i}\right)=0$ for $1 \leq i \leq r-1$, and $\lambda\left(h_{r}\right)=-1 / 2$. An easy computation shows that $\lambda=-\frac{1}{2} \sum_{i=1}^{r} i \alpha_{i}=-\rho_{1}$. Thus we have shown.

Corollary 4. J is the annihilator of the simple highest weight module with weight $-\rho_{1}$.

Lemma 5. Under the adjoint action of \mathfrak{g}_{0} or \mathfrak{g} on A_{r},

1) ∂_{1}^{n} is a highest weight vector for \mathfrak{g}_{0} of weight $n \epsilon_{1}$.
2) If n is even, ∂_{1}^{n} is a highest weight vector for \mathfrak{g}.

Proof. A simple computation.
If $\lambda \in \mathfrak{h}^{*}$, we denote the simple \mathfrak{g}_{0}-module with highest weight λ by $L(\lambda)$.

Lemma 6. We have $\operatorname{dim} L\left(n \epsilon_{1}\right)=\binom{2 r+n-1}{n}$ for all n.
Proof. By Weyl's dimension formula

$$
\operatorname{dim} L(\lambda)=\Pi_{\alpha>0} \frac{\left(\lambda+\rho_{0}, \alpha\right)}{\left(\rho_{0}, \alpha\right)}
$$

where the product is taken over all positive even roots α. The even roots α for which $\left(\epsilon_{1}, \alpha\right)>0$ are listed in the first column of the table below. The other columns give the information we need.

α	$\left(\rho_{0}, \alpha\right)$	$\left(n \epsilon_{1}, \alpha\right)$
$\epsilon_{1}-\epsilon_{i+1}, 1 \leq i \leq r-1$	i	n
$\epsilon_{1}+\epsilon_{j}, 2 \leq j \leq r$	$2 \mathrm{r}-\mathrm{j}+1$	n
$2 \epsilon_{1}$	$2 r$	$2 n$

Therefore

$$
\operatorname{dim} L\left(n \epsilon_{1}\right)=\prod_{i=1}^{r} \frac{n+i}{i} \prod_{j=2}^{r} \frac{2 r+n-j+1}{2 r-j+1}=\binom{2 r+n-1}{n} .
$$

Proof of Theorem 3. Set $A=A_{r}$. Part 1) of the Theorem follows from Lemmas 5 and 6, since $\operatorname{dim} A(n)=\binom{2 r+n-1}{n}$. Thus $B(n)=A(2 n) \oplus$ $A(2 n-1)$ is a direct sum of two nonisomorphic simple \mathfrak{g}_{0}-modules. Also the highest weight vectors $\partial_{1}^{2 n}$ and $\partial_{1}^{2 n-1}$ for these \mathfrak{g}_{0}-modules satisfy

$$
\begin{gathered}
{\left[x_{1}, \partial_{1}^{2 n}\right]=-2 n \partial_{1}^{2 n-1}} \\
{\left[\partial_{1}, \partial_{1}^{2 n-1}\right]=2 \partial_{1}^{2 n}}
\end{gathered}
$$

Let M be the adg-submodule of A generated by $\partial_{1}^{2 n}$. It follows that $B(n) \subseteq M$. Also M is a finite dimensional image of a Verma module (which has a unique simple quotient). On the other hand all finite dimensional simple \mathfrak{g}-modules are completely reducible by [DH]. It follows that M is a simple adg-module. (c.f. the argument in [Jan, Lemma 5.14]).

We do not know yet that $B(n)$ is an ad \mathfrak{g}-module. This can be seen as follows. We define a filtration $\left\{B_{n}\right\}$ on A by setting $B_{n}=\oplus_{m \leq n} B(m)$. Note that this filtration is the image of the filtration $\left\{U_{n}\right\}$ of $U(\mathfrak{g})$ defined by $U_{n}=U_{1}^{n}$ where $U_{1}=k \oplus \mathfrak{g}$. Hence the associated graded ring $\oplus_{n \geq 0} B_{n} / B_{n-1}$ is supercommutative. It follows that $\left[\mathfrak{g}, B_{n}\right] \subseteq B_{n}$ and so $M \subseteq B_{n}$. If M strictly contained $B(n)$, we would have $M \cap(B(n-1) \oplus \ldots \oplus B(1) \oplus k) \neq 0$. By induction, the $B(i)$ with $i<n$ are simple adg-modules, so M would contain $\partial_{1}^{2 i}$ for some $i<n$. However a simple $U(\mathfrak{g})$-module cannot contain more than one highest weight vector. This contradiction shows that $M=B(n)$ and completes the proof.

Theorem 7. We have $\left[A_{r}, A_{r}\right]=\oplus_{n>0} A(n)$. In particular $A_{r}=k \oplus\left[A_{r}, A_{r}\right]$.

Proof. Note that if $a, b, c \in A$ have degrees α, β and γ, then as noted in [Mo, Lemma 1.4 (3)]

$$
[a b, c]=[a, b c]+(-1)^{\alpha(\beta+\gamma)}[b, c a] .
$$

Therefore, since A_{r} is generated by the image of \mathfrak{g}, we have $\left[A_{r}, A_{r}\right]=\left[A_{r}, \mathfrak{g}\right]$. The result now follows from Theorem 3 .

Remark. From [Mo, Theorem 4.1] it follows that $\left[A_{r}, A_{r}\right]$ is a simple Lie superalgebra for all r.

A question raised in $[\mathrm{Mo}]$ is whether, for different r the $\left[A_{r}, A_{r}\right]$ are all nonisomorphic. We show this is the case by finding the largest rank of a finite dimensional simple Lie superalgebra contained in $\left[A_{r}, A_{r}\right]$. Note that $s p(2 r) \cong A(2) \subseteq\left[A_{r}, A_{r}\right]$. On the other hand we have

Lemma 8. If L is a finite dimensional simple Lie subalgebra of $\left[A_{r}, A_{r}\right]$, then $\operatorname{rank}(L) \leq r$.

Proof. Note that under the stated hypothesis, L is a Lie subalgebra of A_{r} with the usual Lie bracket $[a, b]=a b-b a$. Now in [J1], Joseph investigates for each simple Lie algebra L, the least integer $n=n_{A}(L)$ such that L is isomorphic to a Lie subalgebra of A_{n}. (The integer $n_{A}(L)$ is determined to within one for all classical Lie algebras.) In particular it follows from Lemma 3.1 and Table 1 of [J1] that $n_{A}(L) \geq \operatorname{rank}(L)$.

Corollary 9. If $\left[A_{r}, A_{r}\right] \cong\left[A_{s}, A_{s}\right]$ as Lie superalgebras, then $r=s$.
For the sake of completeness, we give a proof of Corollary 9 which is independent of [J1]. It is enough to show that if $\mathfrak{g}_{0}=s p(2 r)$ is a Lie subalgebra of a Weyl algebra A_{n}, then $n \geq r$. The elements $x_{1} x_{i}, x_{1} \partial_{i}$, with $2 \leq i \leq r$ and x_{1}^{2} span a Heisenberg subalgebra $\mathfrak{a}=\mathfrak{a}_{r-1}$ of \mathfrak{g}_{0} with center spanned by x_{1}^{2}. The inclusion $\mathfrak{g}_{0} \subseteq A_{n}$ induces a homomorphism $\phi: U\left(\mathfrak{g}_{0}\right) \longrightarrow A_{n}$. If $I=\operatorname{ker} \phi \cap U(\mathfrak{a}) \neq 0$, then we have $G K(U(\mathfrak{a}))=2 r-1 \leq G K\left(A_{n}\right)=2 n$, where GK() denotes Gel'fand-Kirillov dimension, and so $r \leq n$. However if $I \neq 0$, then since the localization of $U(\mathfrak{a})$ at the nonzero elements of $k\left[x_{1}^{2}\right]$ is a simple ring, we would have $x_{1}^{2}-\alpha \in I$ for some scalar α. This would imply that x_{1}^{2} is central in \mathfrak{g}_{0}, a contradiction.

Finally, we note that the proof of Theorem 7 works for certain other algebras.

Theorem 10. Let \mathfrak{g} be a semisimple Lie algebra, and A a primitive factor algebra of $U(\mathfrak{g})$, then $A=k \oplus[A, A]$.

Proof. As before we have $[A, A]=[A, \mathfrak{g}]$. Also $A=\oplus V$, a direct sum of finite dimensional simple submodules under the adjoint representation. Since [V, \mathfrak{g}] is a submodule of V for any such V, and the center of A equals k, we obtain $[A, A]=\oplus_{V \neq k} V$, and the result follows.

References.

[B] E. Behr, Enveloping algebras of Lie superalgebras, Pacific J. Math 130 (1987), 9-25.
[BFM] Yu. Bahturin, D. Fischman and S. Montgomery, On the generalized Lie structure of associative algebras, Israel J. Math., to appear.
[CM] D. H. Collingwood and W. M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold, New York, 1993.
[D] J. Dixmier, Enveloping Algebras, North Holland, Amsterdam 1977.
[DH] D. Z. Djoković and G. Hochschild, Semisimplicity of 2-graded Lie algebras, II, Illinois J. Math., 20 (1976) 134-143.
[H] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics 9, Springer-Verlag, New York, 1972.
[He] I. N. Herstein, On the Lie and Jordan rings of a simple associative ring, Amer. J. Math. 77 (1955), 279-285.
[Jan] J. C. Jantzen, Lectures on Quantum Groups, American Math. Society, 1996.
[J1] A. Joseph, Minimal realizations and spectrum generating algebras, Comm. Math. Phys. 36 (1974), 325-338.
[J2] A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. scient. Éc. Norm. Sup. 9 (1976), 1-30.
[K] V. Kac, Lie Superalgebras, Adv. in Math. 16 (1977), 8-96.
[Mo] S. Montgomery, Constructing simple Lie superalgebras from associative graded algebras, preprint, USC, 1996.
[M1] I. M. Musson, On the center of the enveloping algebra of a classical simple Lie superalgebra, J. Algebra, to appear. Available from my website, filename: center.tex.
[M2] I. M. Musson, The enveloping algebra of the Lie superalgebra, $\operatorname{osp}(1,2 r)$, preprint, UW-Milwaukee, 1996. Available from my website, filename: osp.tex.
[Sch] M. Scheunert, The theory of Lie superalgebras, Lecture Notes in Mathematics, 716, Springer-Verlag, Berlin, 1979.

