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Abstract

Let g be a classical simple Lie superalgebra. We describe the prime
ideals P in the enveloping algebra U(g) such that U(g)/P satisfies a
polynomial identity. If the factor algebra U(g)/P is not artinian, then
it is an order in a matrix algebra over K (z).

Throughout this paper we work over an algebraically closed field K of
characteristic zero. All unadorned tensor products are taken over K. Let g
be a finite dimensional classical simple Lie superalgebra over K. A factor
algebra of the enveloping algebra U(g) satisfying a polynomial identity is
called a P.I. envelope of g. Our aim is to describe all prime P.I. envelopes
of g. If g has a nonartinian prime P.I. envelope it is not hard to show that
the center of g, must be nonzero (Lemma 1.3). Thus by the classification
theorem in [K1], g = sf(m,n) with m >n > 1 or g = osp(2,2n).

It was shown by Bahturin and Montgomery that when g = sf(m,n) with
m > n > 1,g has a nonartinian P.I. envelope. In fact the proof of [BM,
Theorem 4.2] shows that this is true also when g = osp(2, 2n) although these
algebras are omitted from the statement of [BM, Theorems 1.5 and 4.2]. If
g = sl(m,n) with m > n > 1 or g = osp(2,2n), then g, = [go, 8o] ® Kz
where z is central in g,. Furthermore as a gy-module via the adjoint action



g, = g7 ® g7 a direct sum of two simple submodules. If p = g, ® g then
U(g,) is a homomorphic image of U(p) and thus any U(g,)-module can be
regarded as a U(p)-module. Choose a Cartan subalgebra h and a system of
simple roots for [gy, gy]. Let P* denote the corresponding set of dominant
integral weights. If A € Pt let Ly be the finite dimensional simple [g,, go)-
module with highest weight \ and set

V(A) = Ul(g) Qup) (Lx ® K[2]).

Our main result is as follows

Main Theorem. Set Py = annyg)V (\), n = dimg Ly and N = n249m 8
Then Py is a prime ideal of U(g) such that U(g)/Py is a subring of the ma-
triz algebra My (K|z]) with Goldie quotient ring Mn(K(z)). In particular
U(g)/ P is a prime P.1. algebra.

Conversely, if P is a prime ideal in U(g) such that U(g)/P is nonartinian
and satisfies a polynomial identity then P = Py for a unique A € PT.

If C = K[z]\{0} then C is an Ore set of regular elements in U(g). A key
step in the proof that Py is prime is to show that the localized module V()¢
is in a natural way a U(g) — I’ bimodule where F' = K(z), and then a simple
Kac module over U(g) ® F. For the converse we use some results of E.S.
Letzter concerning prime ideals in finite extensions of Noetherian rings.

1.1 Let R and S be prime Noetherian rings. An R — S bimodule M is
a bond from R to S if M is finitely generated and torsionfree both as a left
R-module and as a right S-module.

Lemma. Suppose M is a bond from R to S. Then
(a) R is artinian if and only if S is artinian.
(b) R is a P.I. ring if and only if S is a P.I. ring.

Proof (a) This is [J, Theorem 5.2.9)].
(b) This is Remark (2) after [BS, Prop. 2.5]. We give some details for the
convenience of the reader. Let D = Fract R and E = Fract S. by [BS,

Prop. 2.5] there exists an integer ¢ such that D embeds in the ring of ¢ x ¢
matrices M;(E) and E embeds in M;(D). Thus if S is P.I. then R embeds



in M;(E) which is a central simple algebra by Posner’s Theorem [McR, The-
orem 13.6.5], so R is P.I. by the Amitsur-Levitzki Theorem [McR, Corollary
13.3.5]. Similarly if R is P.I. so is S.

1.2 Until the end of section 1.4 suppose that R C S is an extension of
Noetherian K-algebras of finite Gel’fand-Kirillov dimension. Assume that S
is finitely generated and free as a right R-module. The following definitions
are due to Letzter [L2], [L3].

i) Suppose P is a prime ideal of S and set B = Fract(S/P). Let Vp be
the set of prime ideals of R which are right annihilators of simple B — R
factor bimodules of B.

ii) Suppose (@ is a prime ideal of R and set A = Fract(R/Q). Let Wy be
the set of prime ideals of S which are left annihilators of simple S — A factor
bimodules of S ®p A.

In addition set Jg = ¢ — ann(S/SQ) and

Xg = {P € Spec R|P is minimal over Jg}.

These definitions are related by the following results.

Theorem. (a) If Q € SpecR and P € SpecS then
Q € Vpif and only if P € Wy

Furthermore if this condition holds there is a bond from S/P to R/Q.
(b) Wo C Xg.

Proof. (a) follows from [L2, Lemma 3.2] and [L1, Lemma 1.1}, while (b)
follows from the proof of [L2, Proposition 4.2].

1.3 Lemma. Let g be a classical simple Lie superalgebra such that there
is a prime ideal P in U(g) with U(g)/P a nonartinian P.1. algebra. Then
the center of g, is nonzero.

Proof. We apply the results in the two previous subsections R = U(g,)
and S = U(g). Choose @ € Vp. Then there is a bond from S/P to R/Q by
Theorem 1.2. Hence by Lemma 1.1, R/@ is a nonartinian P.I. algebra. The
result follows from a result of Bahturin, see [BM, page 2837].



1.4 If the equivalent conditions of Theorem 1.2(a) hold we say that P lies
directly over (). Recall that a module over a prime Noetherian ring is fully
faithful if every nonzero submodule is faithful. We require another result of
Letzter [L3, Lemma 2.6 (iv)].

Lemma. Suppose that P lies directly over Q) and that M is a fully faith-
ful S/ P-module. Then there exists an R-submodule N of M such that Q) =
anngN and N is a fully faithful R/Q-module.

1.5 Again suppose that g is classical simple. We often write U for U(g).
The simple artinian factor rings of U correspond to the finite dimensional
simple g-modules and these have been classified [K1, Theorem §].

For the remainder of this paper we assume therefore that P is a prime
ideal of U, such that U/P is a non-artinian P.I. algebra. By Lemma 1.3 this
means that g, has nonzero center.

As noted in the introduction we have g, = [g, go] ® Kz. We can choose
z in such a way that [z, 2] = 4 for all z € gf. Recall that b is a Cartan
subalgebra of [gg, go]- Set ' = b @ Kz, so that b’ is a Cartan subalgebra of
go and g. Fix a non-degenerate invariant bilinear form ( , ) on (h')*. For
a € (§')*, we write g* for the corresponding root space. There is a unique
he € B such that (u, ) = u(he) for all 4 € (§')*. Let AT be the set of roots
of gf". For a € AT, choose e+, such that gi* = Key, and hy = [eq, €_al.

1.6 We construct a functor 7' between categories of left modules:
T :U(gy)-mod — U(g)-mod.

First set p = go® g7 and J = U(p)g{. Then J is a nilpotent ideal of U(p)
with U(p)/J = U(gy). Thus we can regard U(g,)-mod as a subcategory of
U(p)-mod and define T'(_) = U(g) Qup) (_)-

We use the functor T to construct some examples of P.I. envelopes of
g. If M is any K|[z]-module and A € P* we regard L(\, M) = Ly ® M
as a U(gy)-module by allowing [g, go] (resp. Kz) to act on the first (resp.
second) factor of the tensor product. For a € K, let O, = K|[z]/(z — a) and
set

L(/\) = L()‘v K[Z])v L()"a) = L(/\: Oa)a

V(X)) =T(L(N), V(A a) =T(L(\ a)).



The natural map K[z] — O, induces an epimorphism of U(g)-modules
V(A) — V() a).

The pair X' = (A, a) can be viewed as the element of (h')* with )‘/|h =A
and A(z) = a. The module V (A, a) is called the Kac module with highest
weight X'. By [K2, Proposition 2.9] V (A, a) is a simple U(g)-module if and
only if ' = (), a) satisfies (X + p, ) # 0 for all odd positive roots a. Here
p = po — p1, where py (resp. pp) is the half-sum of the positive even (resp.
odd) roots. Since V(A) maps onto any Kac module of the form V(A a) we
call V(\) the universal Kac module with highest weight A € ™.

1.7 The enveloping algebra U has a Z-grading, U = @,czU(n) extending the
Z-grading on g given by deg g, = 0, deggi = £1. Henceforth the adjective
“graded” refers to this grading. We use this grading to construct a useful
localization of U.

Suppose that M = @M (n) is a Z-graded U-module which is torsionfree
as a K|[z]-module. We can make M into a U — K [z]-bimodule via the rule

mf(z) = f(z —n)m (1)

for m € M(n), f(z) € K[z]. Let F = K(z) and give M" = M Qg F the
right F-module obtained by localization. In particular U becomes a U — F-
bimodule in this way and we can extend the algebra structure on U to U¥
by

(u® f1(2))(v @ fa(2)) = uv ® f1(z + n)fa(2)

foru e U, v € U(n) and f1, fo € F. It is now easy to verify the following.

Lemma. The multiplicative set C = K[z]\{0} is Ore in U and Ue = U
with the above algebra structure. If M is a graded left U-module which is
torsionfree as a K[z]-module, then Me = M Q) F as a U — F bimodule via
the map

f)'m—m® f(z+n)"!

for m € M(n), f(z) € K[z]. In addition if N is any graded U-submodule of
Me, then N is a Ug-submodule if any only if it is a U —F sub-bimodule of M.

1.8 If V is a vector space over K we write Vg for V@ F. If A is a K-algebra



and M is a left A-module, then Ap is an F-algebra and Mp a Ap-module by
extension of scalars.

We apply these remarks to the universal Kac module V(A) = U(g) @y p)
L(\). If A = @A™ is the exterior algebra on g; then as a left U(g,)-module

V(N = @A™ L(\).

By definition L(A\) = Ly ® K[z], and so L(A) and V(\) are in an obvious
way right K[z]-modules. Since degg; = —1 the gradings on A and U satisfy
A" C U(—n). Observe that the K|[z]-bimodule structure on V() satisfies
(1) in 1.7.

Note also that V() is torsionfree as a left (and right) K[z]-module. Thus
V(M) is a U — F bimodule or equivalently a left Ug-module and we have

VNe = (U(g) @up) L(N) @k F
= U(g) ®U 1) (L(A) Rk F)
= U(9)r Qup)p (L(A) ®kp) F).

Next we consider the U(p)p-module L(\) ®p.) . This is annihilated by
g7 and so is a U(gy)p-module. In fact it is the finite dimensional simple

module over this algebra whose highest weight )\’ is the unique F-linear map
b — F such that X|h = Xand N(z) = z. Thus V()¢ is a Kac module

over U(g) ® F. In fact we have
Proposition.

(a) The module V()¢ is a simple Kac module with highest weight A" over
the algebra U(g) @ F.

(b) The module V()¢ is a simple module over the algebra U(g)c.

Proof. It remains to show simplicity in both cases.

(a) We extend ( , ) to an F-bilinear form (, )z on (h')%. It suffices to show
that (N + p,a)r # 0 for all odd positive roots a. Since the highest exterior
power of g} is trivial as a g;-module we have (p;,3) = 0 for all even roots
3. Thus h* = Kp;. If a is an odd root, it follows that (p;, a) = p1(hs) # 0.
Hence h, € (Kp1)t =8, so hy — bz € b for some nonzero b € K. Therefore

N+ p,a)p = N(hg —bz+b2)p + (p, ) = bz + Aha — b2) + (p, @),
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which is a linear polynomial in z.
(b) Fix an order on AT and for I C A{ set

er = Haele—a

where the product is taken with respect to this order. Let N be a nonzero
U(g)c-submodule of V()¢ and suppose

n = Zelm
I

1s nonzero with
nr € L(\) @k £ forall 1.

Choose m minimal such that n; # 0 for some subset I with |I| = m. Set
I'= AT\I. Then

eyn = te N
is a nonzero homogeneous element of N, so generates a graded submodule.
It follows from Lemma 1.7, that N = V(\)c.

Corollary. (a) If N is any nonzero U(g)-submodule of V() then N contains
a submodule isomorphic to V().
(b) Py = anny gV ()) is a prime ideal of U(g)

Proof. (a) By the Proposition N = (V(A))e. Hence (L) ® 1) C N¢ so
Ly ® (f) € N for some nonzero f. The submodule of V()) generated by
Ly ® (f) is isomorphic to T(L(X, (f))) = V(A).

(b) This follows since any nonzero submodule of V(X) has annihilator Pj,

by part (a).

1.9 Lemma. Identify L(\) with the U(p)-submodule 1 @ L(A) of V())
and let J = U(p)gy. Then annyy)J = L(A).

Proof. We use the same notation as in the proof of Proposition 1.8(b).
For 0 < m < |Af] set

V(m) = ®rj=merL(N).

Then V(\) = &,,V(m) and g{V(m) C V(m — 1). Therefore it suffices
to show that if m > 0 then gy (37—, esws) # 0 provided the w; € L(\)
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are not all zero. Now L(\) = L, ® K|[z] has a filtration given by setting
deg(Ly®2") = n. Choose I so that w; has maximum degree in this filtration,
choose a € I and set H = I'\{a}. Note that

deg(hqwy) = deg(w;y) + 1.

Using the formula
[eq, ab] = [eq,alb £ aley, D]

for homogeneous a,b € U(g) we see that
eqewy = eghywr
plus a sum of terms of smaller degree. The result follows easily from this.

1.10 The next result is an easy consequence of the Artin-Wedderburn theo-
rem.

Lemma. Let U be a K-algebra and L a finite dimensional simple U-module.
Then for any field extension K’ of K we have

Endye, k(L ®x K') 2 K.
1.11 Lemma. For any A € P |
Endyg)(V(A)) = Kz].
Proof. By the adjoint isomorphism f € Endyg)(V())) is determined by
fi = flopy € Homyy(L(A), V(A)).
If J is as in Lemma 1.9, then fi(L()\)) C anny(n)J = L(A), and hence
fi € Endypy (L ® K[2]) = Endyg,)(Lx ® K[z]) 2 K|[z],

using Lemma 1.10.

1.12 Suppose that € is a semisimple Lie algebra over K and C is a com-
mutative K-algebra. We describe the prime ideals @ of R = U(¢) ® C such
that R/Q is P.I. Since C' is central in R, ¢ = @ N C is prime in C and by
replacing R by the factor ring R/Rq we can assume that Q NC' = 0. There is
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a one-one correspondence between prime ideals ) of R such that Q NC' =0
and prime ideals of U(¢) ® Fract(C). Thus we may assume that C'is a field
extension of K. By the argument on page 2837 of [BM] @ is the annihilator
of a finite dimensional simple module over U(¢) @ C.

To apply this to our reductive algebra g, with center Kz set € = [g,, 8],
R=1U(g,) and C = K|z]. If ¢ # 0 then R/Rq = U(#) and R/ is artinian.
Thus if R/Q is nonartinian, then ¢ = 0 and @ corresponds to the annihilator
of a finite dimensional simple module over U(%) ® Fract(C). This gives the
following result.

Lemma. Suppose @ is a prime ideal of U(g,) such that U(g,)/Q is a
nonartinian P.I. ring. Then for some uniquely determined A € P+, Q =
anny(g,)L(A)

Proof of the Main Theorem. Suppose A € P' and let n = dimg Ly.
By Corollary 1.8 P, is a prime ideal in U(g). Set Uy = U(g)/P». Note that
V(M) is a torsionfree K[z]-module and thus Uy embeds in (Uy)¢. Since V()
is a U(g) — K[z]-bimodule which is free of rank N = n24™m8: on the right U,
embeds in My (K|[z]). This embedding induces an embedding of (U,)¢ into
My (F) which is surjective since V()¢ is a simple (U))c-module of dimension
N over its endomorphism ring F'.

Conversely suppose P is a prime ideal of U(g) with U(g)/P a nonartinian
P.I. ring. We apply the results in 1.1 and 1.2 with R = U(p) and S = U(g).
If @ € Vp there is a bond from S/P to R/Q, so R/Q is a nonartinian P.I.
ring, by Lemma 1.1. Lemma 1.12 implies that Q = @, for some A € P*.
Since P € X, P is minimal over anng(S/S@Q) which equals anngV (\) = Py
by [BGR, Satz 10.4]. As P, is prime we get P = P,. To show that A is
uniquely determined by P it suffices to show that Vp, = {Q,}. However if
Q' € Vp, then by Lemma 1.4 Q" = anngN for some R-submodule N of V'())
which is fully faithful as an R/Q’-submodule. Since J = U(p)g{ is nilpotent
J C @' so using Lemma 1.9 N C annynJ = L(\). However every nonzero
submodule of L(A) has annihilator @y so Q' = @, as desired.
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