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Abstract

Let g be a classical simple Lie superalgebra. We describe the prime
ideals P in the enveloping algebra U(g) such that U(g)/P satisfies a
polynomial identity. If the factor algebra U(g)/P is not artinian, then
it is an order in a matrix algebra over K(z).

Throughout this paper we work over an algebraically closed field K of
characteristic zero. All unadorned tensor products are taken over K. Let g

be a finite dimensional classical simple Lie superalgebra over K. A factor
algebra of the enveloping algebra U(g) satisfying a polynomial identity is
called a P.I. envelope of g. Our aim is to describe all prime P.I. envelopes
of g. If g has a nonartinian prime P.I. envelope it is not hard to show that
the center of g0 must be nonzero (Lemma 1.3). Thus by the classification
theorem in [K1], g = s`(m, n) with m > n ≥ 1 or g = osp(2, 2n).

It was shown by Bahturin and Montgomery that when g = s`(m, n) with
m > n > 1, g has a nonartinian P.I. envelope. In fact the proof of [BM,
Theorem 4.2] shows that this is true also when g = osp(2, 2n) although these
algebras are omitted from the statement of [BM, Theorems 1.5 and 4.2]. If
g = s`(m, n) with m > n > 1 or g = osp(2, 2n), then g0 = [g0, g0] ⊕ Kz
where z is central in g0. Furthermore as a g0-module via the adjoint action
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g1 = g+
1 ⊕ g−1 a direct sum of two simple submodules. If p = g0 ⊕ g+

1 then
U(g0) is a homomorphic image of U(p) and thus any U(g0)-module can be
regarded as a U(p)-module. Choose a Cartan subalgebra h and a system of
simple roots for [g0, g0]. Let P+ denote the corresponding set of dominant
integral weights. If λ ∈ P+ let Lλ be the finite dimensional simple [g0, g0]-
module with highest weight λ and set

V (λ) = U(g)⊗U(p) (Lλ ⊗K[z]).

Our main result is as follows

Main Theorem. Set Pλ = annU(g)V (λ), n = dimK Lλ and N = n2dimg−
1 .

Then Pλ is a prime ideal of U(g) such that U(g)/Pλ is a subring of the ma-
trix algebra MN(K[z]) with Goldie quotient ring MN(K(z)). In particular
U(g)/Pλ is a prime P.I. algebra.

Conversely, if P is a prime ideal in U(g) such that U(g)/P is nonartinian
and satisfies a polynomial identity then P = Pλ for a unique λ ∈ P+.

If C = K[z]\{0} then C is an Ore set of regular elements in U(g). A key
step in the proof that Pλ is prime is to show that the localized module V (λ)C
is in a natural way a U(g)−F bimodule where F = K(z), and then a simple
Kac module over U(g) ⊗ F . For the converse we use some results of E.S.
Letzter concerning prime ideals in finite extensions of Noetherian rings.

1.1 Let R and S be prime Noetherian rings. An R − S bimodule M is
a bond from R to S if M is finitely generated and torsionfree both as a left
R-module and as a right S-module.

Lemma. Suppose M is a bond from R to S. Then

(a) R is artinian if and only if S is artinian.

(b) R is a P.I. ring if and only if S is a P.I. ring.

Proof (a) This is [J, Theorem 5.2.9].
(b) This is Remark (2) after [BS, Prop. 2.5]. We give some details for the
convenience of the reader. Let D = Fract R and E = Fract S. by [BS,
Prop. 2.5] there exists an integer t such that D embeds in the ring of t × t
matrices Mt(E) and E embeds in Mt(D). Thus if S is P.I. then R embeds
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in Mt(E) which is a central simple algebra by Posner’s Theorem [McR, The-
orem 13.6.5], so R is P.I. by the Amitsur-Levitzki Theorem [McR, Corollary
13.3.5]. Similarly if R is P.I. so is S.

1.2 Until the end of section 1.4 suppose that R ⊆ S is an extension of
Noetherian K-algebras of finite Gel’fand-Kirillov dimension. Assume that S
is finitely generated and free as a right R-module. The following definitions
are due to Letzter [L2], [L3].

i) Suppose P is a prime ideal of S and set B = Fract(S/P ). Let VP be
the set of prime ideals of R which are right annihilators of simple B − R
factor bimodules of B.

ii) Suppose Q is a prime ideal of R and set A = Fract(R/Q). Let WQ be
the set of prime ideals of S which are left annihilators of simple S−A factor
bimodules of S ⊗R A.

In addition set JQ = `− ann(S/SQ) and

XQ = {P ∈ Spec R|P is minimal over JQ}.

These definitions are related by the following results.

Theorem. (a) If Q ∈ SpecR and P ∈ SpecS then

Q ∈ VP if and only if P ∈ WQ

Furthermore if this condition holds there is a bond from S/P to R/Q.
(b) WQ ⊆ XQ.

Proof. (a) follows from [L2, Lemma 3.2] and [L1, Lemma 1.1], while (b)
follows from the proof of [L2, Proposition 4.2].

1.3 Lemma. Let g be a classical simple Lie superalgebra such that there
is a prime ideal P in U(g) with U(g)/P a nonartinian P.I. algebra. Then
the center of g0 is nonzero.

Proof. We apply the results in the two previous subsections R = U(g0)
and S = U(g). Choose Q ∈ VP . Then there is a bond from S/P to R/Q by
Theorem 1.2. Hence by Lemma 1.1, R/Q is a nonartinian P.I. algebra. The
result follows from a result of Bahturin, see [BM, page 2837].
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1.4 If the equivalent conditions of Theorem 1.2(a) hold we say that P lies
directly over Q. Recall that a module over a prime Noetherian ring is fully
faithful if every nonzero submodule is faithful. We require another result of
Letzter [L3, Lemma 2.6 (iv)].

Lemma. Suppose that P lies directly over Q and that M is a fully faith-
ful S/P -module. Then there exists an R-submodule N of M such that Q =
annRN and N is a fully faithful R/Q-module.

1.5 Again suppose that g is classical simple. We often write U for U(g).
The simple artinian factor rings of U correspond to the finite dimensional
simple g-modules and these have been classified [K1, Theorem 8].

For the remainder of this paper we assume therefore that P is a prime
ideal of U , such that U/P is a non-artinian P.I. algebra. By Lemma 1.3 this
means that g0 has nonzero center.

As noted in the introduction we have g0 = [g0, g0]⊕Kz. We can choose
z in such a way that [z, x] = ±x for all x ∈ g±1 . Recall that h is a Cartan
subalgebra of [g0, g0]. Set h′ = h⊕Kz, so that h′ is a Cartan subalgebra of
g0 and g. Fix a non-degenerate invariant bilinear form ( , ) on (h′)∗. For
α ∈ (h′)∗, we write gα for the corresponding root space. There is a unique
hα ∈ h′ such that (µ, α) = µ(hα) for all µ ∈ (h′)∗. Let ∆+

1 be the set of roots
of g+

1 . For α ∈ ∆+
1 , choose e±α such that g±α

1 = Ke±α and hα = [eα, e−α].

1.6 We construct a functor T between categories of left modules:

T : U(g0)-mod −→ U(g)-mod.

First set p = g0⊕g+
1 and J = U(p)g+

1 . Then J is a nilpotent ideal of U(p)
with U(p)/J ∼= U(g0). Thus we can regard U(g0)-mod as a subcategory of
U(p)-mod and define T ( ) = U(g)⊗U(p) ( ).

We use the functor T to construct some examples of P.I. envelopes of
g. If M is any K[z]-module and λ ∈ P+ we regard L(λ, M) = Lλ ⊗ M
as a U(g0)-module by allowing [g0, g0] (resp. Kz) to act on the first (resp.
second) factor of the tensor product. For a ∈ K, let Oa = K[z]/(z − a) and
set

L(λ) = L(λ, K[z]), L(λ, a) = L(λ,Oa),

V (λ) = T (L(λ)), V (λ, a) = T (L(λ, a)).
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The natural map K[z] −→ Oa induces an epimorphism of U(g)-modules

V (λ) −→ V (λ, a).

The pair λ′ = (λ, a) can be viewed as the element of (h')∗ with λ′|h = λ

and λ(z) = a. The module V (λ, a) is called the Kac module with highest
weight λ′. By [K2, Proposition 2.9] V (λ, a) is a simple U(g)-module if and
only if λ′ = (λ, a) satisfies (λ′ + ρ, α) 6= 0 for all odd positive roots α. Here
ρ = ρ0 − ρ1, where ρ0 (resp. ρ1) is the half-sum of the positive even (resp.
odd) roots. Since V (λ) maps onto any Kac module of the form V (λ, a) we
call V (λ) the universal Kac module with highest weight λ ∈ h∗.

1.7 The enveloping algebra U has a ZZ-grading, U = ⊕n∈ZZU(n) extending the
ZZ-grading on g given by deg g0 = 0, deg g±1 = ±1. Henceforth the adjective
“graded” refers to this grading. We use this grading to construct a useful
localization of U .

Suppose that M = ⊕M(n) is a ZZ-graded U -module which is torsionfree
as a K[z]-module. We can make M into a U −K[z]-bimodule via the rule

mf(z) = f(z − n)m (1)

for m ∈ M(n), f(z) ∈ K[z]. Let F = K(z) and give MF = M ⊗K[z] F the
right F -module obtained by localization. In particular UF becomes a U −F -
bimodule in this way and we can extend the algebra structure on U to UF

by
(u⊗ f1(z))(v ⊗ f2(z)) = uv ⊗ f1(z + n)f2(z)

for u ∈ U, v ∈ U(n) and f1, f2 ∈ F . It is now easy to verify the following.

Lemma. The multiplicative set C = K[z]\{0} is Ore in U and UC ∼= UF

with the above algebra structure. If M is a graded left U-module which is
torsionfree as a K[z]-module, then MC ∼= M ⊗K[z] F as a U −F bimodule via
the map

f(z)−1m −→ m⊗ f(z + n)−1

for m ∈ M(n), f(z) ∈ K[z]. In addition if N is any graded U-submodule of
MC, then N is a UC-submodule if any only if it is a U−F sub-bimodule of MC.

1.8 If V is a vector space over K we write VF for V ⊗F . If A is a K-algebra
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and M is a left A-module, then AF is an F -algebra and MF a AF -module by
extension of scalars.

We apply these remarks to the universal Kac module V (λ) = U(g)⊗U(p)

L(λ). If Λ = ⊕Λn is the exterior algebra on g−1 then as a left U(g0)-module

V (λ) ∼= ⊕Λn ⊗ L(λ).

By definition L(λ) = Lλ ⊗ K[z], and so L(λ) and V (λ) are in an obvious
way right K[z]-modules. Since deg g−1 = −1 the gradings on Λ and U satisfy
Λn ⊆ U(−n). Observe that the K[z]-bimodule structure on V (λ) satisfies
(1) in 1.7.

Note also that V (λ) is torsionfree as a left (and right) K[z]-module. Thus
V (λ)C is a U − F bimodule or equivalently a left UF -module and we have

V (λ)C ∼= (U(g)⊗U(p) L(λ))⊗K[z] F
∼= U(g)⊗U(p) (L(λ)⊗K[z] F )
∼= U(g)F ⊗U(p)F

(L(λ)⊗K[z] F ).

Next we consider the U(p)F -module L(λ)⊗K[z] F . This is annihilated by
g+

1F and so is a U(g0)F -module. In fact it is the finite dimensional simple
module over this algebra whose highest weight λ′ is the unique F -linear map
h′F −→ F such that λ′|h = λ and λ′(z) = z. Thus V (λ)C is a Kac module

over U(g)⊗ F . In fact we have

Proposition.

(a) The module V (λ)C is a simple Kac module with highest weight λ′ over
the algebra U(g)⊗ F .

(b) The module V (λ)C is a simple module over the algebra U(g)C.

Proof. It remains to show simplicity in both cases.

(a) We extend ( , ) to an F -bilinear form ( , )F on (h′)∗F . It suffices to show
that (λ′ + ρ, α)F 6= 0 for all odd positive roots α. Since the highest exterior
power of g+

1 is trivial as a g0-module we have (ρ1, β) = 0 for all even roots
β. Thus h⊥ = Kρ1. If α is an odd root, it follows that (ρ1, α) = ρ1(hα) 6= 0.
Hence hα 6∈ (Kρ1)

⊥ = h, so hα − bz ∈ h for some nonzero b ∈ K. Therefore

(λ′ + ρ, α)F = λ′(hα − bz + bz)F + (ρ, α) = bz + λ(hα − bz) + (ρ, α),
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which is a linear polynomial in z.
(b) Fix an order on ∆+

1 and for I ⊆ ∆+
1 set

eI = Πα∈Ie−α

where the product is taken with respect to this order. Let N be a nonzero
U(g)C-submodule of V (λ)C and suppose

n =
∑
I

eInI

is nonzero with
nI ∈ L(λ)⊗K[z] F for all I.

Choose m minimal such that nI 6= 0 for some subset I with |I| = m. Set
I ′ = ∆+

1 \I. Then
eI′n = ±e∆+

1
nI

is a nonzero homogeneous element of N , so generates a graded submodule.
It follows from Lemma 1.7, that N = V (λ)C.

Corollary. (a) If N is any nonzero U(g)-submodule of V (λ) then N contains
a submodule isomorphic to V (λ).
(b) Pλ = annU(g)V (λ) is a prime ideal of U(g)

Proof. (a) By the Proposition NC = (V (λ))C. Hence (Lλ ⊗ 1) ⊆ NC so
Lλ ⊗ (f) ⊆ N for some nonzero f . The submodule of V (λ) generated by
Lλ ⊗ (f) is isomorphic to T (L(λ, (f))) ∼= V (λ).

(b) This follows since any nonzero submodule of V (λ) has annihilator Pλ,
by part (a).

1.9 Lemma. Identify L(λ) with the U(p)-submodule 1 ⊗ L(λ) of V (λ)
and let J = U(p)g+

1 . Then annV (λ)J = L(λ).

Proof. We use the same notation as in the proof of Proposition 1.8(b).
For 0 ≤ m ≤ |∆+

1 | set

V (m) = ⊕|I|=meIL(λ).

Then V (λ) = ⊕mV (m) and g+
1 V (m) ⊆ V (m − 1). Therefore it suffices

to show that if m > 0 then g+
1 (

∑
|I|=m eIwI) 6= 0 provided the wI ∈ L(λ)
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are not all zero. Now L(λ) = Lλ ⊗ K[z] has a filtration given by setting
deg(Lλ⊗zn) = n. Choose I so that wI has maximum degree in this filtration,
choose α ∈ I and set H = I\{α}. Note that

deg(hαwI) = deg(wI) + 1.

Using the formula
[eα, ab] = [eα, a]b ± a[eα, b]

for homogeneous a, b ∈ U(g) we see that

eαeIwI = ±eHhαwI

plus a sum of terms of smaller degree. The result follows easily from this.

1.10 The next result is an easy consequence of the Artin-Wedderburn theo-
rem.

Lemma. Let U be a K-algebra and L a finite dimensional simple U -module.
Then for any field extension K ′ of K we have

EndU⊗KK′(L⊗K K ′) ∼= K ′.

1.11 Lemma. For any λ ∈ P+ ,

EndU(g)(V (λ)) ∼= K[z].

Proof. By the adjoint isomorphism f ∈ EndU(g)(V (λ)) is determined by

f1 = f |L(λ) ∈ HomU(p)(L(λ), V (λ)).

If J is as in Lemma 1.9, then f1(L(λ)) ⊆ annV (λ)J = L(λ), and hence

f1 ∈ EndU(p)(Lλ ⊗K[z]) = EndU(g0)(Lλ ⊗K[z]) ∼= K[z],

using Lemma 1.10.

1.12 Suppose that k is a semisimple Lie algebra over K and C is a com-
mutative K-algebra. We describe the prime ideals Q of R = U(k) ⊗ C such
that R/Q is P.I. Since C is central in R, q = Q ∩ C is prime in C and by
replacing R by the factor ring R/Rq we can assume that Q∩C = 0. There is
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a one-one correspondence between prime ideals Q of R such that Q ∩C = 0
and prime ideals of U(k)⊗ Fract(C). Thus we may assume that C is a field
extension of K. By the argument on page 2837 of [BM] Q is the annihilator
of a finite dimensional simple module over U(k)⊗ C.

To apply this to our reductive algebra g0 with center Kz set k = [g0, g0],
R = U(g0) and C = K[z]. If q 6= 0 then R/Rq ∼= U(k) and R/Q is artinian.
Thus if R/Q is nonartinian, then q = 0 and Q corresponds to the annihilator
of a finite dimensional simple module over U(k)⊗ Fract(C). This gives the
following result.

Lemma. Suppose Q is a prime ideal of U(g0) such that U(g0)/Q is a
nonartinian P.I. ring. Then for some uniquely determined λ ∈ P+, Q =
annU(g0)L(λ)

Proof of the Main Theorem. Suppose λ ∈ P+ and let n = dimK Lλ.
By Corollary 1.8 Pλ is a prime ideal in U(g). Set Uλ = U(g)/Pλ. Note that
V (λ) is a torsionfree K[z]-module and thus Uλ embeds in (Uλ)C. Since V (λ)

is a U(g)−K[z]-bimodule which is free of rank N = n2dimg−
1 on the right Uλ

embeds in MN(K[z]). This embedding induces an embedding of (Uλ)C into
MN(F ) which is surjective since V (λ)C is a simple (Uλ)C-module of dimension
N over its endomorphism ring F .

Conversely suppose P is a prime ideal of U(g) with U(g)/P a nonartinian
P.I. ring. We apply the results in 1.1 and 1.2 with R = U(p) and S = U(g).
If Q ∈ VP there is a bond from S/P to R/Q, so R/Q is a nonartinian P.I.
ring, by Lemma 1.1. Lemma 1.12 implies that Q = Qλ for some λ ∈ P+.
Since P ∈ XQ, P is minimal over annS(S/SQ) which equals annSV (λ) = Pλ

by [BGR, Satz 10.4]. As Pλ is prime we get P = Pλ. To show that λ is
uniquely determined by P it suffices to show that VPλ

= {Qλ}. However if
Q′ ∈ VPλ

then by Lemma 1.4 Q′ = annRN for some R-submodule N of V (λ)
which is fully faithful as an R/Q′-submodule. Since J = U(p)g+

1 is nilpotent
J ⊆ Q′ so using Lemma 1.9 N ⊆ annV (λ)J = L(λ). However every nonzero
submodule of L(λ) has annihilator Qλ so Q′ = Qλ as desired.
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