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Enveloping Algebras of
Lie Superalgebras: A Survey

IAN M. MUSSON

ABSTRACT. We survey some recent results on prime and primitive ideals
in enveloping algebras of Lie superalgebras

We denote the enveloping algebra of a Lie superalgebra g by U(g) (see below
for definitions). We give a survey of some recent developments, mainly concern-
ing prime (or primitive) ideals in U(g) and the structure of the corresponding
factor rings. We work over an algebraically closed field F of characteristic zero
throughout and all Lie superalgebras will be finite dimensional over F.

There are two main reasons why these developments are of interest. Firstly
much is known about prime ideals in enveloping algebras of Lie algebras (see for
example [BGR] for the solvable case, and [Ja] for the semisimple case), and it
is natural to attempt to generalize these results to Lie superalgebras. Secondly,
it follows from the PBW Theorem [Sch, p. 26}, that S = Ulg) is a finitely
generated free R = U (go)-module, and there is currently much interest in the
study of ring extensions R C S, with R Noetherian and S a finitely generated left
and right R-module. Much of the groundwork for the relationship between prime
:deals of R and S in this situation has been set by Letzter [L1-L3], building on
earlier work of Warfield, [W].

1. Definitions and General Results

A Lie superalgebra is a Z,-graded algebra g = go ® g1 with a bilinear product
[, ]:gxg— g satisfying

(9a, 98] C Gatp for a, B € Lo (Zy-grading)
[a,b] = —(—1)*#[b,a] (graded skew-symmetry)

(—1)"[a, [b,e]] + (=1)*[b, [c, al]
+ (=1)P"[c,[a,b]] =0  (graded Jacobi identity)
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for a € go, b€ gg, c € gy.

The enveloping algebra of a Lie superalgebra g = go®g; is defined in a manner
analogous to the Lie algebra case. Let T'(g) be the tensor algebra on the vector
space g and J the two-sided ideal of T'(g) generated by the elements

a®b—(-1)*?b® a — [a,b]

with a € g, b € ga.

The enveloping algebra of g is defined as U(g) = T'(g)/J. As in the Lie algebra
case the enveloping algebra is a very useful tool for the study of Lie superalgebras
and their representations. We refer to [Sch] for more details and background.

We let ¢ be the automorphism of the Lie superalgebra g defined by
o(ag + a1) = ap — ay for a; € gi. Then o extends to an automorphism of
U(g). An ideal I of U(g) is graded if o(I) = I. A graded ideal P is graded
prime if IJ C P for graded ideals I, J implies I C P or J C P. We denote by
Spec U(g), Gr Spec U(g), Prim U(g), Gr Prim U(g) the spaces of prime, graded
prime, primitive and graded primitive ideals of U(g) respectively.

There are a few general results relating these spaces of ideals. A Noetherian
ring R is a Jacobson ring if every prime ideal is an intersection of primitive
ideals. By [CS, Theorem 1] or [L1, Lemma 2.5], this property passes to
finite extensions. Since U(go) is a Jacobson ring [Dix, Proposition 3.1.15], it
follows that U(g) is also Jacobson.

Concerning the relationship between prime and graded prime (or primitive)
ideals we have

Gr Spec U(g) = {PNa(P)|P € Spec U(g)}
and
Gr Prim U(g) = {PNa(P)|P € Prim U(g)}.

This follows from [CM, Theorem 6.3] and [L1, Theorem 3.1].

If R C S is a finite extension of Noetherian rings it is an interesting problem
to study the relationship between prime (and primitive) ideals of R and S. When
S is commutative we have the classical Krull relations of lying over, going up,
etc. In the noncommutative setting we say that lying over (LO) holds if for any
prime ideal @ of R there is a prime P of S such that @ is minimal over P N R.
There is an example where LO does not hold, [HO]. However, if S is finitely
generated and free as either a left or right R-module, and S is an F-algebra of
finite G K -dimension, (for example when R = U(go) € S = U(g)), Lenagan [L1,
Theorem 2.1] has shown that LO holds.

When R C S is a finite normalizing extension results on primitive ideals can
be obtained from the facts that S®pg V has finite length for any simple R-module
V and that any simple S-module has finite length as an R-module, [P, Section
2]. An example of Stafford [S, Corollary 4.3] shows that both these properties
fail for finite extensions of Noetherian rings in general. Another example of
Stafford can easily be turned into a Lie superalgebra example as follows.

If go = s£(2) x s£(2), then by [S, Theorem 4.1] there exist simple left
R = U(go)-modules V and E with F finite dimensional such that the R-module
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E ® V has infinite length. Let g = go ® g1, with g1 = E and [g1,01] = 0
and [z,e] = z.e for x € go, € € E. Let A = € A! be the exterior algebra on
E with its natural gradation. Then U(g) ®r V = (A ® V) as go-modules.
Furthermore g1 (A* ® V) € A1 @ V, so if we set W; = @;>;\' ® V, then
U(g)@rV =Wo2W12W22... isa descending chain of U(g)-modules such
that g; acts trivially on each quotient. Furthermore W, /W5 is none other than
E®YV made into a U(g)-module by allowing g, to act trivially. Hence U(g) ®rV
has infinite length.

In spite of these negative results, it is possible for certain classes of modules
to be well behaved with respect to induction and restriction. This is the case
for example for the categories O and O of U(go) and U(g)-modules, when g is
classical simple, see [M1].

Let R C S be a finite extension of Noetherian F-algebras of finite GK-
dimension over F. Letzter has found a description of the prime and primitive
ideals of S in terms of those of R. We describe this result here under the addi-
tional assumption that S is a finite free left R-module.

For Q € Spec(R), let Jo = anng(S/QS) and let Xg be the set of prime ideals
of S minimal over Jg.

THEOREM [L3, Proposition 4.2].
(1) If P € Spec(S) and Q € assg(S/P), then P € Xq.
(2) Spec(S) = UQespec(R)(XQ)-
(3) Prim(S) = Ugeprim(r)(X@)-

Finally, Letzter has obtained the following characterization of primitive ideals
in U(g).

THEOREM [L1, Theorem 2.6]. If P is a prime ideal of U(g) the following
are equivalent:
(i) P is right primitive
(ii) P is left primitwe
(iii) P is rational
(iv) P is locally closed in Spec Ul(g).

Here P is rational if the center of the Goldie quotient ring of U(g)/P equals
F, and P is locally closed in Spec U(g) if the intersection of all prime ideals
property containing P is different from P.

There is a similar characterization of graded primitive ideals [L1, Theorem
3.2].

2. The Nilpotent and Solvable Cases

In 1963 Dixmier proved that if g is a nilpotent Lie algebra then any primitive
factor ring of U(g) is isomorphic to a Weyl algebra. The Lie superalgebra version
of this is the following, [BM].

THEOREM. Let g be a nilpotent Lie superalgebra. If P is a primitive ideal of
Ulg), then U(g)/P = M(Ay) a matriz ring over a Weyl algebra. If instead P is
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graded primitive then either U(g)/P = My(A,) or U(g)/P = M,(A,) x Mg(A,).
Here s = 2™ and m,n > 0.

If F' is not algebraically closed, there is a version of this theorem where the
matrix algebras are replaced by Clifford algebras.

Now if g is a solvable Lie algebra, McConnell has given a precise structure the-
orem for the prime factors of U(g) (after some localisation) see [McR, Chapter
14]. We have been unable to extend this to the Lie superalgebra case, although
numerous examples suggest that the following is true.

CoNJECTURE (Bell-Musson). Let g be a completely solvable Lie superalgebra,
and R a graded prime factor ring of U(g). Then for some even eigenvector e € R,
we have R, = A(V,6,T') ® C(q,K). Here A(V,6,I') is one of the algebras
described by McConnell and C(g, K) is the Clifford algebra of some nonsingular
quadratic form defined over an extension field K of F. We remark that even in
the algebraically closed case, it is impossible to avoid the use of Clifford algebras
here as the following example shows.

EXAMPLE (Bell-Musson). Let g = go®g, where go = Fa, g = Fz® Fy with
a central, [z,y] = 0 and [z, z] = [y, y] = 2a. Note that g is nilpotent of class two.
Then U(g) is a domain with center F[a]. If we invert the nonzero elements in
F[a], we obtain U(g) ® F(a) = (FG(ES) a quaternion division algebra over F(a),
see [Lam, Theorem III, 2.7).

We outline a technique that can be used to study enveloping algebras of
solvable Lie superalgebras. If g is solvable there is a series

O=go<gpr<...<gn=yg

of graded subalgebras of g with dim g; = ¢ such that g; is an ideal in g;;1. In
this case we can study U(g) by studying the sequence of ring extensions

F =U(go) CU(g1) C...CU(gn) =U(g).

Now if gi+1/9i is even we can choose an even element z € g;4; such that g;,, =
9i ® Fz. Then we have U(g;+1) = U(gi)[t; 6], an Ore extension where § = adz is
the derivation of U(g;) defined by 6(a) = [a, z] and at = ta+6(a) for a € U(g;). If
instead g;+1/g; is odd, choose an odd element = € g;4; such that g;;, = ¢; ® Fz.
We then have U(gi+1) = Ul(g:)[t; 0,6]/(t* — h) with h = [z, z]. Here § = adx
is a o-derivation (i.e. 6(ab) = ad(b) + é(a)o(b) for a,b € U(g;)) and we have
at = to(a) 4 6(a) in the Ore extension U(g;)[t; o, d].

For g a solvable Lie superalgebra, E. Letzter [L5] has constructed a bijective
map from Spec U(gg) to Gr Spec U(g). In the case g is nilpotent this map is in
fact a homeomorphism. Since U(go) is known to be catenary in this case (any
two chains of prime ideals between P and ) have the same length), it follows
that U(g) is catenary. Recently T.H. Lenagan [Len] has shown that Uf(g) is
catenary for any solvable Lie superalgebra g.
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3. The Classical Simple Case

Simple Lie superalgebras were classified by V. Kac in his fundamental paper
[K1], see also [Sch]. We say that g is classical simple if go is reductive. The
classical simple Lie superalgebras are further subdivided into those which admit
an invariant bilinear form, the basic Lie superalgebras, and those that do not.
The latter consists of two infinite families, denoted P(n), Q(n) by Kac. Classical
simple Lie superalgebras behave in many ways like semisimple Lie algebras. As
an example, let g = sf(m,n) be the Lie superalgebra of block matrices of the

form (é g) where A is m x m, D is n x n, Trace(A) = Trace(D) and B,C

are the appropriate size. Let

A 0 0 B
go = o D) gi.= c 0)’

and make g into a Lie superalgebra by defining
[X,Y] = XY — (-)*YX

for X € ge, Y € g9- The Lie superalgebra g = sé(m,n) is classical simple if
m,n > 0and m # n.

Now in [M1] we have obtained a classification of the graded primitive ideals in
Ul(g) for g classical simple. We describe this result here for the case g = sf(m, n).
Let h be the set of diagonal matrices in g and n* (resp. n~) the set of strictly
upper (resp. strictly Jower) triangular matrices in g. For A € h*, let Fvy be the
one dimensional h-module with hvy = A(h)vy for h € h, and make Fvy into a
module over b = h @ n't by setting n*vy = 0. Then we form the Verma module

M(X) = U(g) ®u) Fua

It is easy to see that M()) has a unique maximal submodule. The corresponding
simple factor module is denoted L()). We show in [M1] that every primitive
ideal of U(g) has the form ann L(X) for some A € h*.

This is the analogue of a theorem of Duflo [D], [Ja, Corollar 7.4] for semisim-
ple Lie algebras. Let bo = go N b and regard Fuy as a bo-module by restriction.
Then M()) = U(go) ®u(bo) Fva has a unique simple factor module L(A) and
every primitive ideal of U(go) has the form I(A) = ann L(X) for some X € h*.

We remark that when g = osp(1,2), Pinczon has obtained a classification of
primitive ideals in U(g) by using the decomposition of the adjoint representation
of g on U(g), [Pi].

An interesting problem is to determine the relationship of primitive ideals
to the center Z(g) of U(g). The situation for semisimple Lie algebras is well
understood (see section 3 of Borho's survey [Bor]). Part of the difficulty in
the Lie superalgebra case is that Z(g) may not be Noetherian. In [K2], Kac
constructs a Harish Chandra map % : Z(g) — S(h)W for basic classical simple
g. Here W is the Weyl group of the Lie algebra go. For a a root of g we set

Po,={,\eh*[(A+p,a)=0}.
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Here p = pp — p1, where py (resp. py) is half the sum of the positive even (resp.
odd) roots, and ( , ) is a non degenerate symmetric W-invariant form on h*. We
say that A is regular if A € P, for all roots « and A is typical if A € P, for all
isotropic roots c.

Now let S(h)o be the algebra

S(h)o = {f € S(h) | if A € P, for some isotropic root «,
then f(A) = f(A + ta) for all t € C}.

Then 1 is injective and the image of ¢ is S(h)}¥ [K4, Theorem 3.

For example, if g = s£(2,1) then h = span{h,z} with h = diag(1,-1,0),
z = diag(1,1,2). There are two positive isotropic roots 3, v and the ideals of
functions vanishing on Pg, P, are generated by (z—h) and (z+h+2) respectively.
It follows that S(h)o = C + x C[h, z] where x = (z — h)(z+ h + 2). The
Weyl group W = (o) = C; acts on S(h) by o(h) = —h — 2, 0(z) = z. Hence
Z(g) =2 S(h)YY = C+ x C|x, 2] is not Noetherian.

For any A € hj and ¢ € Z(g), c acts as a scalar x*(¢) on M()\) and we obtain
the central character x* : Z(g) — C.

Now suppose that g belongs to one of the series sf, osp or Q. If A is typical
Penkov [Pe, Théoréme 3] shows that U(g)/Kerx*U(g) may be identified with
the ring of global sections of a sheaf of twisted superdifferential operators on a
superflag manifold (see [Ma] for geometric background). If A is regular he obtains
the stronger result that U(g)/Ker x*U(g) is Morita equivalent to a primitive
factor ring of the enveloping algebra of go.

This leads us to conjecture that if g is classical simple and A € A, is typical
then ann M(A) is primitive. Furthermore, if A is regular we conjecture that
ann M()\) = Ker x*U(g).

It is worth remarking that when g = osp(1,2) and A is typical but not regular
then ann M ()) # Ker x*U(g). This follows from [Pi, Section 7], and can be
explained as follows. For any A, M(\) = My @ M, where My, M; are Verma
modules for go = sf(2). The Casimir elements @ and C of U(gy), U(g) are
related by the equation (16C + 1) = (8Q — (8C — 1))?, [Pi, Proposition 1.2].
When A is not regular, C acts on A;{(/\) by the scalar —%, and @ acts on My, M,
by the same scalar —-%. The image of Q + & in U(g)/Ker x*U(g) is nonzero
and generates the ideal ann M(\)/Ker x*U(g).

Turning to the structure of the primitive factor rings of U(g) for g classical
simple, very little is known in this case. Any such ring A has a Goldie quotient
ring which takes the form M, (D) for some positive integer n known as the Goldie
rank and some division ring D. As a first step we can ask for information about
n and D.

When g is a semisimple Lie algebra, D turns out to be the quotient division
ring of a Weyl algebra in many cases [Ja, Kapitel 15]. In [M2] we verify that
this is also the case for the Lie superalgebra sf(2,1).

One of the deepest results in the theory of semisimple Lie algebras asserts
that the Goldie rank of U(g)/I(A) for A € h* is a polynomial in A, [Ja, Satz
12.6]. If L()) is finite dimensional the Goldie rank of U(g)/I()) is equal to the
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dimension of L()) and the result cited above reduces to the well known Weyl
dimension formula.

Now Kac, [K2] has obtained an analogue of Weyl's character formula for
finite dimensional L(A) when A is typical. Much effort has been made to obtain
a corresponding result when A is atypical, see [HJKM1] and [HIKM2] and the
references given therein. However as far as we know there are still no analogues of
Weyl’s character formula or dimension formula for A atypical, so this represents
a’major obstacle to extending the results on Goldie rank.

4. When is U(g) prime?

For some questions about enveloping algebras of Lie superalgebras the cor-
responding question about Lie algebras is trivial or easy. It is well known for
example that the enveloping algebra of a Lie algebra is a domain. In [AL] it is
shown that for a Lie superalgebra g, U(g) is a domain if and only if g contains no
odd element z with [z,z] = 0. One direction here is easy: if [z,z] = 0in g, then
£2 = 0 in U(g). The problem of determining when U(g) is prime is unsolved,
see also [Behr], but we mention here one result of interest, [Bell].

THEOREM. If g is classical simple and g # P(n), then U (g) is a prime ring.

5. Dimensions

Without a doubt the most useful dimension for the study of enveloping al-
gebras is Gel'fand Kirillov dimension, see [KL] for background. It is also the
easiest to calculate. We have GK dim U(g) = GK dim U(go) = dim go for any
Lie superalgebra. However other dimensions are of interest, as test problems to
see how well we understand the rings or modules involved and in order to see
how these dimensions behave under finite ring extensions.

With regard to Krull dimension it would be interesting to know whether
K dim(R) = K dim(S) when R C S is a finite extension of Noetherian rings.
For non Noetherian rings the equality does not hold since there is an example
of Bergman [Berg] where 5 is a division ring and R is not. Note also that the
corresponding equality for (one sided) modules does not hold either, since there
is an example of Stafford [S] where S has a simple module which has infinite
length as an R-module.

Finally, it is shown in [KKS] that the injective and finitistic global dimensions
of U(g) are equal to dim go, for any finite dimensional Lie superalgebra g. The
global dimension of U(g) is discussed in [AL], [Behr] and [Bg].

References

[AL] M. Aubry and J. M. Lemaire, Zero divisors in Enveloping Algebras of Graded Lie
Algebras, J. Pure and Applied Algebra 38 (1985), 159-166.

[Behr] E. Behr, Enveloping Algebras of Lie Superalgebras, Pacific J. Math 130 (1987),
9-25.

[Bell] A. Bell, A Criterion for Primeness of Enveloping Algebras of Lie Superalgebras,
J. Pure and Applied Algebra 69 (1990), 111-120.

[BM] A. Bell and I. M. Musson, Primitive Factors of Enveloping Algebras of Nilpotent

Lie Superalgebras, J. London Math. Soc. 42 (1990), 401-408.



148

[Berg]
(B
[Bor]
[BGR)
(CM]
(CS]

[Dix]
(D]

[HIKM1]

[HIKM2)

[HO]

[3a)

(K1]
(K2]

(K3)
k4]
[KKS]
KL
[Lam]
(Len
L1)
L2
L3
[L4)
1L5]
o

(M1]

IAN M. MUSSON

G. M. Bergman, Sfields finitely right-generated over subrings, Comm. in Algebra
11 (1983), 1893-1902.

R. Bggvad, Some elementary results on the cohomology of graded Lie algebras,
Homotopie Algébrique et Algebre Locale, vol. 113-114, Asterisque, pp. 156-166.
W. Borho, A Survey on Enveloping Algebras of Semisimple Lie Algebras, I., Canad.
Math. Soc. Conf. Proc. Vol 5, 1986, pp. 19-50.

W. Borho, P. Gabriel and R. Rentschler, Primideale in Einhullenden auflosbarer
Lie-Algebren, Lecture Notes in Mathematics, Vol. 357, Springer, Berlin, 1973.

M. Cohen and S. Montgomery, Group-Graded Rings, Smash Products and Group
Actions, Trans. Amer. Mat. Soc. 282 (1984), 237-258.

B. Cortzen and L. W. Small, Finite Extensions of Rings, Proc. Amer Math. Soc.
103 (1988), 1058-1062.

J. Dixmier, Enveloping Algebras, North Holland, Amsterdam, 1972.

M. Duflo, Sur la classification des idéauz primitifs dans U'algébre enveloppante
d’une algébre de Lie semi-simple, Ann. of Math. 105 (1977), 107-120.

J. W. B. Hughes, J. Van der Jeugt, R. C. King and J. Thierry-Mieg, Character
Formulae for Irreducible Modules of the Lie Superalgebras SL(M/N), J. Math.
Phys. 31 (1990), 2278-2304.

, A Character Formula for Singly Atypical Modules of the Lie Superalgebra
sf(m/n), Comm. in Algebra 18 (1990), 3453-3480.

T. J. Hodges and J. Osterburg, A Rank Two Indecomposable Projective Module
Over a Noetherian Domain of Krull Dimension One, Bull. London Math. Soc. 19
(1987), 139-144.

J. C. Jantzen, Einhillende Algebren halbeinfacher Lie Algebren, Springer, Berlin,
1983.

V. G. Kac, Lie Superalgebras, Adv. Math 26 (1977), 8-96.

, Characters of Typical Representations of Classical Lie Superalgebras,
Comm. in Algebra 5 (1977), 889-897.

, Representations of Classical Lie Superalgebras, Lecture Notes in Mathe-
matics, Vol. 676, Springer, Berlin, 1977, pp. 579-626.

, Proc. Nat. Acad. Sci., U.S.A. 81 (1984), 645-647, Laplace Operators for
Infinite Dimensional Lie Algebras.

E. Kirkman, J. Kuzmanovich and L. Small, Finitistic Dimensions of Noetherian
Rings, J. Algebra (to appear).

G. R. Krause and T. H. Lenagan, Growth of Algebras and Gelfand-Kirillov Di-
mension, Pitman, Boston, 1985.

T. Y. Lam, The Algebraic Theory of Quadratic Forms, Benjamin/Cummings,
Reading, Mass., 1973.

T. H. Lenagan, Enveloping Algebras of Solvable Lie Superalgebras are Catenary,
(Preprint. University of Edinburgh).

E. S. Letzter, Primitive Ideals in Finite Extensions of Noetherian Rings, J. London
Math. Soc 39 (1989), 427-435.

, Prime Ideals in Finite Extensions of Noetherian Rings, J. Algebra 135
(1990), 412-439.

, Finite Correspondence of Spectra in Noetherian Ring Eztensions, Proc.
Amer. Math. Soc. (to appear).

, On the Ring Ertensions arising from Completely Solvable Lie Superalge-
bras J. Algebra, (to appear).

, Prime and Primitive Ideals in Enveloping Algebras of Solvable Lie Super-
algebras, Papers Dedicated to the Memory of R. B. Warfield Jr., Contemp. Math.
Series, Amer. Math. Soc. (to appear).

Y. I. Manin, Gauge Field Theory and Complex Geometry, Springer, Berlin, 1988.
J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley,
Chichester, 1987.

I. M. Musson, A Classification of Primitive Ideals in the Enveloping Algebra of a
Classical Simple Lie Superalgebra, Adv. in Math. (to appear).




ENVELOPING ALGEBRAS OF LIE SUPERALGEBRAS 149

(M2] , Primitive Ideals in the Enveloping Algebra of theLie Superalgebra sf(2, 1),
(Preprint, Univ. Wisconsin—-Milwaukee).

[Pe] 1. Penkov, Localisation des représentations typiques d’une superalgébre de Lie com-
pleze classique, C. R. Acad. Sci. Paris, Série 1, no. 7 304 (1987).

[Pi] G. Pinczon, The Enveloping Algebra of the Lie Superalgebra osp(1,2), J. Algebra
132 (1990), 219-242.

P D. S. Passman, Prime Ideals in Normalizing Extensions, J. Algebra 73 (1981),
556-572.

[Sch] M. Scheunert, The Theory of Lie Superalgebras, Lecture Notes in Mathematics,
Vol. 716, Springer, Berlin, 1979.

[S] J. T. Stafford, Non-Holonomic Modules over Weyl Algebras and Enveloping Alge-
bras, Invent. Math. 79 (1985), 619-638.

W] R. B. Warfield, Prime Ideals in Ring Eztensions, J. London Math. Soc. 28 (1983),
453-460.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MILWAUKEE, WISCONSIN
53201



