COMPLETE SETS OF REPRESENTATIONS OF CLASSICAL LIE SUPERALGEBRAS

Edward S. Letzter and Ian M. Musson

Abstract

Descriptions of the complete sets of irreducible highest weight modules over complex classical Lie superalgebras are recorded. It is further shown that the finite dimensional irreducible modules over a (not necessarily classical) finite dimensional complex Lie superalgebra form a complete set if and only if the even part of the Lie superalgebra is reductive and the universal enveloping superalgebra is semiprime.

1. Int roduct ion

In their study of $s l(2,1)$-supersymmetry, Arnal, Ben Amor, and Pinczon [1] obtain certain structural identities dependent upon their proof that the finite dimensional irreducible $s l(2,1)$-modules form a complete set. (A collection of (\mathbb{Z}_{2}-graded) modules over a finite dimensional complex Lie superalgebra is said to be complete if for every element u in the enveloping algebra there exists a module M such that $u . M=0$.) That the finite dimensional irreducible modules over a finite dimensional complex reductive Lie algebra form a complete set follows from a theorem of Harish-Chandra [$\mathbf{6}$

A graded \mathfrak{g}-module is irreducible when there are no proper graded submodules, and a (two-sided) ideal of \mathbf{V} is graded-primitive when it is the annihilator of an irreducible graded \mathfrak{g}-module. It is straightforward to check that the finite dimensional irreducible graded modules form a complete set exactly when the intersection of the cofinite dimensional graded-primitive ideals of \mathbf{V} is equal to zero. However, it follows from $[\mathbf{1 1}, 3.1]$ that this last condition occurs exactly when the intersection of the cofinite dimensional primitive ideals of \mathbf{V} is equal to zero. Consequently, the (not necessarily graded) finite dimensional irreducible \mathfrak{g}-modules form a complete set if and only if the same holds true for the finite dimensional irreducible graded \mathfrak{g}-modules.

We will follow the conventions that module will refer to left module, unless otherwise stated, and that graded will always mean \mathbb{Z}_{2}-graded. However, a module will be assumed to be graded only when explicitly specified.
2.2. Suppose that \mathfrak{g}_{0} is reductive and that \mathbf{V} is a prime ring (i.e., the product of any two nonzero ideals is also nonzero). For example, \mathfrak{g}_{0} is reductive if \mathfrak{g} is classical simple (see, e.g., [15, p. 101]), and it is proved in [3] that the enveloping algebra of a classical simple Lie superalgebra of type other than $b(n)$ is prime. That the finite dimensional irreducible \mathfrak{g}-modules now form a complete set is already implicit in [2], as can be explained as follows. To begin, it follows from [2, 4, Proposition 1] and its proof that each irreducible finite dimensional \mathfrak{g}_{0}-module L is a \mathfrak{g}_{0}-submodule of some irreducible finite dimensional \mathfrak{g}-module \widetilde{L}. In particular, if $I=\operatorname{ann}_{\mathbf{U}} L=u \quad \mathbf{U} u . L=0 \quad$ and $J=\operatorname{ann}_{\mathbf{V}} \widetilde{L}$, then $J \quad \mathbf{U} \quad I$. Consequently, letting N denote the intersection of all of the cofinite dimensional primitive ideals of \mathbf{V}, it must follow that $N \mathbf{U}$ is contained within the intersection of all of the cofinite dimensional primitive ideals of \mathbf{U}. Therefore, by our assumptions, $N \quad \mathbf{U}=0$. However, it easily follows from [2, 3, Proposition 4] that N must now equal zero. Thus the irreducible finite dimensional \mathfrak{g}-modules form a complete set.
2.3. Recall that \mathbf{V} must be semiprime (i.e., there exist no nonzero nilpotent ideals) when the collection of irreducible \mathfrak{g}-modules forms a complete set.

Theorem A. The intersection of the cofinite dimensional primitive ideals of \mathbf{V} is nilpotent (as an ideal of \mathbf{V}) if and only if \mathfrak{g}_{0} is reductive. In particular, the finite dimensional irreducible \mathfrak{g}-modules form a complete set if and only if \mathfrak{g}_{0} is reductive and \mathbf{V} is semiprime.
2.4. The proof of the preceding theorem follows immediately from the following 'abstract' result. First, recall from the Poincaré-Birkhoff-Witt (PBW) Theorem that \mathbf{U} and \mathbf{V} are noetherian \mathbb{C}-algebras (cf. [2], [4, 2.3.8]). Also, \mathbf{U} is integral $[\mathbf{4}$, 2.3.9] and is therefore prime. Another consequence of the PBW Theorem is that \mathbf{V} is finitely generated and free as a right and left \mathbf{U}-module.

Proposition B. Let k be a field, and let R be a prime noetherian k-subalgebra of a noetherian k-algebra S such that S is finitely generated as a left R-module.
(i) Suppose that S is free as a left R-module and that the irreducible finite dimensional (over k) R-modules form a complete set. Then the intersection of the cofinite dimensional primitive ideals of S is nilpotent (as an ideal of S).
(ii) Suppose that the intersection of the cofinite dimensional primitive ideals of S is nilpotent. Then the finite dimensional irreducible R-modules form a complete

Proof. (i) We prove this statement under the more general hypothesis that S is torsionfree [5, p. 103] rather than free as a left R-module. To begin, fix an arbitrary minimal prime ideal P of S. To prove (i) it suffices to show that P is equal to the intersection of those cofinite dimensional primitive ideals of S that contain P (see, e.g., [5, Chapter 2]). Next, it follows from [5, 7.7] that there exists an R - S-bimodule subfactor B of S such that B is faithful and torsionfree as a left R module, such that ann $B_{S}=s \quad S B . s=0=P$, and such that B is torsionfree as a right S / P-module. (In the terminology of [16], the preceding situation is summarized by stating that B is an S-bond from R to S / P.) Now let Δ denote the set of cofinite dimensional primitive ideals of R. Let Δ^{*} denote the set of prime ideals P^{\prime} of S containing P for which there exist R - S-bimodule subfactors B^{\prime} of B such that ann $B_{S}^{\prime}=P^{\prime}$, such that $\operatorname{ann}_{R} B^{\prime}=Q^{\prime}$ for some $Q^{\prime} \quad \Delta$, and such that B^{\prime} is torsionfree as a left R / Q^{\prime}-module and right S / P^{\prime}-module. (In other words, B^{\prime} is a B-bond from R / Q^{\prime} to S / P^{\prime}.) Observe in the above that B^{\prime} is finite dimensional; hence from [5,7.1] it follows that every member of Δ^{*} is a cofinite dimensional primitive ideal. However, it now follows from [16, Theorem 3], and the assumption that the set of finite dimensional irreducible R-modules is complete, that the intersection of the primitive ideals in Δ^{*} is equal to P. Thus (i) follows.
(ii) Since a finite product $P_{1} \quad P_{t}$ of minimal prime ideals of S is equal to zero, it follows that $\left(\begin{array}{ll}P_{1} & R\end{array}\right) \quad\left(\begin{array}{ll}P_{t} & R\end{array}\right)=0$, and so $P_{0} \quad R=0$ for some minimal prime ideal P_{0} of S. Therefore, in the terminology of (i), it follows from [5, 7.15] that there exists an S-bond B from R to S / P_{0}. Let Δ denote the set of cofinite dimensional primitive ideals of S containing P_{0}, and let Δ^{*} denote the set of prime ideals Q of R such that there exists a B-bond from R / Q to S / P for some $P \quad \Delta$. As in the proof of (i), every prime ideal in Δ^{*} is a cofinite dimensional primitive ideal. Finally, because the intersection of the cofinite dimensional primitive ideals of S is nilpotent, it follows that the intersection of the ideals in Δ is equal to P_{0}. Therefore, again by [16, Theorem 3], the intersection of the ideals in Δ^{*} is equal to zero, and (ii) follows.
2.5. (Not required in the sequel.) The following alternative to Proposition B is more natural from a ring-theoretic point of view, but uses a bit more machinery. Recall that \mathbf{U} and \mathbf{V} have finite Gelfand-Kirillov dimension (GK-dimension) over \mathbb{C}; see $[\mathbf{2}]$ and $[\mathbf{1 0}]$ for definitions and background.

Proposition \mathbf{B}^{\prime}. Let k be a field, and let R and S denote noetherian algebras of finite GK-dimension over a field k. Suppose that R is a k-subalgebra of S and that S is finitely generated as a left R-module. Set I equal to the intersection of all of the cofinite dimensional primitive ideals of R, and set J equal to the intersection of all of the cofinite dimensional primitive ideals of S. Then I is nilpotent if and only if J is nilpotent.

Proof. Assume that I is nilpotent, let P be a minimal prime ideal of S, and recall the terminology of the preceding proof. By [5, 7.15], there exists an S-bond from R / Q to S / P for some prime ideal Q of R. By [10, 3.16, 5.3], it further follows that Q is a minimal prime ideal of R. In particular, Q is equal to the intersection of those cofinite dimensional primitive ideals containing Q. Therefore, the conclusion that J is nilpotent now follows in a similar fashion to the proof of Proposition $\mathrm{B}(\mathrm{i})$. The remainder of the proof follows in a fashion similar to the proof of Proposition $\mathrm{B}(\mathrm{ii})$

3. Ir reducible Highest Weight Modul es

Retaining the notation of the previous section, we now assume for the remainder that \mathfrak{g} is a classical simple Lie superalgebra, that $\mathbf{V}=U(\mathfrak{g})$, and that $\mathbf{U}=U\left(\mathfrak{g}_{0}\right)$. Recall that \mathfrak{g}_{0} is a reductive Lie algebra.
3.1. We now construct Verma modules for \mathfrak{g}, following $[\mathbf{1 4}, 1]$, where the reader is referred for more details. To begin, fix a triangular decomposition $\mathfrak{g}=\mathfrak{n}^{-} \quad \mathfrak{h} \quad \mathfrak{n}^{+}$. In particular, $\mathfrak{n}^{-}, \mathfrak{h}, \mathfrak{n}^{+}$are graded subalgebras of \mathfrak{g} with $\mathfrak{n}^{ \pm}$nilpotent, $\mathfrak{h} \mathfrak{n}^{+}$ solvable, and $\mathfrak{g}_{0}=\mathfrak{n}_{0}^{-} \quad \mathfrak{h}_{0} \quad \mathfrak{n}_{0}^{+}$a triangular decomposition of \mathfrak{g}_{0} in the sense of, for example, [4, 1.10.14]. Set $\mathfrak{b}=\mathfrak{h} \quad \mathfrak{n}^{+}$and $\mathfrak{b}_{0}=\mathfrak{h}_{0} \quad \mathfrak{n}_{0}^{+}$. Next, fix $\lambda \quad \mathfrak{h}_{0}^{*}$, and let \mathbb{C}_{λ} denote the one dimensional \mathfrak{b}_{0}-module for which $\mathfrak{n}_{0}^{+} . c=0$ and $h . c=\lambda(h) c$ for all $c \quad \mathbb{C}$ and $h \quad \mathfrak{h}_{0}$. There exists a unique irreducible graded \mathfrak{b}-module V_{λ} for which $\mathfrak{n}^{+} . V_{\lambda}=0$ and $h . v=\lambda(h) v$ for all $h \quad \mathfrak{h}_{0}$ and $v \quad V_{\lambda}(c f .[7,5.2],[\mathbf{1 4}$, 1.1]). Now set

$$
\begin{array}{ll}
M(\lambda)=\mathbf{U} & U\left(\mathfrak{b}_{0}\right) \mathbb{C}_{\lambda}, \\
\widetilde{M}(\lambda)=\mathbf{V} & U(\mathfrak{b}) V_{\lambda} .
\end{array}
$$

The unique irreducible \mathfrak{g}_{0}-module factor of $M(\lambda)$ will be denoted by $L(\lambda)$. The \mathfrak{g}-module $\widetilde{M}(\lambda)$ also has a unique irreducible graded factor, denoted $\widetilde{L}(\lambda)$. Set $I(\lambda)=\operatorname{ann}_{\mathbf{U}} L(\lambda)$ and $J(\lambda)=\operatorname{ann}_{\mathbf{V}} \widetilde{L}(\lambda)$.
3.2. Let \mathbf{Z} denote the center of \mathbf{U}. If I is a nonzero ideal of \mathbf{U}, then $I \quad \mathbf{Z}=0$ (e.g., [4, 4.2.2]). Identifying $\mathbf{Z} / I(\lambda) \quad \mathbf{Z}$ with \mathbb{C} (e.g., $[\mathbf{4}, 2.6 .8]$), let $\chi_{\lambda}: \mathbf{Z} \mathbb{C}$ denote the map sending $z \quad \mathbf{Z}$ to $z+I(\lambda)$. In other words, χ_{λ} is the central character corresponding to $L(\lambda)$.

We next record a direct consequence of the Harish-Chandra homomorphism.
3.3 Lemma. Let $\Lambda \mathfrak{h}_{0}^{*}$. Set

$$
I=\bigcap_{\lambda \in \Lambda} I(\lambda), \quad \text { and } \quad K=\bigcap_{\lambda \in \Lambda} \operatorname{ker} \chi_{\lambda} .
$$

Then $I=0$ if and only if Λ is Zariski dense in \mathfrak{h}_{0}^{*}, if and only if $K=0$.
Proof. From the decomposition $U\left(\mathfrak{g}_{0}\right)=\left(\mathfrak{n}^{-} \mathbf{U}+\mathbf{U} \mathfrak{n}^{+}\right) \quad U\left(\mathfrak{h}_{0}\right)$, one obtains the projection φ : $\mathbf{U} \quad U\left(\mathfrak{h}_{0}\right)$. We identify $U\left(\mathfrak{h}_{0}\right)$ with $S\left(\mathfrak{h}_{0}\right)$, the algebra of polynomial functions on \mathfrak{h}_{0}^{*}. It then follows, for example, from $[4,7.4 .4]$ that $\chi_{\lambda}(z)=(\varphi(z))(\lambda)$ for all $z \quad \mathbf{Z}$.

Now assume that Λ is dense in \mathfrak{h}_{0}^{*}, and fix $z \quad K$. Consequently, $(\varphi(z))(\lambda)=0$ for all $\lambda \quad \Lambda$. Hence, $\varphi(z)=0$. But φ restricted to \mathbf{Z} is injective (e.g., [4, 7.4.5]), and so $z=0$. Finally, $I \quad \mathbf{Z}=K$, and therefore $I=K=0$ by (3.2).

Now assume that Λ is not dense in \mathfrak{h}_{0}^{*}, and let W denote the Weyl group of $\mathfrak{g}_{0}=\mathfrak{n}_{0}^{-} \quad \mathfrak{h}_{0} \quad \mathfrak{n}_{0}^{+}$. Let W act on \mathfrak{h}_{0}^{*} by $w \cdot \lambda=w(\lambda+\rho) \quad \rho$ and on $S\left(\mathfrak{h}_{0}\right)$ by $w \cdot f(\lambda)=f\left(w^{-1} \cdot \lambda\right)$, for all $\lambda \quad \mathfrak{h}_{0}^{*}, f \quad \mathfrak{h}_{0}^{*}$, and ρ equal to the half sum of the positive roots of \mathfrak{g}_{0} relative to the above triangular decomposition. By assumption, there exists a nonzero polynomial $g \quad S\left(\mathfrak{h}_{0}\right)$ such that $g(\Lambda)=0$. Set $f=\prod_{w \in W} w . g$. ¿From [4, 7.4.5] it then follows that there exists a nonzero $z \quad \mathbf{Z}$ such that $f=\varphi(z)$. By $[4,7.4 .4], z \quad \bigcap_{\lambda \in W . \Lambda} \operatorname{ker} \chi_{\lambda}$, and so I and K are both nonzero.
3.4 Remark. Note that $\lambda \quad \mathfrak{h}_{0}^{*} L(\lambda)$ is finite dimensional is Zariski dense in \mathfrak{h}_{0}^{*}. In particular, Harish-Chandra's theorem [6] that the finite dimensional irreducible modules over a semisimple Lie algebra form a complete set may be deduced from
3.5. As mentioned earlier, it is proved in [3] that \mathbf{V} is prime if \mathfrak{g} is not of type $b(n)$. It is proved in [9], when \mathfrak{g} is of type $b(n)$, that \mathbf{V} is not semiprime and contains a unique minimal prime ideal. Consequently, in general, it follows that the prime radical of \mathbf{V} is equal to its unique (possibly zero) minimal prime ideal.
Theorem C. Let Λ be a subset of \mathfrak{h}_{0}^{*}, let

$$
J=\bigcap_{\lambda \in \Lambda} J(\lambda)=\bigcap_{\lambda \in \Lambda} \operatorname{ann}_{\mathbf{V}} \widetilde{L}(\lambda),
$$

and let P denote the unique minimal prime ideal of \mathbf{V}. Then $J=P$ if and only if Λ is Zariski dense in \mathfrak{h}_{0}^{*}.
Proof. First, suppose that Λ is a dense subset of \mathfrak{h}_{0}^{*}. Note from (3.1), for each $\lambda \quad \Lambda$, that there exists a vector $v \quad \widetilde{L}(\lambda)$ such that $\mathfrak{n}_{0}^{+} \cdot v=0$ and such that $h \cdot v=\lambda(h) \cdot v$ for all $h \mathfrak{h}_{0}$. Therefore, $L(\lambda)$ is a \mathfrak{g}_{0}-composition factor of $\widetilde{L}(\lambda)$. Consequently, $J(\lambda) \quad \mathbf{U} \quad I(\lambda)$, and so

$$
J \quad \mathbf{U} \quad \bigcap_{\lambda \in \Lambda} I(\lambda)=0
$$

by (3.3). However, it then follows from, for example, [12, 2.3] that J cannot strictly contain a minimal prime ideal of \mathbf{V}. Thus $J \quad P$, and so $J=P$ since J is a semiprime ideal [11, 3.1].

Next suppose that Λ is not dense in \mathfrak{h}_{0}^{*}. Set $t=2^{\operatorname{dim} \mathfrak{g}_{1}}$, and let Π denote the set of weights of the t-dimensional \mathfrak{g}_{0}-module \mathfrak{g}_{1}. Set

$$
\Lambda^{\prime}=\lambda+\mu \lambda \quad \Lambda, \mu \quad \Pi
$$

and consider the set of \mathfrak{g}_{0}-modules

$$
X=M(\nu) \quad \nu \quad \Lambda^{\prime} .
$$

As noted in $[\mathbf{1 4}, 1]$, for each $\lambda \quad \mathfrak{h}_{0}^{*}, \widetilde{M}(\lambda)$ is isomorphic as a \mathfrak{g}_{0}-module to a factor of $\mathfrak{g}_{1} \widetilde{M}(\lambda)$. Therefore, by [4, 7.6.14], there is a series

$$
0=M_{0} \quad M_{1} \quad M_{s}=\widetilde{M}(\lambda)
$$

where $M_{i} / M_{i-1} \quad X$ for each $1 \quad i \quad s$, and where $1 \quad s \quad t$. Now let $K=$ $\bigcap_{\lambda \in \Lambda^{\prime}} \operatorname{ker} \chi_{\lambda}$. It then follows, for each $\lambda \mathfrak{h}_{0}^{*}$, that

$$
K^{t} \widetilde{M}(\lambda)=0
$$

(see, e.g., $[\mathbf{4}, 7.1]$). Because Λ^{\prime} is not dense in \mathfrak{h}_{0}^{*}, it follows from (3.3) that K is nonzero. However, $K^{t} \widetilde{L}(\lambda)=0$, for all $\lambda \quad \Lambda^{\prime}$, and so $K^{t} \quad J$. Because P is nilpotent and K is not, it therefore follows that $J=P$.
3.6. The following corollary now follows from [3].

Corollary D. Suppose that \mathfrak{g} is a classical simple Lie superalgebra not of type $b(n)$. If $\Lambda \quad \mathfrak{h}_{0}^{*}$, then $\widetilde{L}(\lambda) \quad \lambda \quad \Lambda$ is a complete set of irreducible \mathfrak{g}-modules if and only if Λ is Zariski dense in \mathfrak{h}_{0}^{*}.
3.7 Remark. It follows from [7, Theorem 8] and [8, Corollary to Theorem 2] that the set

$$
\left\{\lambda \quad \mathfrak{h}_{0}^{*} \quad \widetilde{L}(\lambda) \text { is finite dimensional and } \lambda \text { is typical }\right\}
$$

is Zariski dense in \mathfrak{h}_{0}^{*} when \mathfrak{g} is a basic classical Lie superalgebra. In particular,

Ref er ences

1. D. Arnal, H. Ben Amor, and G. Pinczon, The structure of sl(2,1) - supersymmetry, preprint.
2. E. J. Behr, Enveloping algebras of Lie superalgebras, Pacific J. Math 130 (1987), 9-25.
3. A. D. Bell, A criterion for primeness of enveloping algebras of Lie superalgebras, J. Pure Appl. Algebra 69 (1990), 111-120.
4. J. Dixmier, Enveloping algebras, North-Holland, New York, 1977.
5. K. R. Goodearl and R. B. Warfield, Jr., An introduction to noncommutative noetherian rings, London Mathematical Society Student Texts 16, Cambridge, New York, 1989.
6. Harish-Chandra, On representations of Lie algebras, Ann. Math. 50 (1949), 900-915.
7. V. Kac, Lie superalgebras, Adv. Math. 26 (1977), 8-96.
8. , Characters of typical representations of classical Lie superalgebras, Communic. Alg. 5 (1977), 889-897.
9. E. Kirkman and J. Kuzmanovich, in preparation.
10. G. R. Krause and T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Pitman, London, 1985.
11. E. S. Letzter, Primitive ideals in finite extensions of noetherian rings, J. London Math. Soc. (2) 39 (1989), 427-435.
12. , Prime ideals in finite extensions of noetherian Rings, J. Alg. 135 (1990), 412-439.
13. J. C. McConnell and J. C. Robson, Noncommutative noetherian rings, John Wiley \& Sons, Chichester, 1987.
14. I. M. Musson, A classification of primitive ideals in the enveloping algebra of a classical simple Lie superalgebra, Adv. Math. 91 (1991), 252-268.
15. M. Scheunert, The theory of Lie superalgebras, Lecture notes in mathematics 716, Springer, Berlin, 1979.
16. R. B. Warfield, Jr., Bond invariance of G-rings and localization, Proc. Amer. Math. Soc. 111 (1991), 13-18.

Department of Mathematics, Texas A\&M University, College Station, TX 778433368

E-mail address: letzter@math.tamu.edu

Department of Mathematics, University of \| isconsin-Milwaukee, Milwaukee, \| isCONSIN 53201-0413

E-mail address: musson@csd4.csd.uwm.edu

