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Abstract. We study finiteness conditions on essential extensions of simple

modules over the quantum plane, the quantized Weyl algebra and Noetherian

down-up algebras. The results achieved improve the ones obtained in [5] for

down-up algebras.

1. Introduction

In this paper we consider the following property of a Noetherian ring A:

(�) Injective hulls of simple left A-modules are locally Artinian.

Property (�) has an interesting history. Indeed it was shown by A.V. Jategaonkar
[12] and J.E. Roseblade [20] that if G is a polycylic-by-finite group, then the group
ring RG has property (�) whenever R is the ring of integers, or is a field that is
algebraic over a finite field see also [18] Section 12.2. This result is the key step
in the positive solution of a problem of P. Hall, [9]. P. Hall asked whether every
finitely generated abelian-by-(polycylic-by-finite) group is residually finite. In [20]
a module M is called monolithic if it has a unique minimal submodule. Note that
A has property (�) if and only if every finitely generated monolithic A-module is
Artinian. We have revived the older, shorter terminology in the title of this paper.
A.V. Jategaonkar showed in [11] that a fully bounded Noetherian ring R satisfies
property (�), and used this fact to show that Jacobson’s conjecture holds for R.

Returning to the group ring situation, suppose G is a polycylic-by-finite group,
K is a field, A = KG and E is the injective hull of a finite-dimensional A-module.
It was shown by K.A. Brown, [3] that if K has characteristic zero, then E is locally
finite dimensional, and this fact and some Hopf algebra theory was used by S.
Donkin to show that E is in fact Artinian [8]. Note that injective comodules over
coalgebras are always locally finite dimensional. Similar results were obtained when
K has positive characteristic by the second author [15] using methods that more
closely follow the argument used for commutative rings in [21].
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The first examples of Noetherian rings for which property (�) does not hold were
given by the second author for group algebras and enveloping algebras, see [16], [17]
and [6, Example 7.15]. On the other hand R.P. Dahlberg [7] showed that injective
hulls of simple modules over U(sl2) are locally Artinian.

Interest in property (�) was renewed recently by a question of P.F. Smith. Smith
asked whether Noetherian down-up algebras have property (�). Given a field K and
α, β, γ arbitrary elements of K, the associative algebra A = A(α, β, γ) over K with
generators d, u and defining relations

(R1) d2u = αdud+ βud2 + γd

(R2) du2 = αudu+ βu2d+ γu

is called a down-up algebra. Down-up algebras were introduced by G. Benkart and
T. Roby [1]. In [13] it is shown that A(α, β, γ) is Noetherian if and only if β 6= 0.
Some examples of down-up algebras with property (�) were given in [5]. In this
paper we study Noetherian down-up algebras having property (�), and in particular
we exhibit the first examples that do not have this property. These examples are
constructed using the fact that when γ = 0, (resp. γ = 1) the quantum plane,
(resp. the quantized Weyl algebra) is an image of A.

An interesting class of down-up algebras arises in the following way. For η 6= 0,
let Aη be the algebra with generators h, e, f and relations

he− eh = e,

hf − fh = −f,

ef − ηfe = h.

Then Aη is isomorphic to a down-up algebra A(1 + η,−η, 1) and conversely any
down-up algebra A(α, β, γ) with β 6= 0 6= γ and α + β = 1 has the above form.
Note that A1 ' U(sl(2)) and A−1 ' U(osp(1, 2)). When η is not a root of unity,
we have been unable to determine whether property (�) holds. However we resolve
the issue in all other cases. Our main result is as follows.

Theorem 1.1. Suppose that A = A(α, β, γ) is a Noetherian down-up algebra, and
assume that if α + β = 1, and γ 6= 0, then β is a root of unity. Then any finitely
generated monolithic A-module is Artinian if and only if the roots of X2 −αX − β
are roots of unity.

We remark that a characterization of property (�) for Noetherian rings remains
rather elusive. Even a comparison of the examples for the quantum plane and quan-
tized Weyl algebra does not seem easy to make, see Section 4 for further remarks.
Thus it seems worthwhile to study examples of rings with low GK-dimension, and
down-up algebras provide an interesting test-case for property (�). Much current
research in non-commutative algebraic geometry also centers on low dimensional
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algebras, and in particular down-up algebras are studied as non-commutative three-
folds by Kulkarni in [14].

We thank Kenny Brown for his comments on a preliminary version of this paper.

2. Preliminaries.

If r ∈ K and x, y are elements of a K-algebra we set [x, y]r = xy−ryx. Through-
out this paper we will assume the equation 0 = λ2 − αλ − β has roots r, s ∈ K.
Suppose q ∈ K is nonzero and consider the algebra B(q) = K[a, b] generated by a, b
subject to the relation ab = qba. In addition let C(q) = K[a, b] denote the algebra
generated by a, b subject to the relation ab − qba = 1. The algebras B(q), C(q)
are known as the coordinate algebra of the quantum plane and the quantized Weyl
algebra respectively.

Lemma 2.1.
(a) The algebra B(r) is a homomorphic image of A = A(α, β, 0).
(b) If s 6= 1 the algebra C(r) is a homomorphic image of A = A(α, β, 1).

Proof. If γ = 0, relations (R1) and (R2) can be written in the form

[d, [d, u]r]s = [[d, u]r, u]s = 0.

Thus both relations follow from the relation [d, u]r = 0, so there is a map from
A = A(α, β, γ) onto B(r) sending d to a and u to b.

On the other hand if γ 6= 0, we can assume γ = 1. If s 6= 1, let t ∈ K be
such that t(s− 1) = 1. Relations (R1) and (R2) can now be written in the form

[d, [d, u]r − t]s = [[d, u]r − t, u]s = 0.

Since [ta, b]r − t = 0 in C(r), there is an homomorphism from A onto C(r) sending
d to ta and u to b. �

The above Lemma will be used, together with the results of the next two sub-
sections, to produce examples of down-up algebras that do not satisfy property
(�). Note however that if exactly one of the roots of the Equation X2 − αX − β
is equal to 1, the Lemma tells us only that the first Weyl algebra is a homomor-
phic image of A = A(α, β, 1). In this case the Lemma is of no use in constructing
counterexamples.

3. The Coordinate Ring of the Quantum Plane.

If q is an element of K which is not a root of unity we show that B = B(q) does
not satisfy property (�). Consider the left ideals I = B(ab−1)(a−1) ⊂ J = B(a−1),
and set M = B/I, V = J/I and W = B/J. Then there is an exact sequence

0 −→ V −→M −→W −→ 0.



4 PAULA A.A.B. CARVALHO AND IAN M. MUSSON

Theorem 3.1.
(a) The module M is a non-Artinian essential extension of the simple submod-

ule V .
(b) The submodules of W are linearly ordered by inclusion, and are pairwise

non-isomorphic.

Proof. Step 1: V is simple. Clearly V is generated by the element v0 = (a−1)+I.
For n ≥ 0, set

vn = bnv0, v−n = anv0.

Then using abv0 = v0, we obtain for all n ≥ 0,

avn+1 = qnvn, bv−n−1 = q−n−1v−n. (1)

Furthermore for all integers n,

abvn = qnvn. (2)

It is easy to see that V is spanned by the set X = {vn|n ∈ Z}, and it follows from
equation (2) that the set X is linearly independent. Equation (2) also implies that
any submodule of V is spanned by a subset of X. Then simplicity of V follows from
equation (1).

Step 2: Proof of (b). Clearly W is generated by the element w0 = 1 + J and
spanned over K by the set Y = {wn|n ≥ 0}, where wn = bnw0. Furthermore for
all n ≥ 0,

awn = qnwn. (3)

As in the proof of Step 1, Y is linearly independent. Equation (3) also implies that
any submodule of W is spanned by a subset of Y. Now for all n ≥ 0 set

Wn = span{wm|m ≥ n} = Bwn.

Consideration of the action of b now shows that a complete list of non-zero sub-
modules of W is

W = W0 ⊃W1 ⊃W2 . . . .

To complete the proof of (b) we observe that a acts as multiplication by qn on the
unique simple quotient of Wn.

Step 3: There is no element v ∈ V such that (a− qm)v = vm. If v ∈ V is non-zero
we can write v as a linear combination of basis elements, v =

∑s
i=r λivi, where

λr, λs are nonzero. Then we set |v| = s − r. From equations (1), it follows that
|(a− qm)v| = s− r + 1. Clearly this gives the assertion.
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Step 4: Proof of (a). Set mn = bn + I for n ≥ 0. Then mn maps onto wn un-
der the natural map M −→W. Thus the set {vn,mp|n, p ∈ Z, n ≥ 0} is a basis for
M. Since am0 = m0 + v0, it follows that

amn = qnbnam0

= qn(mn + vn).

Suppose that m =
∑
i∈I λimi+v is a nonzero element of M. We assume that v ∈ V ,

|I| is non-empty, and that λi is a non-zero scalar for all i ∈ I. Then we show by
induction on |I| that Bm ∩ V is non-zero. Suppose that n ∈ I, and without loss
that λn = 1. If |I| = 1, then Bm ∩ V contains

(a− qn)(mn + v) = qnvn + (a− qn)v,

and by Step 3, this is non-zero. Similarly if |I| > 1, then Bm contains (a − qn)m
and we have (a− qn)m =

∑
j∈J µjmj + v′ with J = I\{n}, v′ ∈ V, and µj 6= 0 for

j ∈ J. Thus the result follows by induction. �

4. The Quantized Weyl Algebra

Throughout this section assume that q is an element of K which is not a root of
unity. We show that the quantized Weyl algebra C = C(q) does not have property
(�). We begin with some comments which may serve to motivate our construction.
Observe that in Theorem 3.1, the submodules of W = Bw0 have the form Bnkw0

for some normal element n of B. An analogous statement holds for the Example
from [6] mentioned in the Introduction. Now the element n = ab − ba ∈ C is
normal, and we can in fact repeat this strategy. Note however that n has degree
two with respect to a natural filtration on C, whereas in the earlier examples the
normal element had degree one. For this reason, we have not attempted to give a
more unified treatment of our results.

It is reasonable to look for a C-module W such that W = K[n] as a K[n]-module
with (ni) a submodule of W for each i. Note that C̄ = C/Cn ' K[a±1], and that
if such a module W exists, then each factor (ni)/((ni+1) is a one-dimensional C̄-
module. Based on these considerations, it is not hard to determine the possibilities
for W , and with a little experimentation, arrive at the required nonartinian mono-
lithic module.

Consider the K-vector space M with basis {vi, wi : i, j ∈ N}, and let V =
spanK{vi : i ∈ N}, W = M/V. Define linear operators a and b on V by

av0 = 0 (4)

avn =
qn − 1
q − 1

vn−1 (5)
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bvn = vn+1 (6)

Next extend the action of a and b to M by setting

awn = qn(wn + wn+1) (7)

and

bwn =
q−n

1− q
wn + (−1)nv0. (8)

We then have

(ab− ba)wn = −1
q
wn+1, (9)

(ab− qba)wn = wn (10)

It is now easy to see that M is a C-module, and V is a submodule of M .

Lemma 4.1. The C-module V is simple.

Proof. Since any element of V is of the form v = a0v0 +a1v1 + . . .+anvn for some
ai ∈ K, by equation (5) we deduce that v0 ∈ Cv for any nonzero v ∈ V . Hence V
is simple and also V = Cv0. �

Theorem 4.2.
(a) The module M is a non-Artinian essential extension of the simple submod-

ule V .
(b) The submodules of W are linearly ordered by inclusion, and are pairwise

non-isomorphic.

Proof. First we prove (b). By equation (8) any submodule of W is spanned
by a subset of {wn : n ∈ N0}. For any n ∈ N set Wn = span{wm : m ≥ n}.
Consideration on the actions of a and b shows that the complete list of non-zero
submodules of W is

W = W0 ⊃W1 ⊃W2 ⊃ . . .

Since b acts as multiplication by
q−n

1− q
on the unique simple quotient of Wn, the

proof of (b) is complete.
Next we prove (a). By Lemma 4.1, V is simple and by (b) M is not Artinian.

The rest of the proof consists of three steps.
(i) Given n ∈ N, by (8),(

b− q−n

1− q

)
wn = (−1)nv0 ∈ V ∩ Cwn, (11)

so Cwn ∩ V 6= 0.
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(ii) For any n ∈ N, C(wn + v) ∩ V 6= 0. Indeed

(b− q−n

1− q
)(wn + v) = (−1)nv0 + (b− q−n

1− q
)v. (12)

So we must show that we can not have v ∈ V \{0} such that(
b− q−n

1− q

)
v = (−1)n+1v0.

This follows since if v = λ0v0 + . . .+λmvm, for some λ0, . . . , λm ∈ K with λm 6= 0,
then the coefficient of vm+1 in (b− q−n

1−q )v is non-zero.
(iii) Let m ∈ M\V . We show that Cm ∩ V 6= 0. This will complete the proof.

Without loss of generality we can write m = wn + λn−1wn−1 + . . . + λ0w0 + v for
some v ∈ V and λ0, . . . , λn−1 ∈ K. Then

(
b− q−n

1−q

)
m is a linear combination of

wn−1, . . . , w0, and the vi with i ∈ N. Either we are in case (i) or (ii) or if not, we
apply

(
b− q−k

1−q

)
for a suitable k and repeat the process. �

5. A Positive Result.

Let A = A(α, β, γ) be a down-up algebra and set f(x) = x2 − αx− β. Suppose
that f(x) = (x − r)2 where r is a primitive nth root of unity. Thus α = 2r and
β = −r2. The goal of this section is to prove

Theorem 5.1. A finitely generated essential extension of a simple A-module is
Artinian.

Suppose first that char(K) = p, and let Z ′ = [dnp, unp, (du−rud+ γ
r−1 )n]. Using

[10, Theorem 4.4] and [22, Lemma 2.2], it is easy to see that A is finitely generated
over the central subalgebra Z ′. Therefore A is PI and property (�) holds. For the
rest of this section we assume that char(K) = 0.

We denote the Krull dimension of a ring B by K.dimB. If r = γ = 1, then A

is isomorphic to the enveloping algebra of the Lie algebra sl(2), and Theorem 5.1
holds by [7]. The proof depends on the fact that K.dimA = 2, and does not im-
mediately adapt to our situation. A key step in our proof is the fact that a certain
localization of A has Krull dimension 2, see Proposition 5.5.

We establish some preliminaries. By [5, Corollary 3.2] we may assume that r 6= 1.
Hence case 3 of [4, §1.4] holds and we set

w1 = (2β + α)ud+ (α− 2)du+ 2γ;

w2 = 2du− 2ud

so that σ(w1) = rw1 and σ(w2) = rw2 +w1. Set w = w1/2(r− 1) = −rud+ du+ ε

where ε = γ/(r − 1).

Lemma 5.2. A = A/Aw is a PI algebra.
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Proof. Denote the images of u and d in A by u, d, respectively. Then A is generated
by u, d and we have that

−rud+ du+ ε = 0.

It follows that A is isomorphic to a quantized Weyl algebra if γ 6= 0 and to the
coordinate ring of a quantum plane if γ = 0. Since r is a primitive nth root of unity
for n > 1, it is well known that these algebras are PI. �

Recall that given a ring D, an automorphism σ of D and a central element a ∈ D,
the generalized Weyl algebra D(σ, a) is the ring extension of D generated by x and
y, subject to the relations: xb = σ(b)x, by = yσ(b), for all b ∈ D, yx = a, xy = σ(a).
Noetherian down-up algebras can be presented as generalized Weyl algebras, see
[13].

We need the following result of Bavula and van Oystaeyen [2, Theorem 1.2].

Theorem 5.3. Let R be a commutative Noetherian ring with K.dimR = m and
let T = R(σ, a) be a generalized Weyl algebra. Then K.dimT = m unless there is a
height m maximal ideal P of R such that one of the following holds:

a) σn(P ) = P , for some n > 0;
b) a ∈ σn(P ) for infinitely many n.

If there is an ideal P as above such that a) or b) holds then K.dimT = m+ 1.

Given λ0, λ1 ∈ K and n ∈ Z there is a unique λn ∈ K such that

λn = αλn−1 + βλn−2 + γ.

For all n ∈ Z we have, see [4, Lemma 2.3]

σ−n(x− λ0) = (x− λn, y − λn+1).

Lemma 5.4. If M is a maximal ideal of R such that x ∈ σn(M) for infinitely
many n, then σn(M) = M for some n > 0.

Proof. We can assume that x ∈M , that is M = (x−λ0, y−λ1) with λ0 = 0. The
solution to the recursive relation is then given by

λn = c1(rn − 1) + c2nr
n

for some fixed c1, c2 ∈ K. If λn = 0, then nc2 = c1(1− r−n), but the right side of
this equation can take only finitely many values. Hence c2 = 0 and the sequence
{λn} is periodic. Clearly this gives the result. �

Since w is a normal element of A, the set {wn|n ≥ 0} satisfies the Ore condition.
We denote by Aw, Rw the localizations of A and R with respect to this set.

Proposition 5.5. K.dimAw = 2.
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Proof. Note that Aw = Rw(σ, λ) is a generalized Weyl algebra, so by Lemma 5.4
and Theorem 5.3, we need to show that for any maximal ideal P of Rw and n > 0
we have σn(P ) 6= P . We show that equivalently if M is a maximal ideal of R such
that σn(M) = M , then w ∈ M . Indeed if M = (w1 − a1, w2 − a2) then from [4,
Lemma 2.2(ii)] we have a1 = 0 and the result follows. �

Proof of Theorem 5.1. Let V be a simple A-module and M a finitely generated
essential extension of V . There are two cases.

If wV = 0, it is enough to show that N = annM(Aw) is Artinian. However N is
a module over the PI algebra A/Aw.

If wV 6= 0 then since wn is central there exists λ ∈ K, λ 6= 0 such that (wn −
λ)V = 0. By [19, Theorem 3.15 ] P = (wn − λ)A is prime. By a similar argument
as before we can assume PM = 0. Let r, s ∈ K[w] be such that

1 = rw + s(wn − λ).

This implies that M = wM and annM (w) = 0, otherwise wV = 0. So M is an
Aw-module which is annihilated by Pw. Since K.dimAw = 2 and Pw is a nonzero
prime ideal, Aw/Pw is a prime of Krull dimension one and the result follows from
[16, Prop 5.5]. �

6. Down-up Algebras

Proof of Theorem 1.1 If the roots of X2 − αX − β are both equal to one or
distinct roots of unity it follows from [5, Corollary 3.2] that any finitely generated
monolithic A-module is Artinian. By Theorem 5.1, the same holds if both roots of
the quadratic equation are equal roots of unity.

Suppose that the roots of X2 − αX − β are not both roots of unity. Note that
1 is a root of this equation, and in this case the other root is −β. By Lemma 2.1,
either the coordinate algebra of the quantum plane B(q) or the quantized Weyl
algebra C(q) (with q not a root of 1) is a homomorphic image of A depending on
γ = 0 or γ 6= 0 respectively. Hence by Theorems 3.1 and 4.2 it follows that A does
not satisfy condition (�). �
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