
Draft of 12/16/93.

COMPLETE SETS OF REPRESENTATIONS

OF CLASSICAL LIE SUPERALGEBRAS

Edward S. Letzter and Ian M. Musson

Abstract. Descriptions of the complete sets of irreducible highest weight modules
over complex classical Lie superalgebras are recorded. It is further shown that the
finite dimensional irreducible modules over a (not necessarily classical) finite dimen-
sional complex Lie superalgebra form a complete set if and only if the even part of the
Lie superalgebra is reductive and the universal enveloping superalgebra is semiprime.

1. Introduction

In their study of sl(2, 1)-supersymmetry, Arnal, Ben Amor, and Pinczon [1]
obtain certain structural identities dependent upon their proof that the finite di-
mensional irreducible sl(2, 1)-modules form a complete set. (A collection X of
(Z2-graded) modules over a finite dimensional complex Lie superalgebra is said to
be complete if for every element u in the enveloping algebra there exists a mod-
ule M 2 X such that u.M 6= 0.) That the finite dimensional irreducible modules
over a finite dimensional complex reductive Lie algebra form a complete set follows
from a theorem of Harish-Chandra [6
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A graded g-module is irreducible when there are no proper graded submodules,
and a (two-sided) ideal of V is graded-primitive when it is the annihilator of an irre-
ducible graded g-module. It is straightforward to check that the finite dimensional
irreducible graded modules form a complete set exactly when the intersection of
the cofinite dimensional graded-primitive ideals of V is equal to zero. However, it
follows from [11, 3.1] that this last condition occurs exactly when the intersection
of the cofinite dimensional primitive ideals of V is equal to zero. Consequently, the
(not necessarily graded) finite dimensional irreducible g-modules form a complete
set if and only if the same holds true for the finite dimensional irreducible graded
g-modules.

We will follow the conventions that module will refer to left module, unless
otherwise stated, and that graded will always mean Z2-graded. However, a module
will be assumed to be graded only when explicitly specified.

2.2. Suppose that g0 is reductive and that V is a prime ring (i.e., the product
of any two nonzero ideals is also nonzero). For example, g0 is reductive if g is
classical simple (see, e.g., [15, p. 101]), and it is proved in [3] that the enveloping
algebra of a classical simple Lie superalgebra of type other than b(n) is prime. That
the finite dimensional irreducible g-modules now form a complete set is already
implicit in [2], as can be explained as follows. To begin, it follows from [2, x4,
Proposition 1] and its proof that each irreducible finite dimensional g0-module L is
a g0-submodule of some irreducible finite dimensional g-module ˜L. In particular, if
I = annU L = fu 2 Uju.L = 0g and J = annV ˜L, then J \ U � I. Consequently,
letting N denote the intersection of all of the cofinite dimensional primitive ideals of
V, it must follow that N \U is contained within the intersection of all of the cofinite
dimensional primitive ideals of U. Therefore, by our assumptions, N \ U = 0.
However, it easily follows from [2, x3, Proposition 4] that N must now equal zero.
Thus the irreducible finite dimensional g-modules form a complete set.

2.3. Recall that V must be semiprime (i.e., there exist no nonzero nilpotent ideals)
when the collection of irreducible g-modules forms a complete set.

Theorem A. The intersection of the cofinite dimensional primitive ideals of V is
nilpotent (as an ideal of V) if and only if g0 is reductive. In particular, the finite
dimensional irreducible g-modules form a complete set if and only if g0 is reductive
and V is semiprime.

2.4. The proof of the preceding theorem follows immediately from the following
‘abstract’ result. First, recall from the Poincaré-Birkhoff-Witt (PBW) Theorem
that U and V are noetherian C-algebras (cf. [2], [4, 2.3.8]). Also, U is integral [4,
2.3.9] and is therefore prime. Another consequence of the PBW Theorem is that
V is finitely generated and free as a right and left U-module.

Proposition B. Let k be a field, and let R be a prime noetherian k-subalgebra of
a noetherian k-algebra S such that S is finitely generated as a left R-module.

(i) Suppose that S is free as a left R-module and that the irreducible finite di-
mensional (over k) R-modules form a complete set. Then the intersection of the
cofinite dimensional primitive ideals of S is nilpotent (as an ideal of S).

(ii) Suppose that the intersection of the cofinite dimensional primitive ideals of
S is nilpotent. Then the finite dimensional irreducible R-modules form a complete
set.
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Proof. (i) We prove this statement under the more general hypothesis that S is
torsionfree [5, p. 103] rather than free as a left R-module. To begin, fix an arbitrary
minimal prime ideal P of S. To prove (i) it suffices to show that P is equal to
the intersection of those cofinite dimensional primitive ideals of S that contain
P (see, e.g., [5, Chapter 2]). Next, it follows from [5, 7.7] that there exists an
R-S-bimodule subfactor B of S such that B is faithful and torsionfree as a left R-
module, such that ann BS = fs 2 SjB.s = 0g = P , and such that B is torsionfree
as a right S/P -module. (In the terminology of [16], the preceding situation is
summarized by stating that B is an S-bond from R to S/P .) Now let ∆ denote
the set of cofinite dimensional primitive ideals of R. Let ∆∗ denote the set of prime
ideals P ′ of S containing P for which there exist R-S-bimodule subfactors B′ of
B such that ann B′

S = P ′, such that annR B′ = Q′ for some Q′ 2 ∆, and such
that B′ is torsionfree as a left R/Q′-module and right S/P ′-module. (In other
words, B′ is a B-bond from R/Q′ to S/P ′.) Observe in the above that B′ is finite
dimensional; hence from [5, 7.1] it follows that every member of ∆∗ is a cofinite
dimensional primitive ideal. However, it now follows from [16, Theorem 3], and the
assumption that the set of finite dimensional irreducible R-modules is complete,
that the intersection of the primitive ideals in ∆∗ is equal to P . Thus (i) follows.

(ii) Since a finite product P1 � � � Pt of minimal prime ideals of S is equal to zero,
it follows that (P1 \ R) � � � (Pt \ R) = 0, and so P0 \ R = 0 for some minimal
prime ideal P0 of S. Therefore, in the terminology of (i), it follows from [5, 7.15]
that there exists an S-bond B from R to S/P0. Let ∆ denote the set of cofinite
dimensional primitive ideals of S containing P0, and let ∆∗ denote the set of prime
ideals Q of R such that there exists a B-bond from R/Q to S/P for some P 2 ∆.
As in the proof of (i), every prime ideal in ∆∗ is a cofinite dimensional primitive
ideal. Finally, because the intersection of the cofinite dimensional primitive ideals
of S is nilpotent, it follows that the intersection of the ideals in ∆ is equal to P0.
Therefore, again by [16, Theorem 3], the intersection of the ideals in ∆∗ is equal
to zero, and (ii) follows.

2.5. (Not required in the sequel.) The following alternative to Proposition B is
more natural from a ring-theoretic point of view, but uses a bit more machinery.
Recall that U and V have finite Gelfand-Kirillov dimension (GK-dimension) over
C; see [2] and [10] for definitions and background.

Proposition B′. Let k be a field, and let R and S denote noetherian algebras of
finite GK-dimension over a field k. Suppose that R is a k-subalgebra of S and that
S is finitely generated as a left R-module. Set I equal to the intersection of all of
the cofinite dimensional primitive ideals of R, and set J equal to the intersection
of all of the cofinite dimensional primitive ideals of S. Then I is nilpotent if and
only if J is nilpotent.

Proof. Assume that I is nilpotent, let P be a minimal prime ideal of S, and recall
the terminology of the preceding proof. By [5, 7.15], there exists an S-bond from
R/Q to S/P for some prime ideal Q of R. By [10, 3.16, 5.3], it further follows that
Q is a minimal prime ideal of R. In particular, Q is equal to the intersection of
those cofinite dimensional primitive ideals containing Q. Therefore, the conclusion
that J is nilpotent now follows in a similar fashion to the proof of Proposition B(i).
The remainder of the proof follows in a fashion similar to the proof of Proposition
B(ii).



4 EDWARD S. LETZTER AND IAN M. MUSSON

3. Irreducible Highest Weight Modules

Retaining the notation of the previous section, we now assume for the remainder
that g is a classical simple Lie superalgebra, that V = U(g), and that U = U(g0).
Recall that g0 is a reductive Lie algebra.

3.1. We now construct Verma modules for g, following [14, x1], where the reader is
referred for more details. To begin, fix a triangular decomposition g = n−�h�n+.
In particular, n−, h, n+ are graded subalgebras of g with n± nilpotent, h � n+

solvable, and g0 = n−0 � h0 � n+
0 a triangular decomposition of g0 in the sense of,

for example, [4, 1.10.14]. Set b = h � n+ and b0 = h0 � n+
0 . Next, fix λ 2 h∗0, and

let Cλ denote the one dimensional b0-module for which n+
0 .c = 0 and h.c = λ(h)c

for all c 2 C and h 2 h0. There exists a unique irreducible graded b-module Vλ

for which n+.Vλ = 0 and h.v = λ(h)v for all h 2 h0 and v 2 Vλ (cf. [7, x5.2], [14,
x1.1]). Now set

M(λ) = U �U(b0) Cλ,

˜M(λ) = V �U(b) Vλ.

The unique irreducible g0-module factor of M(λ) will be denoted by L(λ). The
g-module ˜M(λ) also has a unique irreducible graded factor, denoted ˜L(λ). Set
I(λ) = annU L(λ) and J(λ) = annV ˜L(λ).

3.2. Let Z denote the center of U. If I is a nonzero ideal of U, then I \Z 6= 0 (e.g.,
[4, 4.2.2]). Identifying Z/I(λ) \ Z with C (e.g., [4, 2.6.8]), let χλ:Z ! C denote
the map sending z 2 Z to z + I(λ). In other words, χλ is the central character
corresponding to L(λ).

We next record a direct consequence of the Harish-Chandra homomorphism.

3.3 Lemma. Let Λ � h∗0. Set

I =
⋂

λ∈Λ

I(λ), and K =
⋂

λ∈Λ

ker χλ.

Then I = 0 if and only if Λ is Zariski dense in h∗0, if and only if K = 0.

Proof. From the decomposition U(g0) = (n−U + Un+) � U(h0), one obtains the
projection ϕ:U ! U(h0). We identify U(h0) with S(h0), the algebra of polynomial
functions on h∗0. It then follows, for example, from [4, 7.4.4] that χλ(z) = (ϕ(z))(λ)
for all z 2 Z.

Now assume that Λ is dense in h∗0, and fix z 2 K. Consequently, (ϕ(z))(λ) = 0
for all λ 2 Λ. Hence, ϕ(z) = 0. But ϕ restricted to Z is injective (e.g., [4, 7.4.5]),
and so z = 0. Finally, I \ Z = K, and therefore I = K = 0 by (3.2).

Now assume that Λ is not dense in h∗0, and let W denote the Weyl group of
g0 = n−0 � h0 � n+

0 . Let W act on h∗0 by w.λ = w(λ + ρ) � ρ and on S(h0) by
w.f(λ) = f(w−1.λ), for all λ 2 h∗0, f 2 h∗0, and ρ equal to the half sum of the positive
roots of g0 relative to the above triangular decomposition. By assumption, there
exists a nonzero polynomial g 2 S(h0) such that g(Λ) = 0. Set f =

∏

w∈W w.g.
¿From [4, 7.4.5] it then follows that there exists a nonzero z 2 Z such that f = ϕ(z).
By [4, 7.4.4], z 2

⋂

λ∈W.Λ kerχλ, and so I and K are both nonzero.

3.4 Remark. Note that fλ 2 h∗0 j L(λ) is finite dimensionalg is Zariski dense in h∗0.
In particular, Harish-Chandra’s theorem [6] that the finite dimensional irreducible
modules over a semisimple Lie algebra form a complete set may be deduced from
the proof of (3.3).
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3.5. As mentioned earlier, it is proved in [3] that V is prime if g is not of type b(n).
It is proved in [9], when g is of type b(n), that V is not semiprime and contains
a unique minimal prime ideal. Consequently, in general, it follows that the prime
radical of V is equal to its unique (possibly zero) minimal prime ideal.

Theorem C. Let Λ be a subset of h∗0, let

J =
⋂

λ∈Λ

J(λ) =
⋂

λ∈Λ

annV ˜L(λ),

and let P denote the unique minimal prime ideal of V. Then J = P if and only if
Λ is Zariski dense in h∗0.

Proof. First, suppose that Λ is a dense subset of h∗0. Note from (3.1), for each λ 2 Λ,
that there exists a vector v 2 ˜L(λ) such that n+

0 .v = 0 and such that h.v = λ(h).v
for all h 2 h0. Therefore, L(λ) is a g0-composition factor of ˜L(λ). Consequently,
J(λ) \ U � I(λ), and so

J \ U �
⋂

λ∈Λ

I(λ) = 0,

by (3.3). However, it then follows from, for example, [12, 2.3] that J cannot
strictly contain a minimal prime ideal of V. Thus J � P , and so J = P since J is
a semiprime ideal [11, 3.1].

Next suppose that Λ is not dense in h∗0. Set t = 2dim g1 , and let Π denote the set
of weights of the t-dimensional g0-module ^g1. Set

Λ′ = fλ + µ j λ 2 Λ, µ 2 Πg ,

and consider the set of g0-modules

X = f M(ν) j ν 2 Λ′ g.

As noted in [14, x1], for each λ 2 h∗0, ˜M(λ) is isomorphic as a g0-module to a factor
of ^g1 � ˜M(λ). Therefore, by [4, 7.6.14], there is a series

0 = M0 � M1 � � � � � Ms = ˜M(λ),

where Mi/Mi−1 2 X for each 1 � i � s, and where 1 � s � t. Now let K =
⋂

λ∈Λ′ kerχλ. It then follows, for each λ 2 h∗0, that

Kt
˜M(λ) = 0

(see, e.g., [4, x7.1]). Because Λ′ is not dense in h∗0, it follows from (3.3) that K
is nonzero. However, Kt

˜L(λ) = 0, for all λ 2 Λ′, and so Kt � J . Because P is
nilpotent and K is not, it therefore follows that J 6= P .

3.6. The following corollary now follows from [3].

Corollary D. Suppose that g is a classical simple Lie superalgebra not of type
b(n). If Λ � h∗0, then f˜L(λ) j λ 2 Λg is a complete set of irreducible g-modules if
and only if Λ is Zariski dense in h∗0.

3.7 Remark. It follows from [7, Theorem 8] and [8, Corollary to Theorem 2] that
the set

{

λ 2 h∗0 j ˜L(λ) is finite dimensional and λ is typical
}

is Zariski dense in h∗0 when g is a basic classical Lie superalgebra. In particular,
Corollary D is a direct generalization of [1, Proposition III.1].
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