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Abstract

We show that under certain conditions a finite dimensional graded
pointed Hopf algebra is an image of an algebra twist of a quantized
enveloping algebra Uq(b) when q is a root of unity. In addition we
obtain a classification of Hopf algebras H such that G(H) has odd
prime order p > 7 and grH is of Cartan type.

Throughout this paper K will denote an algebraically closed base field of
characteristic zero. Recently there has been considerable interest in the
structure of finite dimensional pointed Hopf algebras over K. For exam-
ple if p is prime all Hopf algebras of dimension p are group algebras. Also
any pointed Hopf algebra of dimension p2 is either a group algebra or a Taft
algebra, while those of dimension p3 have been classified [AS1], [CD], [SvO],
[Z]. In addition there are infinitely many isomorphism classes of pointed Hopf
algebras of dimension p4, [AS1], [BDG], see also [G].

If H is pointed the coradical filtration {Hn} on H is a Hopf algebra fil-
tration and the associated graded algebra grH = ⊕n≥0Hn/Hn−1 is a Hopf
algebra, see [M1], also [M2,Lemma 5.5.1]. In [AS2] pointed Hopf algebras H
such that H ∼= grH are studied using methods from Lie theory and quan-
tum groups. These Hopf algebras are crossed products H = R ∗ G where
G = G(H) is the group of grouplike elements in H, and R is an analog of
the infinitesimal part of H in the classical theory of cocommutative Hopf
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algebras. Another key ingredient in understanding the structure of H is a
matrix b known as the braiding matrix which is determined by the action of
G on R.

Our first task is to understand finite dimensional graded pointed Hopf
algebras in terms of something more familiar. In [AS2] this is done under
certain conditions by twisting the coalgebra structure of a Frobenius-Lusztig
kernel. We show that under similar conditions a finite dimensional graded
pointed Hopf algebra is an image of an algebra twist of a quantized enveloping
algebra Uq(b) when q is a root of unity. This approach seems to have certain
technical advantages, for example we don’t use quantum antisymmetrizers.

We also consider the problem of determining the finite dimensional pointed
Hopf algebras H for which grH is known. This is known as the lifting prob-
lem. In particular we show that if G(H) has prime order p > 7 and grH is
of Cartan type, then H ∼= grH. We also obtain some results for low primes;
in particular we construct some apparently new Hopf algebras H with G(H)
of order 3 and grH of type A2 × A2. Since the first version of this paper
was written, Andruskiewitsch and Schneider have obtained further results on
the structure of pointed Hopf algebras H such that G(H) is an elementary
abelian p−group with p > 17, [AS4].

1. POINTED HOPF ALGEBRAS AS IMAGES OF QUANTIZED
ENVELOPING ALGEBRAS.

1.1 Let H = ⊕n≥oH(n) be a graded pointed Hopf algebra with coradical
KG. We say that H is coradically graded if the coradical filtration of H is
given by Hn = ⊕m≤nH(m), [CM2].

If H is coradically graded, the projection π : H −→ H(0) is a Hopf
algebra map. If ∆ is the coproduct on H then ρ = (1 ⊗ π)∆ makes H into
a left H(0) - Hopf module. Since ρ is an algebra maps it follows that the
coinvariants R = {h ∈ H|ρ(h) = h ⊗ 1} form a subalgebra of H which is
invariant under conjugation by elements of G. It follows from [M2, Theorem
1.9.4] that H = R ∗G is a crossed product of R by G.

If R(n) = H(n)∩R then R = ⊕n≥0R(n) is a graded algebra with R(0) =
K by [AS1, Lemma 2.1].

If x ∈ H and ∆x = g ⊗ x + x ⊗ h for grouplike elements g, h ∈ G we
say x is (h, g)-primitive. Since G is abelian, G acts on the space Pg(H) of
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(1, g)-primitives by conjugation. For χ ∈ G∗ = Hom(G,K∗) we set

P χ
g = P χ

g (H) = {x ∈ Pg(H)|hxh−1 = χ(h)x for all h ∈ G}.

Note that if G is finite then χ(h) is a root of unity for all χ ∈ G∗ and h ∈ G.
It is frequently useful to make the following assumptions.

(1) R(1) has a basis x1, . . . , xn such that xi ∈ P χi
gi

for some gi ∈ G, χi ∈ G∗.

(2) H is generated as an algebra by G and R(1).

(3) G =< g1, . . . , gn > is abelian.

Note that if R(1) is finite dimensional and (3) holds then (1) also holds.
The algebra R is an Hopf algebra in the category KG

KGYD of left Yetter-
Drinfeld modules (also known as a braided bialgebra) over KG and H can be
reconstructed by bosonization as a biproduct H = R#KG, see [Mj],[R]. In
[AS2] the braided bialgebra R is christened a Nichols algebra since algebras
of this form were first studied by Nichols, [N]. By [AG, Prop. 3.2.12] R is
determined by the subspace V regarded as an object in KG

KGYD, and as in
[AS2] we write R = B(V ) in this situation. The structure of V as a Yetter-
Drinfeld module is given as follows: V is a left KG-comodule via the map
xi −→ gi ⊗ xi, and a left KG-module via g.xj = χj(g)xj. It is easily seen
that the Yetter-Drinfeld compatability condition ([M2, 10.6.11]) holds. We
set bij = χj(gi) and call the matrix b = (bij) the braiding of H and dim R(1)
the rank of H.

As we shall see the relations in R depend largely on the matrix b and are
independent of the elements χj and gi. Thus we also call an n × n matrix
b = (bij) a braiding of rank n if all the entries bij are nonzero.

Lemma. If b is the braiding matrix of a finite dimensional Hopf algebra,
then bii 6= 1 for all i.

Proof. See [AS1, Lemma 3.1] or [N, page 1538].

1.2 Following [AS2] we say that a braiding matrix b = (bij) is of Cartan
type if bii 6= 1 and there exists aij ∈ ZZ such that

bijbji = b
aij

ii (1)
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where aii = 2 for all i. If bii is a root of unity we assume that aij is the
unique integer such that −ord(bii) < aij ≤ 0. With this choice of the aij we
say that b is of Cartan type (aij).

If b is a braiding of Cartan type (aij), we say that b is admissible if bij is
a root of unity of odd order and aij is either zero or relatively prime to the
order of bij for all i, j. Observe that if (aij) is the Cartan matrix of a simple
Lie algebra g then this condition simply means that the order of each bij is
odd and, if g is of type G2 not divisible by 3.

Also we say that b is a braiding of FL-type (aij) if there exist positive
integers d1, . . . , dn such that for all i, j

diaij = djaji (2)

and
there exists q ∈ K∗ such that bij = qdiaij (3)

Finally we say that a braiding matrix b = (bij) has exponent e if e is the
least positive integer such that beij = 1 for all i, j.

1.3 Let L be a free abelian group with basis e1, . . . , en. If H is an L-graded
Hopf algebra and p : L×L→ K∗ an antisymmetric bicharacter, we obtain a
new Hopf algebra by “twisting” H by p as follows. Let H ′ be an isomorphic
copy of H as a coalgebra with canonical isomorphism h → h′. The new
algebra structure on H ′ is defined by

a′.b′ = p(α, β)(ab)′

for a ∈ Hα, b ∈ Hβ. By [HLT, Theorem 2.1] H ′ is a Hopf algebra.
Suppose in addition thatH = ⊕H(n) is a coradically graded Hopf algebra

such that assumptions (1)−(3) of 1.1 hold, and let b = (bij) be the braiding of
H. Assume also that H is an L-graded Hopf algebra with deg xi = deg gi =
ei. Suppose that p : L × L → K∗ is an antisymmetric bicharacter with
p(ei, ej) = pij for i < j. A short calculation shows that in the twisted
algebra H ′ we have

gixjg
−1
i = bijp

2
ijxj.

Thus the braiding b′ in H ′ satisfies

b′ij = bijp
2
ij.
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Henceforth we denote the twisted Hopf algebra H ′ by H(p).
Motivated by the above calculation we say that two braidings b,b′ of

rank n are twist equivalent if there exists pij ∈ K∗ for 1 ≤ i, j ≤ n such that

pijpji = 1 and b′ij = bijp
2
ij

for all i, j.

Obviously any braiding of FL-type is a braiding of Cartan type. Conversely
we have the following result.

Lemma. If (aij) be a symmetrizable Cartan matrix and b an admissible
braiding of Cartan type (aij), then b is twist equivalent to a braiding of
FL-type.

Proof. There is a root of unity q of odd order and integers eij such that
bij = qeij for all i, j. Thus q has a unique fourth root and we set pij =
q(eji−eij)/4. Then b′ij = bijp

2
ij = q(eij+eji)/2 = b′ji for all i, j. Therefore the

result follows from [AS2, Lemma 4.3].

1.4. Let (aij) be a generalized Cartan matrix and suppose that there ex-
ist relatively prime positive integers di such that diaij = djaji for all i, j.

Define [a] = (va − v−a)/(v − v−1), [a]! = Πa
i=1[i] and

[
a
i

]
= [a]!/[i]![a − i]!.

The result of substituting q for v in

[
a
i

]
is denoted

[
a
i

]
q

. Let vi = vdi .

We define the quantized enveloping algebra U = Uv(b) to be the IQ(v)-algebra
with generators K±1

1 , . . . , K±1
n and E1, . . . , En, subject to the relations

KiK
−1
i = K−1

i Ki = 1 (1)

KjEiK
−1
j = vdiaijEi (2)

1−aij∑
r=0

(−1)r
[

1− aij
r

]
vi

E
1−aij−r
i EjE

r
i = 0. (3)

Then U is a Hopf algebra whose coproduct satisfies

∆K±1
i = K±1

i ⊗K±1
i
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∆Ei = Ki ⊗ Ei + Ei ⊗ 1.

Note that U is a graded Hopf algebra if we set degKi = 0 and degEi = 1
for all i. It follows from [CM2, Theorem B] that U is coradically graded.
Let Γ =< K1, . . . , Kn > and define ψj ∈ Γ∗ by ψj(Ki) = vdiaij . If R is
the subalgebra of U generated by E1, . . . , En then U = R ∗ Γ as in 1.1 and
Ei ∈ Pψi

Ki
for 1 ≤ i ≤ n.

As in [J, 4.3] it is useful to consider also the Hopf algebra Ũ over IQ(v)
with generators K±1

1 , . . . , K±1
n , E1, . . . , En satisfying only relations (1) and

(2) above.
Let A = IQ[v, v−1]. We define a “nonrestricted A-form” of U (c.f. [CP,

9.2]). This is the A-subalgebra U of U generated by the elements Ei, K
±1
i ,

and
[Ki : 0] = (Ki −K−1

i )/(vi − v−1
i ).

The A-subalgebra Ũ of Ũ is defined similarly. The defining relations for U
are the same as those for U except that we have the additional relations

Ki −K−1
i = (vi − v−1

i )[Ki : 0]

in U . Note that we can regard U and Ũ as L-graded Hopf algebras (L = ZZn)
by setting degKi = degEi = ei. If p is an antisymmetric bicharacter on L,
then U (p) denotes the twisted algebra as in 1.3. Finally if q ∈ K, we set
U (p)
q = U (p) ⊗IQ[v±1] K where K is a IQ[v±1]-algebra with v acting as q. The

Hopf algebras Ũ (p) and Ũ (p)
q are defined analogously.

1.5 Recall that if H is a Hopf algebra with antipode S, the adjoint action is
defined by

(ada)(b) =
∑

a1bS(a2).

The next result is a key ingredient in our work. In the case of quantized
enveloping algebras it says that the rather complex Serre relations of 1.4 (3)
follow from the relatively simple relations in 1.4 (2) together with a mild
assumption on the skew primitives. This might seem rather remarkable, al-
though a similar situation obtains for Kac-Moody algebras, see [Kac,3.3].

Lemma. If xi ∈ P χi
gi

(H)(i = 1, 2) and r is a positive integer such that

χ2(g1)χ1(g2)χ1(g1)
r−1 = 1
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then (adx1)
r(x2) is (1, gr1g2)-primitive.

Proof. A result similar to this is proved in [AS2, Lemma A.1.] for a braided
adjoint action. The result in [AS2] translates into the Lemma after bosoniza-
tion. Set bij = χj(gi). Because of the importance of the result we indicate
another proof in the case where b is an admissible rank 2 braiding of Car-
tan type (aij) (this is the only case that we shall need). By specializa-

tion it suffices to prove the result in the case where H = Ũ as in 1.4 and
xi = Ei, gi = Ki and χi = ψi for i = 1,2. If b is of FL-type this follows
from [J, Lemma 4.10]. (Note that it is assumed in [J, Chapter 4] that (aij)
has finite type, but this is not necessary for the proof of [J, Lemma 4.10]).
In general since b is twist equivalent to a braiding of FL-type, the result
follows from [CM1, Lemma 3.2].

1.6 Theorem. Let H be a finite dimensional coradically graded pointed
Hopf algebra with braiding b. Assume that b is admissible of Cartan type
(aij) and that H satisfies (1)-(3) of Section 1.1. Let U be the A-form of Uv(b)
described in 1.4. Then there is a surjective map of Hopf algebras U (p)

q −→ H

for some twist U (p)
q of Uq, and some q ∈ K.

Proof. By Lemma 1.3 and its proof there exist roots of unity pij such that
the braiding b′ given by b′ij = bijp

−2
ij is of FL-type. Hence there exists a

root of unity q such that pij ∈ (q) and b′ij = qdiaij for all i, j. Let L be a
free abelian group with basis e1, . . . , en and define p : L × L → IQ[v±1] by
p(ei, ej) = veij , where pij = qeij and 0 ≤ eij < ord(q).

By our assumptions, H is generated by G =< g1, . . . , gn > and xi ∈
P χi
gi

(H), 1 ≤ i ≤ n. We claim there is a surjective algebra map θ : Ũ (p) −→ H
sending Ki to gi and Ei to xi. Clearly θ preserves relation (1) in 1.4. Since
the braiding in Ũ (p)

q satisfies

ψj(Ki) = qdiaij+2eij

and the braiding in H satisfies bij = b′ijp
2
ij = qdiaij+2eij , it follows that the

twisted version of relation (2) in 1.4 is preserved by θ and the claim follows.
The relation (3) in 1.4 can be written in the form (adEi)

1−aij(Ej) = 0 and by
[CM1, Lemma 3.2] the same relation holds in U (p)

q . Since χj(gi)χi(gj)χi(gi)
−aij

= bijbjib
−aij

ii = 1 we have (adxi)
1−aij(xj) = 0 in H since H is graded so θ
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descends to an algebra map U (p)
q −→ H.

To see that θ is a map of bialgebras note that the set

{a ∈ U (p)
q |∆θ(a) = (θ ⊗ θ)∆(a)}

is a subalgebra of U (p)
p which contains the generators K±1

i and Ei. Similarly
θ is a map of Hopf algebras.

1.7. We describe the kernel of the Hopf algebra map in the previous the-
orem. Let Φ+ be the set of positive roots for the semisimple Lie algebra
associated to a Cartan matrix (aij) of finite type. Using a reduced expres-
sion for the longest element in the Weyl group and Lusztig’s braid group
action we can construct root vectors Eα ∈ Uq for α ∈ Φ+. Suitably ordered
monomials in the Eα form a PBW basis for the subalgebra U+

q of Uq gener-
ated by E1, . . . , En, see [L] or [J, Theorem 8.24]. The same monomials form
a basis for the twisted subalgebra (U+

q )(p) of U (p)
q .

Proposition. Suppose that H is a finite dimensional coradically graded
pointed Hopf algebra of finite and indecomposable type A = (aij) such that
G(H) ∼= (ZZ/N)s for some odd N with N 6= 3 if A has type G2. Let
θ : U (p)

q −→ H be the surjective map of Hopf algebras described in The-
orem 1.6 and L = Kerθ|Γ. Then Kerθ is the ideal generated by the elements
g − 1, g ∈ L and EN

α , α ∈ Φ+.
Proof. This follows from [AS4, Theorem 4.2].

1.8. We illustrate Theorem 1.6 in case where H = R ∗G is a graded Hopf al-
gebra with G = (g) a group of prime order p, dimR(1) = 2 and b a braiding
of finite Cartan type (aij). These possibilities are described in [AS 2, Section
5]. Let d ∈ {1, 2, 3} and let p be an odd prime (p > 3 if d = 3). Suppose
that q is a primitive pth root of unity in K. Then q has a unique 2dth root
in K.
Define

A =

(
2 −1

−d 2

)
, D =

(
d 0
0 1

)
Then DA is symmetric and any twist of the braiding b′ for Uv(b) has the
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form (
v2d va−d

v−a−d v2

)
.

Now specialize v to q1/2 d and set b = a/2d − 1/2, c = −a/2d − 1/2. This
means that b + c + 1 ≡ 0 (mod p). Also the braiding matrix of the twisted
specialization U (p)

q has the form(
q qb

qc q1/d

)

Now consider a homomorphism from U (p)
q to H. We can assume that K1

maps to g and K2 to gc. Thus such a map exists if and only if dbc ≡ 1 mod p
or equivalently db(b + 1) ≡ −1 mod p. The last congruence imposes some
conditions on p which can be found using quadratic reciprocity, see [AS2,
Section 5].
By [AS2, Theorem 1.3] the number of isomorphism types of Nichols algebras
with coradical of prime dimension p is equal to (p−1) for type A2 and 2(p−1)
for type B2 and G2. The factor p− 1 comes from the choice of a pth root of
unity q. With q fixed the two roots of the congruence db(b+1)+1 ≡ 0 mod p
give rise to 2 nonisomorphic Hopf algebras of types B2 or G2. There is a
unique Hopf algebra of type A2 because of the diagram automorphism in
this case.

2. THE LIFTING PROBLEM.
2.1. Let H be a pointed Hopf algebra with coradical filtration {Hn}, and
H0 = KG. Then the graded Hopf algebra grH = ⊕n≥0Hn/Hn−1 is corad-
ically graded. Assuming the structure of grH is known we investigate the
possibilities for H.

We assume that G is abelian and that grH = R ∗ G as before. By [M2,
5.4.1], we can find skew primitive elements y1, . . . , yn in H1 such that the
images xi of these elements in grH form a basis for R(1). By considering
the action of G by conjugation we can assume further that yi ∈ P χi

gi
(H) for

suitable gi, χi. As before we set bij = χj(gi).

Lemma. Suppose that yi ∈ P χi
gi

(H) for i = 1, 2, and that r is a positive
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integer such that
χ2(g1)χ1(g2)χ1(g1)

r−1 = 1. (1)

If (ady1)
r(y2) = a(gr1g2 − 1) with a 6= 0 then χ2 = χ−r1 and χ1(g1) = χ1(g2)

Proof. If k ∈ G then k commutes with (ady1)
r(y2) since G is abelian and

a 6= 0. This forces (χr1χ2)(k) = 1. In particular (χr−1
1 χ2)(g1) = χ−1

1 (g1) and
then (1) implies that χ1(g1) = χ1(g2).

Corollary. With the hypothesis of the Lemma suppose that the braiding
b in grH has rank 2 and finite Cartan type A = (aij) as in 2.2. Assume that
H is finite dimensional and that the exponent of G is an odd prime p which
is different from 3 if d = 3. Then either

1) b has exponent dividing 2d+ 1
or

2) (ad y1)
2(y2) = (ad y2)

d+1(y1) = 0.

Proof. By Lemma 1.5 z1 = (ady1)
2(y2) is (1, g2

1g2)-primitive and z2 =
(ady2)

d+1(y1) is (1, g1g
d+1
2 )-primitive. We show first that for g = g1g

d+1
2

all (1, g)-primitives are trivial. There are two cases to consider as follows.
Note that g1 6= 1 6= g2.

1) If g1g
d+1
2 = g1 then p|d + 1. The only possibility is d + 1 = p = 3,

but then the congruence 2b2 + 2b + 1 ≡ 0 mod 3 from section 2.2 has no
solution.

2) If g1g
d+1
2 = g2 then for j = 1, 2

b1j = χj(g1) = χj(g2)
−d = b−d2j .

Thus
b−d22 b21 = b12b21 = ba21

22 = b−d22 .

Hence b21 = 1 and b11 = b−d21 = 1. This is impossible by Lemma 1.1. Similarly
all (1, g2

1g2)-primitives are trivial.
Now suppose z1 = a(g2

1g2−1) with a ∈ K, a 6= 0. By Lemma 2.1 χ2 = χ−2
1

and χ1(g1) = χ1(g2). Set q = b11 = b21. Then for j = 1, 2.

bj2 = χ2(gj) = q−2,
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and b12b21 = ba21
22 gives q−1 = q2d.

Similarly if z2 = b(g1g
d+1
2 − 1) with b 6= 0 we have χ1 = χ

−(d+1)
2 and

χ2(g1) = χ2(g2). Then if q = b12 = b22 we have

bj1 = χ1(gj) = b
−(d+1)
j2 = q−(d+1)

and b12b21 = ba12
11 gives q−d = qd+1 and hence the result.

2.2. We apply our results to pointed Hopf algebras H such that G = G(H)
has odd prime order p and grH is a Nichols algebra of finite Cartan type.
We first discuss the indecomposable case.

Theorem. Let H be a finite dimensional pointed Hopf algebra such that
G(H) = (g) has odd prime order p and grH is of finite indecomposable Car-
tan type. Assume that
1) If p = 3 or 7 then grH is not of type G2

2) If p = 5 then grH is not of type B2.
Then H ∼= grH.

Proof. By [AS2,Section 5], grH has type A1, A2, B2 or G2. For type A1

the only possibility is the Taft algebra which has no nongraded analog. We
assume grH has rank 2 and that the Cartan matrix A is as described in
Section 1.8. In particular, grH has generators g, x1, x2 satisfying

(adx1)
2(x2) = (adx2)

d+1(x1) = 0.

By [Mo, Theorem 5.4.1] we can choose yi ∈ P χi
gi

(i = 1, 2) such that the
image of yi in grH is xi. If d 6= 1 or p 6= 3, Corollary 2.1 implies

(ady1)
2(y2) = (ady2)

d+1(y1) = 0. (1)

If d = 1 and p = 3 we can assume

g1 = g, g2 = gb, χ1 = χ, χ2 = χc

where χ(g) = q is a primitive cube root of unity. From section 1.8 we have

b+ c+ 1 ≡ b(b+ 1) ≡ 0 mod 3.
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The only solution is b = c = 1. Then Lemma 1.5 implies that (1) holds in
this case also.

To see this we modify the proof of [AS4, Lemma 6.9]. Let U (p)
q be the

twisted quantized enveloping algebra used in the proof of Theorem 1.6. By
the choice of the twist p and (1) there is a surjective Hopf algebra map
φ : U (p)

q −→ H such that φ(Ki) = gi and φ(Ei) = yi. Set yα = φ(Eα). We
claim that ypα = 0. To see this we modify the proof of [AS4, Lemma 6.9].
By [DCP, Section 19] the elements Ep

α, K
±p
i generate a Hopf subalgebra L of

U (p)
q . By [Mo, Cor. 5.3.5], φ(L) is a finite dimensional pointed Hopf algebra

with trivial coradical. Thus φ(L) = 0 and ypα = 0.

2.3. We next extend Theorem 2.2 to the case where the Cartan matrix (aij)
is decomposable. By [AS2, Section 5] the only new root systems that arise
are subsystems of A2 × A2.

We construct some examples of pointed Hopf algebras H such that grH
has Cartan type A2 × A2. Let q be a primitive cube root of unity and let
K < x1, x2 > be the free algebra on x1, x2. Consider the crossed product
B̃ = K < x1, x2 > ∗(g) where g has order 3 and gxig

−1 = qxi for i = 1, 2.
Now let I be the ideal of B̃ generated by the elements

x3
i i = 1, 2

(x1x2 − qx2x1)
3

x2
ixj + xixjxi + xjx

2
i i 6= j.

Similarly let C̃ = K < y1, y2 > ∗(χ) where χ has order 3 and χyiχ
−1 =

q−1yi for i = 1, 2. Let J be the ideal of C̃ generated by the elements

y3
i i = 1, 2

(y2y1 − qy1y2)
3

y2
i yj + yiyjyi + yjy

2
i i 6= j.

Set B = B̃/I and C = C̃/J. We denote the images of elements of B̃, C̃ in the
factor algebras by the same symbol. We make B,C, B̃, C̃ into Hopf algebras
via the coproducts

∆g = g ⊗ g, ∆χ = χ⊗ χ

∆xi = g ⊗ xi + xi ⊗ 1
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∆yi = 1⊗ yi + yi ⊗ χ−1.

Thus B,C are coradically graded pointed Hopf algebras of type A2 and
dimB = dimC = 34. It is easy to check that there is a Hopf algebra iso-
morphism ψ : B̃ −→ C̃opp defined by ψ(g) = χ and ψ(xi) = yiχ. Note that
ψ(I) = J.

Lemma. Given a 2×2 matrix Λ = (λij) there are unique linear maps δi ∈ C̃∗

such that

(1) δi(ab) = ε(a)δi(b) + δi(a)γ(b) for all a, b ∈ C̃

(2) δi(yj) = λij.

Furthermore δi(J) = 0.

Proof. This is similar to [AS4, Lemma 5.19 (b)]. It suffices to show that
there are algebra maps Ti : C −→M2(K) satisfying

Ti(g) =

(
1 0
0 q

)
, Ti(xj) =

(
0 λij
0 0

)
.

Then Ti will have the form

Ti(c) =

(
ε(c) δi(c)

0 γ(c)

)
.

We leave the details to the reader.

Now it is easy to see that there is an algebra map φΛ : B̃ −→ C̃∗ defined by

φΛ(g) = γ, φΛ(xi) = δi, i = 1, 2

It follows that there is a pairing of Hopf algebras ( , )Λ : C̃opp × B̃ → K
defined by (c, b)Λ = φΛ(b)(c) for all b ∈ B̃, c ∈ C̃. The pairing is determined
by the rules

(yj, xi)Λ = λij i, j = 1, 2
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(yi, g)Λ = (χ, xi)Λ = 0

(χ, g)Λ = q.

Let Λtr be the transpose of Λ. Then

(c, b)Λ = (ψ(b), ψ−1(c))Λtr

for all b ∈ B̃, c ∈ C̃. Since δi(J) = 0 it follows that

(J, B̃)Λ = (C̃, I)Λ = 0.

Thus ( , )Λ induces a pairing of Hopf algebras ( , ) : Copp ×B → K.

As in [HLT, Section 2] we can form the Drinfeld double D(B,C) of the
pair (B,C). As a coalgebra D(B,C) = C ⊗ B. The algebra structure is
determined by the requirements that 1 ⊗ B and C ⊗ 1 are subalgebras of
D(B,C) and that

b⊗ c = (c1, Sb1)(c3, b3)c2 ⊗ b2.

Here we use the abbreviated summation notation ∆b = b1 ⊗ b2. This easily
gives

χxi = qxiχ, yig = qgyi

xiyj − yjxi = λij(g − χ−1)

for i, j = 1, 2. It follows that gχ−1 is a central grouplike in D(B,C). We
denote the Hopf algebra obtained from D(B,C) by factoring the ideal gen-
erated by gχ−1 − 1 by H(q,Λ). Finally let Λ1 be the identity matrix and Λ0

the matrix Λ0 =

(
1 0
0 0

)
and set H(q, ε) = H(q,Λε).

Theorem. Let H be a finite dimensional pointed Hopf algebra such that
G(H) is cyclic of prime order p and grH has Cartan type A2 × A2. Then
either H ∼= grH or H ∼= H(q, ε) for some primitive cube root q and ε = 0, 1.
Also

H(q, ε) ∼= H(q′, ε′)

if and only if q = q′ and ε = ε′.

Proof. By [AS2, Theorem 1.3] graded pointed Hopf algebras of type A2×A2
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and coradical of prime dimension p exist only if p = 3. Furthermore when
p = 3 there are 4 isomorphism classes of such algebras. They are denoted
R(q, e)#KG for e = 1, 2 and q a primitive cube root of 1 in [AS2, Section 6].
Suppose now that H is a pointed Hopf algebra such that

grH ∼= R(q, e)#KG.

By [AS2, (5.7)] we can assume there exist xi ∈ P χi
gi

(H), (1 ≤ i ≤ 4) such
that the images of x1, . . . , x4 in grH from a basis for R(1) and

g1 = g2 = g , g3 = g4 = ge,

χ1 = χ2 = χ , χ3 = χ4 = χ−e

where χ(g) = q.
Set yi−2 = xig

−1
i for i = 3, 4. The subalgebra B generated by g, x1, x2 is

a Hopf algebra such that G(B) has order 3 and grH is of type A2. It follows
from Theorem 2.2 that H ∼= grH and hence

(adx1)
2(x2) = (adx2

2)(x1) = x3
1 = x3

2 = (x1x2 − qx2x1)
3 = 0.

Similarly

(ady1)
2(y2) = (ady2)

2(y1) = y3
1 = y3

2 = (y2y1 − qy1y2)
3 = 0.

Also since χ1(g3)χ3(g1) = 1 it follows from Lemma 1.5 with r = 1 or by a
direct calculation that [xj, yk] is (g, g−1)-primitive for all j, k. If [xj, yk] = 0
for all j, k then H ∼= grH. Otherwise e = 1 by Lemma 2.1 and we have

[xj, yk] = λjk(g − g−1)

for some 2 × 2 matrix Λ. Now suppose P,Q ∈ GL2(K) and define x′i =∑
j pijxj, y

′
` =

∑
k qk`yk. Then

[x′i, y
′
`] = λ′i`(g − g−1)

where Λ′ = PΛQ. Since Λ 6= 0 we can choose P,Q such that Λ′ = Λε for
ε = 0 or 1. Then replacing x′i by xi and y′i by yi we have the first claim in
the Theorem.

If φ : H = H(q, ε) → H ′ = H(q′, ε′) is an isomorphism then q = q′ by
passing to the graded algebras and using [AS2, Lemma 6.5]. Denote the
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generators of H(q′, ε′) by g, x′1, x
′
2, y

′
1, y

′
2 Since φ(xi) is a nontrivial (1, φ(g))-

primitive in H ′, we have φ(g) = g and φ(xi) ∈ span{g − 1, x′1, x
′
2, y

′
1, y

′
2}.

Applying φ to the equation gxig
−1 = qxi we see that φ maps span{x1, x2}

onto span{x1, x2}. Similarly φ maps span{y1, y2} onto span{y′1, y′2}. The
result follows easily.

2.4 Now we discuss decomposable case.

Theorem. Let H be a finite dimensional pointed Hopf algebra such that
G(H) = (g) has odd prime order p and grH is of finite decomposable Cartan
type. Then either H ∼= grH or one of the following holds

(1) H is the Frobenius-Lusztig kernels uq(sl(2)) where q is a pth root of
unity.

(2) p = 3 and H is one of the Hopf algebras described H(q, ε) in Theorem
2.2.

(3) p = 3 and H is the subalgebra of H(q, 1) generated by x1, x2, y1 and g.

Proof. By [AS2, Proposition 5,1] gr(H) has type Cartan type A1×A1, A2×
A1 or A2 × A2 and in the last two cases p = 3. For type A1 × A1 the only
non-graded examples are the algebras uq(sl(2)) by for example [AS1, Section
1]. For type A2 × A2 the result follows from Theorem 2.2. The result for
type A2 × A1 is easily deduced from the proof of Theorem 2.2 and we leave
the details to the reader.
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