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Preface

The publication of Dixmier’s book in 1974 led to increased interest in the structure
of enveloping algebras. Considerable progress was made in both the solvable and
semisimple cases. For example the primitive ideals were completely classified and
much information obtained about the structure of the primitive factor rings [BGR73],
[Dix96], [Jan79], [Jan83], [Mat91].

Most of this work was complete by the early 1980’s, so it was natural that
attention should turn to related algebraic objects. Indeed at about this time some
new noncommutative algebras appeared in the work of the Leningrad school led by
L. D. Faddeev on quantum integrable systems. The term “quantum group” was
used by V. G. Drinfel’d and M. Jimbo to describe particular classes of Hopf algebra
that emerged in this way. This subject underwent a rapid development, spurred in
part by connections with Lie theory, low dimensional topology, special functions and
so on. The algebraic aspects of quantum groups are treated in detail in the books
[CP95], [Kas95], [KS97], [Lus93], [Jos95] and [Majo5].

Against this background, Lie superalgebras seem to have been somewhat over-
looked. Finite dimensional simple Lie superalgebras over algebraically closed fields
of characteristic zero were classified by V.G. Kac in his seminal paper [Kac77a].
However more than thirty years after the classification, the representation theory of
these algebras is still not completely understood and the structure of the enveloping
algebras of these superalgebras remains rather mysterious.

Nevertheless some fundamental progress has been made. For example the char-
acters of finite dimensional irreducible representations have been determined for
Lie superalgebras of types A, Q and recently for the orthosymplectic Lie algebras
[Bru03], [Bru04], [CLWO09], [GS09], [PS97a], [PS97b], [Ser96]. Moreover we know
when the enveloping algebra U(g) is a domain, when it has finite global dimension,
and some progress has been made on understanding its primitive ideals.

Therefore it is timely, I hope, for a volume that collects together some of what
is known about Lie superalgebras and their representations. My original motivation
for writing the book was to collect together results that were difficult to find. For
this reason I tried to include primarily results that have only appeared in research
journals. Of course it is impossible to keep to this rule consistently. No attempt was
made to be comprehensive, and I needed to include a certain amount of background
material that is well known.

Here is a brief overview of the contents of the book. Chapter 1 contains some ba-
sic definitions and the statement of the Classification Theorem for finite dimensional
classical simple Lie superalgebras over an algebraically closed field of characteristic
zero. Since the proof of the Classification Theorem can be found in the book [Sch79],
as well as in the paper of Kac, we do not include the proof here. However we give
explicit constructions for each classical simple Lie superalgebra g. This is done in
Chapter 2 if g is a close relative of gl(m,n), g is orthosymplectic, or g belongs to
one of the series P or Q in the Kac classification. The other classical simple Lie su-
peralgebras, which we will call exceptional are dealt with in Chapter 4. In order to
construct highest weight modules for g, we need to understand its Borel subalgebras.



Unlike the case of a semisimple Lie algebra, there are in general several conjugacy
classes of Borel subalgebras. However, at least if g # psl(2,2), there are only a
finite number of conjugacy classes, and we give a combinatorial description of them
in Chapter 3. If g # p(n), q(n), then the choice of a Borel subalgebra b of g leads, in
Chapter 5 to a second construction of g as a contragredient Lie superalgebra. This
approach is less explicit than the first, and some work is required to reconcile the two
points of view. However contragredient Lie superalgebras give a unified approach
to several results, in particular to the existence of an even nondegenerate invariant
bilinear form on g. An algebra that admits such a form is often called basic.

In Chapter 6 we define the enveloping algebra U () of a Lie superalgebra €. The
study of representations of £ is equivalent to that of U(¥), and techniques from ring
theory can be utilized to investigate U(£). We prove the Poincaré-Birkhoff-Witt
(PBW) Theorem using the Diamond Lemma. A crucial difference with the PBW
Theorem for Lie algebras is that the basis elements for the odd part of £ can only
appear with exponents zero or one in a PBW basis.

Let £ be a finite dimensional Lie superalgebra over a field and let R = U (%)), S =
U() be the enveloping algebras of €y and €. By the PBW Theorem S is finitely
generated and free as a left or right R-module. Suppose that S is a ring extension
of R, that is R is a subring of S with the same 1, and that S is a finitely generated
R-module. We develop some general methods for studying such ring extensions
in Chapter 7. Particular attention is paid to the relationship between prime and
primitive ideals in R and S. When S is commutative we have the classical Krull
relations of lying over, going up, etc. The usual definitions and proofs do not work
well in the noncommutative setting, and we adopt an approach using R-S bimodules.

In Chapter 8 we set up some of the notation that we will use in subsequent
chapters to study the enveloping algebra of a classical simple Lie superalgebra g.
Among the topics covered are triangular decompositions g = n~ @ b @ nt of g,
Verma modules and the category O. Partitions, which can be used to index a basis
for U(n*) are also introduced here. For the rest of this introduction, we assume that
K is an algebraically closed field of characteristic zero, and all Lie superalgebras are
defined over K.

Chapters 9 and 10 are devoted to the study of Verma modules. If £ is a semisimple
Lie algebra, the homomorphisms between Verma modules were first described by I.N.
Bernstein, I.M. Gelfand and S.I. Gelfand, [BGG71] and later in more explicit form by
N.N. Sapovalov [Sap72]. We introduce Sapovalov elements for basic simple classical
Lie superalgebras. Sapovalov elements for isotropic roots lead to the construction
of some new modules which then appear in the Jantzen sum formula.

Classical Schur-Weyl duality provides a deep connection between representations
of the symmetric group and representations of the Lie algebra gl(n). This theory was
extended to the Lie superalgebra g = gl(m, n) first by Sergeev in [Ser84a], and then
in more detail by Berele and Regev [BR87]. In Chapter 11, we give an exposition of
this work and also of a beautiful extension of the Robinson-Schensted-Knuth corre-
spondence from [BR87]. This correspondence allows us to use semistandard tableaux
to index a basis for the simple U(g)-modules that appear in the decomposition of
the tensor powers of the defining representation of g.



In the theory of symmetric polynomials a key role is played by Schur polynomi-
als. These can be defined in three different ways: as a quotient of alternants, using
the Jacobi-Trudi identity, and by using semistandard tableaux. The first definition
is related to the Weyl character formula. Our treatment of supersymmetric polyno-
mials in Chapter 12 places particular emphasis on super Schur polynomials. Each
definition of the usual Schur polynomials can be extended to the super case, and
the main results, due to Pragacz and Thorup [PT92], [Pradl] and Remmel [Rem84],
demonstrate the equivalence of the extended definitions. There is a connection with
Schur-Weyl duality since the characters of composition factors of tensor powers of
the defining representation of gl(m,n) are given by super Schur polynomials.

Chapter 13 is devoted to the center Z(g) of U(g) and related topics. Denote
the fixed ring of S(h) under the action of the Weyl group W by S(h)". There is
an injective algebra map from Z(g) to S(h)" which we call the Harish-Chandra
homomorphism. Unlike the case of semisimple Lie algebras however, this map is not
surjective, but its image can be explicitly described. This result was first formu-
lated by Kac [Kac84], but a gap in the proof was later filled by Gorelik [Gor04] and
independently by the author (unpublished). On the other hand, Sergeev [Ser99a]
proved a version of the Chevalley restriction theorem for basic classical simple Lie
superalgebras, [Ser99a]. This can be used to give another proof of the theorem for-
mulated by Kac, but we will in fact deduce Sergeev’s Theorem from the result about
the center. If g = gl(m,n) or an orthosymplectic Lie superalgebra, supersymmetric
polynomials can be used to give an explicit set of generators for the image of the
Harish-Chandra homomorphism, and to describe the central characters of g.

In Chapter 14 we study finite dimensional modules for a basic classical simple
Lie superalgebra. If g is a close relative of gl(m,n) or g is orthosymplectic, we give
necessary and sufficient conditions for a simple highest weight module to be finite
dimensional in terms of the highest weight. Then we prove the Kac-Weyl character
formula for finite dimensional typical modules.

If £ is a finite dimensional Lie algebra, then the space of primitive ideals Prim U ()
is now well understood in both the solvable and semisimple cases. By comparison
much less is known about primitive ideals in the enveloping algebra of a Lie super-
algebra g, but in Chapter 15 we survey what is known, with particular emphasis
on the case where g is classical simple. To do this it is convenient to review the
semisimple Lie algebra case.

Unlike the Lie algebra case, the enveloping algebra U () of a Lie superalgebra £
may contain zero divisors. This will be the case if £ contains an non-zero odd element
x such that [x,z] = 0. In the absence of such elements £ is called torsion-free. In
Chapter 17 we prove a theorem of R. Bggvad, stating that the enveloping algebra
of a torsion-free Lie superalgebra is a domain, [Bpg84|, see also [AL85]. The proof
of this result, in contrast to the simplicity of its statement, requires a considerable
amount of homological algebra.

In Chapter 16 we develop the necessary cohomology theory of Lie superalge-
bras. This includes the fact that if M is a Zo-graded €-module, then the even part
of H?(t, M) parameterizes extensions of M by &, the cup product in cohomology,
and the Hochschild-Serre spectral sequence. We give a self-contained account of the



necessary background on spectral sequences. The cohomology of a Lie superalge-
bra € can be computed using the standard resolution of the trivial £-module. In
contrast to the Lie algebra case, this resolution has infinitely may terms if £; # 0.
Chapter 17 deals with the more ring theoretic aspects of homological algebra needed
to prove Bggvad’s result. These include standard results on derived functors and
global dimension, as well as the Yoneda product, the bar resolution and the Lofwall
algebra. In the final chapter we introduce affine Lie superalgebras and obtain some
applications to number theory. These applications concern the number of ways to
write an integer as sum of a given number of squares, or as sum of a given number of
triangular numbers. The main results here are due to Kac and Wakimoto [KW94]
and Gorelik [Gor09a], [Gor09b]. Some background material on Lie theory, Hopf
algebras and ring theory is given in Appendix A.

This book has grown to about twice the length I originally intended, and unfor-
tunately some important results had to be left out. However some of the topics not
covered here are treated in other texts. Connections with Physics are dealt with in
[DM99] and [Var04]. The Dictionary of Lie Algebras and Lie Superalgebras [F'SS00],
while not containing any proofs, is nevertheless an invaluable source for detailed in-
formation about Lie superalgebras and their representations. We also recommend
the survey article of Serganova on affine Lie superalgebras and integrable represen-
tations [Ser09]. On the other hand many topics are included which I believe can be
found in no other texts. These topics include, in the order they appear in the book,
the construction of the exceptional Lie superalgebras, many of the ring theoretic
methods used to study enveloping algebras, material on Schur-Weyl duality, super-
symmetric polynomials, the center and central characters, the question of when the
enveloping algebra contains zero divisors, and applications of affine Lie superalge-
bras to number theory. The treatment of Borel subalgebras that we give here is
probably new.

I have used parts of this book to teach courses at the University of Wisconsin-
Milwaukee and elsewhere. Of course it works best for students with some back-
ground in Lie theory. Here are some suggestions about how to use this book as a
textbook. Chapter 1 contains the basic definitions, so is a prerequisite for every-
thing else. Then Chapters 2-5 form a basic course on Lie superalgebras. Chapters
6 - 8, possibly followed by parts of Chapters 9 ,10, 13, 14, 15 could be used for a
course dealing with enveloping algebras. For more combinatorics use Chapters 11
and 12, for homological topics Chapters 16 and 17, and for applications to number
theory Chapter 18. Exercises are given at the end of each Chapter, often providing
examples to illustrate the theory.
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