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0.1. Let g be a semisimple Lie algebra with Cartan subalgebra b, Weyl
group W and enveloping algebra U(g). Several results illustrate the im-
portant role played by the center Z(g) of U(g). First there is the Harish-
Chandra homomorphism which shows that SpecZ(g) = h*/W, and describes
the action of Z(g) on highest weight modules. Next we recall the separation
of variables Theorem of Kostant ([Ko], [D. 8.2.4]) which states that there
is an adg-invariant subspace K of U(g) such that the multiplication map
K ® Z(g) — U(g) is an isomorphism of adg-modules. Kostant’s theorem is
a key ingredient in the proof of a result of Duflo, [D,8.4.3] stating that the
annihilator of a Verma module is generated by its intersection with Z(g).

A version of the Harish-Chandra homomorphism have been given by Kac
for basic classical simple Lie superalgebras. We recall the details in 1.1.

The proof of Kostant’s theorem depends heavily on the fact that every fi-
nite dimensional g-module is completely reducible. By contrast if g is a simple
Lie superalgebra, such that every finite dimensional g-module is completely
reducible, then either g is a simple Lie algebra or g is an orthosymplectic Lie
superalgebra g = osp(1, 2r) for some r > 1 [Sch, Theorem 1, page 239].

Research partially supported by NSA grant MDA 904-93-H3016 and NSF grant
DMS 9500486



~Y

In this paper we show that for g = osp(1,2r) we again have U(g) =
K ® Z(g) for K ad-invariant. In addition if £ is any finite dimensional
simple g-module, the multiplicity of F as a direct summand of K is equal
to the dimension of the zero weight space of E. For the case where g =
0sp(1,2) these results are obtained in [Pi | where the subspace K is computed
explicitly. However even for g = osp(1,2) the analog of Duflo’s theorem is
false. This follows from [Pi, Proposition 7.3] and can be seen as follows,
[M2, Section 3]. For any A € b, the Verma module M(A) for g is a direct
sum M(X) = My & M; where My, M; are Verma modules for g, = sf(2).
The Casimir elements @, C of U(g,) and U(g) are related by the following
equation, see [Pi, Proposition 1.2] or [L, Proposition II.1]

(160 4+ 1) = (8Q —8C +1)?

If A is not regular then C' acts on M()) as the scalar —1/16 and Q acts on
My, My by the same scalar —3/16. The image of Q + % in U(g)/ ker xaU(g)
is nonzero and generates the ideal annM()\)/ ker xAU(g).

Motivated by this example, we investigate algebraic relations between
elements of Z(g,) and Z(g) and their connection with representation theory.
We show that for any classical simple Lie superalgebra g, g # P(n) every
element of Z(g,) is a root of a polynomial with coefficients in Z(g) (Theorem
2.5). If g = osp(1,2r) this polynomial can be chosen to be monic, that is
Z(g,) is integral over Z(g). Note however that neither of Z(g,) or Z(g) is
contained in the other. As another application of our methods we show that
when g = osp(1,2r) or sf(r, 1), the algebra U(g)% of adg,-invariants in U(g)
iIs commutative.

Our work suggests the use of geometric methods to study the relationship
between Z(g,) and Z(g). Let A = (Z(g,),Z(g)) be the subalgebra of U(g)
generated by Z(g,) and Z(g). The inclusion B = Z(g) C A induces a map
of spectra 1 : SpecA — SpecB, and we study the fibres of this map. When
g = osp(1,2), this amounts to specializing C' in the equation displayed above
and looking at the resulting equation for Q).

We study a family of fibers when g = s£(2,1) in section 4. In what we
shall call the typical case, the fiber is the union of a hyperbola in A% and
two lines which meet the hyperbola at infinity. We show that the fiber in the
atypical case can be regarded as the shadow at infinity cast by the fibers in



the typical case. This suggests a possible connection between our work and
the noncommutative geometry of homogenized enveloping algebras studied
for example in [Ba], [LS] and [LV].

In section 5 we study the case where g = osp(1,2r). In this case we show
that U(g)®* = (Z(g0), Z(g)) and that A = U(g)% is a free B = Z(g)-module
of rank 2" (Theorem 5.1 and Corollary 5.3). To state our main result in this
case we need some more notation. Let I' denote the set of sums of distinct

odd positive roots. For A € h* and v € ', let my = annzM(A) and let
XX_~ be the central character afforded by the U(gy)-module M (X — 7).

Theorem. For A € h*, the following are equivalent:
(a) A is regular.
(b) The central characters x} .,y € T are distinct.
(c¢) The fiber of ¢ : Spec A — Spec B over m, is reduced.

The theorem follows by combining results in 3.9, 3.11, 5.2, and 5.6. As a
by-product of the proof, we show that if (A+p, @) = 0, where a is an odd root,
then U(g)m, is not semiprime. If in addition (A + p, 5) # 0 for all EK:{
(see 0.2 for notation), then U(g)my is strictly contained in anngg)M(N).
These results generalize [Pi, Proposition 7.3].

Some connections with representation theory are mentioned in Section
3. Here we are chiefly concerned with the structure of highest weight U(g)-
modules when regarded as U(g,)-modules by restriction.

In the last section we collect some open problems arising from our work.

0.2. We fix the notation that we use throughout this paper. For any Lie
superalgebra £ we write ¢, (resp. £;) for the even (resp. odd) part of ¢. Let
g = go D g, be a basic classical simple Lie superalgebra, and h a Cartan
subalgebra of g,. The even (resp. odd) roots of g with respect to h are
denoted Ay (resp. Ap). Set A = AgUA;. By [Kac 1, 2.5.4] and [M1, 1.6, 1.8],
there is a basis ay, ..., a,, of simple roots of g. This means that ay, ..., a,, are
linearly independent and for every a € A, we have either « € Q1 or —a € Q*
where QT = 3 Na,. For o, 8 € b, we write o < B if § —a € Q*, and
a< fifta< g, and a # 5.



Fori=0,1weset A7 = ANQT, A7 = —AF Ay = {a e Afla/2 & A}
and A;r = {a € AT]2a & Af}. Let py = %EﬂeAg B,p1 = %ZBeAfﬁ and
p = po — p1- We fix a nondegenerate, g-invariant bilinear form ( , ) on g. If
M is a U(g)-module, and o € b we set M* = {m € M|hm = a(h)m for
all h € hy}. We say that o € b is typical if (A + p, ) # 0 for all o € A,
and that « is regular if (A + p,a) # 0 for all @ € AL. If a € Ay, we set
a¥ =2a/(a, ).

Let b be the centralizer of hy in g, n* = @uecq+\(018% and n™ = S_,cq+\ (01 8%
Then g = n~ @ h & nt is a triangular decomposition of g in the sense of
[M1,1.1]. For A € h* there a unique finite dimensional graded simple b-
module Vj such that n*V, = 0 and hv = A(h)v for all h € hyand v € V). Also
let Cvy be the one dimensional by module with njvy = 0 and hvy = A(h)vy
for h € h,. We define Verma modules for g, and g by

M(X) = U(gy) @u(s,) Cox

M(\) =Ul(g) ®u(e) Va

The module M (), (resp M (A)) has a unique simple (resp. graded simple)
quotient which we denote by L(A) (resp. L()A)). We mention that if g # Q(n)
then by = b, and dimg V) = 1.

0.3. When g = osp(1,2r) it is convenient to use the following model for the
root system of g [Kac 1, 2.5.4]. We identify h* with € with standard basis
e1,...,e- and (, ) with the usual inner product. Then a basis for the root
system is given by o; = ¢; — e;41 for 1 <i <r —1 and o, = e,, see [Kac 1,
Section 2.5.4]. Then the positive even roots are

AE]F == {261} U {6,‘ + ej}i<j
and the positive odd roots are

The Weyl group W acts as the group of all signed permutations of r =
{1,2,...,7}. Let x1,...,x, be the basisof h dual to ey, ..., e,. Then S(h)" =
Clha, by, - . ., ha,| where hg = 30, xd.

For I Cr,let e; = Y e If I =r\I and v = e;, we write 7 for e;. Note
that (v,%) = 0.



1. The structure of U(g) as an adg module

1.1. Our results depend on the extension of the Harish-Chandra homo-
morphism for Lie superalgebras given in [Kac 2|, [Kac 4]. First we introduce
some notation. Assume that g is classical simple and that g # P(n).

Let S(g) be the symmetric algebra of g and 7 : S(g) — U(g) the sym-
metrization map. This is an isomorphism of g-modules with respect to the
adjoint action, [S, Lemma 1] so carries the subalgebra of g-invariants S(g)®
onto Z(g). Next, let ( : Z(g) — U(h) = S(h) be the projection with respect
to the decomposition

Ul(g) =U(h) @ (n"U(g) +U(g)n™)

and define a: S(h) — S(h) by (aF)(N\) = F(A—p) for F € S(h) and X € h*.
We write ¢ = a( and n = tm. The analogs of these maps for U(g,) are
denoted 7y, (o, g, Yo and ng.

For A € h* we denote by x, (resp. x3) the central character afforded
by the U(g)-module M(X) (resp. by the U(gy)-module M(A)). Thus for
z € Z(g) (resp. z € Z(gy)), z acts on M(A) (resp. M(A)) as the scalar x,(2)
(resp. X5(2)). Set my = ker xy and m$ = ker }3.

Theorem. (a) (Harish-Chandra) ), is an isomorphism from Z(g,) onto
S(H)W, such that for all z € Z(g,), A € b*

XA(2) = Yo(2)(A + po)

(b) ¢ is a monomorphism from Z(g) to S(h)" such that for all z € Z(g),
and \ € h”

xa(z) = ¥(2)(A +p)
(c) Let S(h)o be the subalgebra of S(h) consisting of all functions ¢ on h*

such that (A, a) = 0 for an isotropic root « implies that ¢(A) = ¢(A +ta) for
all t € €. Then the image of the map 1 in (b) is the fixed algebra S(f){ .

1.2. For the remainder of Section 1, assume that g is basic. The bilinear
form ( , ) induces an isomorphism of g-modules g — g*. This map extends
to an isomorphism of algebras and of g-modules S(g) — S(g*) and hence of



fixed algebras S(g)® — S(g*)?. Since ( , ) restricts to a nondegenerate form
on g, and h we obtain in a similar way isomorphisms S(g,)?% — S(gg)® and
S(h) — S(h*). All of these maps will be denoted by x — z*.

Let A = Ag, be the exterior algebra on g, with its natural grading A =

7oA’ where A' = g, and m = 2dme1 Then S = S(g) = (A" ® S(gy)),

and we set N = @, (A" ® S(g,)) a nilpotent ideal of S. We write 7 for the
natural map 7 : S — S/N and identify S/N with S(g,).

There is a commutative diagram

S(g) = S(ao)
S(g) = S(g)

where 7% is defined analogously to 7.
Now the inclusion h C g, induces a map S(gj) — S(h*), and this map in
turn induces an isomorphism 6 : S(gg)? — S(h*)" by [H, Theorem 23.1].
Set § = 0y7*. Then as in [H, page 131] we have the following diagram

S(gr " Z(g) % SHW
x| U
S(g*)® = S(H)W

of filtered vector spaces such that for all u € S,(g)®
n(u)* = 0(u’) € Su-r(h)".

Furthermore if g = osp(1,2r) then by [Theorem 1.1] the maps 6 and 1)
are algebra isomorphisms.
Of course, there is a similar diagram involving the maps g, 1y and 6.

Lemma. If u € S,(g) and v =15 (n(w)) then u — v € N + S, _1(gy)®.
Proof. Set w = 7(u) € S,(gy)%. Then O(u*) = Oo7*(u*) = Op(w*). However
by the foregoing remarks n(u)* — 60(u*) and ny(w)* — Oy(w*) are contained in
Sn_1(h*)V. Therefore ny(v) — no(w) = n(u) — no(w) € S,_1(h)", and hence
v—w € S,-1(gy)%. Since u —w € N this proves the result.

Corollary.



1) S(g) "N =0
2) If g = osp(1,2r) then S(g)* + N = S(gy)* + N.
Proof.

1) If the intersection is nonzero, choose an element u € S,,(g)* N N, u # 0
with n minimal. If v = ny 'n(u) we can write u —v = z +y with z € N
and y € S,-1(gy)%. Then u —x =v+y € NNS(gy) = 0. This implies
that v = —y € S,_1(gy)% a contradiction.

2) Clearly S(g)* + N C S(gy)* + N. Conversely assume by induction
that S, _1(gy)® C S(g)* + N. If v € S,(gy)%, write v = ny*(z) with
r € S,(h)W. Since n is surjective for g = osp(1,2r),x = n(u) for
u € S,(g)®. By the lemma v —v € S,_1(gy)® + N C S(g)? + N, so
veS(g)e+ N.

1.3. Lemma. Suppose S = @",S5(i) is a graded ring, and R a graded
subring of S such that RN N = 0, where N = @",5(7). Assume that
for each i, N'/N*™! is a free left R-module with basis the images of the
elements {w;x € N'|A € Q;}. Then S is a free left R-module with basis
{wial(i, A) € IN x ;}.

Proof. For r € R, we write r = r* 4+ 7 with * € R(0) and r* € N. Fix
i and set N/ = Y Rw, (sum over j > i and (j,\) € IN x ;). By reverse
induction on ¢ we show that N/ = N*. Observe that N/ contains the elements
rw; = (r®+r*)w;, for r € R, and by induction N/ also contains rw; y. It
follows that N/ + N“*' = N* and so N} = N*.

Now suppose we have a relation 7, w;x = 0 where not all the co-
efficients 7, € R are zero, and among such relations assume that 7 =
min{j|r;, # 0 for some A € €Q;} is chosen as small as possible. Then
S riawin € N7 gives 1y = 0 for all A, but this is impossible since RAN = 0.

1.4. Now let g = osp(1,2r), S = S(g), R=S(g)® and R™ = @®,>1R,. Since
all finite dimensional g-modules are completely reducible we can choose an
adg stable complement H to R*S in S.



Theorem. The multiplication map induces an isomorphism of adg-modules
R® H — S. In addition if P is any finite dimensional simple g-module, the
multiplicity of P as a direct summand of H under the adjoint action is equal
to the dimension of the weight space P° of P.

Proof. By [D, 8.2.2] There is a adg,-stable subspace L of S(g,) such that
S(gg)® @ L = S(g,) via the multiplication map. Write S(i) = S(go) ® A’
S = @",S@) and N = @,S5(i) as in 1.2. Then as adg,-modules S(i) =
S(gy)?° ® LR A" and since R = S(g,) by Corollary 1.2, we see that N/N*+!
is a free R-module. Therefore S is a free R-module by Lemma 1.3. More
precisely, if H' = L ® Ag,, the multiplication map R ® H' — S is an iso-
morphism of g,-modules and of graded vector spaces. Since R =C@® R™ this
implies that S = R*S @ H'.

If V= @®,>0V, is a graded vector space, set Py (t) = >, >o(dimV;,)t".
Since S = R ® H' we have Ps(t) = Pg(t)Py:(t). On the other hand since
S =RtS® H = RS @ H' as graded vector spaces Py(t) = Py/(t) so
Ps(t) = Pgr(t)Pg(t). Since S = RH by [Ko, Proposition 1, page 336], it
follows that the multiplication map R ® H — S is bijective, and so is an
isomorphism of adg-modules.

In addition H = H' as g,-modules, and as a g,-module H' is isomorphic
to the induced module Ind$ (L) = U(g) ®u(g) L. Since H and Inds (L)
are locally finite dimensional g-modules with the same formal character, and
all finite dimensional modules are completely reducible, H = Indg (L) as
g-modules. Now we use Frobenius reciprocity to prove the statement about
multiplicities.

Write L = @ (L : M)M where (L : M) is the multiplicity of the simple
go-module M in L. Then H = @y (L : M)Indg (M), and by [P, Exer-
cise 2 (c), page 178], if P is any finite dimensional simple g-module then
(Ind$ (M) : P) = (P4, : M). Thus

(H:P) = Z(L:M)(P|90:M)

M
= EdimMOP - M) = dim P°.
go
M

Here we have also used the fact that (L : M) = dim M°, [D, 8.3.6].

1.5. Theorem. Let m : S(g) — U(g) be the symmetrization map, and
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K = 7(H). Then the multiplication map K®Z(g) — U(g) is an isomorphism
of g-modules with respect to the adjoint action. Moreover if P is a finite
dimensional simple g-module, the multiplicity of P in K equals dim P°.

Proof. This now follows as in the classical case [D,8.2.4].

2. Algebraic Relations between Z(g) and Z(g,)

2.1. Lemma. If g =11, x+hg, then gS(H)W C Imy

Proof. This follows immediately from Theorem 1.1 (c).

2.2. Let (1,..., 5, be the unique basis of simple roots of [g,, g,] contained
in A7. Note that the module L()\) will be finite dimensional if L(\) is
finite dimensional, since in this case any element of V) will generate a finite
dimensional g,-module. It is well known that L(\) is finite dimensional if
and only if (A, 3’) € IN for i = 1,...,r. We say that X\ is dominant in this
case. Necessary and sufficient conditions for L()) to be finite dimensional are
given in [Kac 1, Theorem 8]. From this result it follows that if A is dominant
and not too close to a reflecting hyperplane for the Weyl group, then L()) is
finite dimensional. Hence we conclude that

A = {X\ € b*|L()\) is finite dimensional and X is typical}

is Zariski dense in b*.
We consider the decomposition of E()\) as a direct sum of simple g,-
modules _
L(X) = @ma(p) L)

Let T" be the set of sums of distinct odd positive roots, and for v € T, let
K (v) be the number of partitions of v into distinct odd positive roots

Proposition. If ) is typical, then

ma(p) = (dim V) Y- K(wA+p) —p—p)
weWw




Proof. If g is basic, this is deduced in [Kac 3, 2.11] from the character
formula for typical modules [Kac 2].

Intuitively, since I' is finite, we should expect that for A “not too close
to a wall”, the only term that could contribute to the above sum is the one
with w = 1. More precisely we have

Corollary. (Compare [Pe, Corollary 2.1]) Set
a=min{0,3(y+p, )i =1,...,m; v €T},

b:ma:v{O,(VﬂLp,ﬁZv)h:l,,T, ,YGF}

and
A= eAN|(A+pB)>b—afori=1,...7}.

Then A is Zariski dense in h* and for A € A we have as a g,-module

L(\) = ®yer K(7) LA — )

Proof. For v € ', A € A we have (A — v, 3Y) > —a > 0. Also if Ag, denotes
the exterior algebra on g, then ~ is a weight of the finite dimensional g,-
module Ag,, so (v, 3) € Z. Since A € A’ this implies that A —-y is dominant.
Suppose that g is dominant, A € A and w € W are such that v =
w(A + p) — p — p satisfies K () # 0. By the proposition it suffices to show
that w = 1.
Since p is dominant we have

A+p,w'B)=(y+pu+p0) > (v+p5) > a/3.

On the other hand if w # 1, then by [H, Lemma 10.3A] we have w=!3; < 0
for some i. Write —w™!3; = >.n;B; where n; € IN and > n; > 1. Since
(Bj,8;)/(Bi, B;) > 1/3 for all j, we have

A+pw™ ') < =(1/3)(A+p, 3 n;0)
< (a/3)> n; <a/3.

This contradiction shows that w = 1.
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2.3. Lemma. The set p; — ' = {p; — 7|y € I'} is W-invariant.

Proof. This follows from the W-invariance of the function

a/2 —af/2\ _ p1—"
Moear(e® +e ) =Y K(y)e

vyel

The lemma allows us to define an action of W on I' by
w7y = pr—w(pr —7)
forw e W and v €T.

2.4. We make frequent use of the following result.

Lemma. Suppose g is classical simple and not of type P(n). If A C b is
Zariski dense, then Nyepanny(g)L(A) = 0.

Proof. See [LM, Corollary D].

2.5. Theorem. If x € Z(g,), there exist z; € Z(g),i = 0,...,|'| with

2ir1) = g such that S 21z = 0.
w( | |) g 1=0

Proof. For v € T, we define ¢, € S(h) by

¢ (1) = to(x) (1 + pr — )

for i € h*. Note that = acts on L(A — 7) as the scalar g,(X + p). Thus if A
is the Zariski dense subset of h* given by Corollary 2.2 and A € A, we have
L(X) = @yer L(A — ), and so II(x — ¢, (A + p)) € annyg)L(A). We observe
that

Qo (WA+p)) = tho(x)(wW(A+ po — 7))
= ¢,(A+p)

since Yg(x) is W-invariant. Now let ¢ be an indeterminate and consider the
monic polynomial

IT|

Mer(t —¢,) = Z:tifi € S(h)[t].
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It follows that the coefficients f; satisfy fi(w(\ + p)) = fi(A + p) for
w € W, that is f; € S(h)" . Therefore by Lemma 2.1 there exist z; € Z(g)

such that ¥(z;) = gf;. Since z; acts on L(A) as the scalar (gf;)(A + p) we

have that ZEO 1'z; acts like

gA+p) D2 fi(A+p) = g\ + p)IL, (2 — g, (A + p)) = 0.

Since A is dense we have, by Lemma 2.4

inzi € ﬂ,\eAannU(g)z(/\) =0.

Corollary. If g = osp(1,2r), then Z(g,) is integral over Z(g).

2.6. Let g = osp(1,2r). We require a more precise equation relating the
degree two Casimir elements @) and C of U(g,) and U(g). We first normalize
these so that C' acts on L()) as the scalar (A +2p, \) and Q acts on L()\) as
the scalar (A +2pg, A). Then x = Q — C' + 2(p, p1) acts on the gy-submodule
L(A — ) as the scalar

(A+2p0 =7, A=) = (A +2p,A) +2(p, p1)

=2A+p,p1 — 7).

Set [Ter(t —2(A+p,p1 — 7)) = ZEO t'f;, with f; € S(h). As in the proof
of Theorem 2.5, there exist z; € Z(g) such that ¥(z;) = f; and we have
Stz = 0.

Lemma. Set F(t) = Y t'2;. Then F is the minimum polynomial of x over
Z(g)-

Proof. By the above remarks, the minimum polynomial G of x over Z(g)
divides F'. Choose A € A such that (A+p,v—9") #0if 7,7 € I' and v # 7.
Since z acts on L(\) with |I'| distinct eigenvalues, it follows that F' = G.

2.7. Another application of our method is used to obtain the following result.
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Theorem. Let g be classical simple and suppose that K(v) = 1 forall v € T.
Then U = U(g)® is commutative.

Proof. Let A be the Zariski dense subset of h* defined in Corollary 2.2 and
set
AT ={xe AlA+p,vy—7) =0, for all distinct v, € A.}

Note that AT is Zariski dense in b*, and if A € A*, then L()) is the direct sum

of |I'| nonisomorphic irreducible g,-modules. Hence D(\) = EndU(go)E(/\) =
@ O is commutative. There is a homomorphism U — D()) induced by
left multiplication and it follows that xy — yx € annU(g)z(A) for all z,y € U.
Therefore the result follows from Lemma 2.4.

Remarks. 1) We observe that the hypothesis on K (7y) holds in the theorem
if g = sl(m,1) or g = osp(1,2r).

2) For any basic classical simple Lie superalgebra, a similar proof shows that
U(g)® is a P.I. ring.

2.8. We close this section with another application of Lemma 2.1. The result
is probably well-known to experts in the field, but we have been unable to

find it in the literature.

Proposition. Z(g) is Noetherian if and only if g = osp(1, 2r) for some 7.

Proof. If g = osp(1,2r), then Z(g) = S(h)" by so Z(g) is Noetherian. For
the converse, suppose g # osp(1,2r) and set Z = Ima). There is an odd
root a of g such that (a,a) = 0. We can find an z € S(h)" such that
z(ta) = f(t) is a nonconstant polynomial. If the ideal Y ;50 g2'Z of Z is
finitely generated, then gz™ € Y1) g2'Z for some n. Therefore since Z is
a domain we have an equation of the form 37  z'z; = 0 with 2; € Z and
2, = 1. However since z;(ta) = z;(0) for all ¢t € € this gives Y1, 2;(0) f* = 0,
a contradiction.
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3. Connections with Representation Theory
3.1. Let g be classical simple. We denote by O, the category of g,-modules
defined in [J, 4.3] and by O the category of graded g-modules which belong
to the category O when regarded as g,-modules by restriction, see [M1, 1.1].
For A € h* and M a gy,-module, we set as in [J, 4.4 (3)],

praM = {v € M| for all z € Z(g,); (z — x2(2))"v = 0, for n > 0}
Similarly if A is typical and M a g-module we set
My ={v e M| forall z € Z(g), (z — x»(2))"v = 0, for n > 0},

and let O, be the full subcategory of the category @ consisting of modules
M such that M = M. Note the category O, is not quite analogous to
the category O, defined in [J, 4.4]. For generic irreducible g-modules, results
similar to the next one are proved in [Pe 2, Section 2] using D-module tech-
niques.

Theorem. If ) is typical and M € O, we have M = Duer—rpr M.

Proof. By [M1, Cor. 1.1] any module in @ has a finite filtration by graded
modules whose factors are homomorphic images of Verma modules. Thus we
may assume that M = M(X). Asin [J, 4.4(4)] we have M = @ ,eppr, M.
If p € A\ =T we show that pr,M = 0. By [Kap, Theorem 81], we can find

x € m), such that x ¢ m§__, for all v € T'. By Theorem 2.5, if z € Z(g,),

there exist elements z; € Z(g) with ¥(zr|) = g such that ZLEO r'z; = 0. The
action of z on M () satisfies

0=>a"Y(z)A+p) = g(A+p) [T (& = do(x)(A+ po — 7))

vyerl

Since A is typical, g(A + p) # 0, so II(z — x3_,(2))pr,M = 0 The result
follows from this.

3.2 We now turn our attention to the Verma modules M (A). For the next
result A\ need not be typical.

Theorem. As a gyo-module M()) has a filtration 0 = My € M; C ... C
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M, =M (M) such that each factor M; 1/M; is isomorphic to a Verma mod-
ule M (X — ) with v € I The module M (X — ) occurs with multiplicity
(dim V) K (7y) in this filtration.

Proof. For ease of notation we shall assume that AT N A = ¢ and that
dimg®* = 1 for a € A. This holds for “most” classical simple Lie superal-
gebras, see [Sch, Proposition 1, page 137], and we leave it to the reader to
modify the argument which in the exceptional cases.

For each o € AT = AJUAT, let e_, be a basis for g=®. Let B be the set
of maps m : At — IN such that m(a) =0 or 1 for a € A7, and for 7 € 3,
set 7| = Y aear m(a@)a. Fix an ordering on AT, such that every element of
A§ precedes every element of Af. For 7 € B, set e_, = He:r(f) where the
product over o € AT is taken with respect to the fixed order. Any 7 € B
has a unique decomposition T = 7y + 71, where 7y, m; € B, mo(a) = 0 for
o € AT and m(a) = 0 for o € Af.

For any v € QF, set "M (\) = Y U(ng )e_rvy where the sum is over all
m € P, such that 7 = my, and |7| < . This sum is direct by the PBW
Theorem. Also °M(X) = 0, and "M(X) = M(X), if v > 2p1. If § < 7,
then since M(A) 0 has a basis consisting of all e_ vy with |7| = §, and
€y = €_py_n, We have M(N)A0 CY M ().

Novv suppose ™ = 1 € B, with |7| = 7. If a € AZ, we have eje_rvy €
TM()). Tt follows by induction on the partial order <, that YTM(N) is a Ulg,)-
module, and that the image of e_vy in M(A )/”M( ) is a highest weight
vector for g, of weight A — . Again by the PBW theorem the submodule
generated by this vector is isomorphic to M (A — 7). The result now follows
easily.

3.3 We can use the previous theorem to measure the size of pmM (M) Let D
be the division ring of fractions of U(ny), and for a U(ng)-module NV, set

rank (N) = dimp (D @y gy N).

Corollary. If A € h*, and p € h*/W, then

rank pr, (M(N) = dim Vy S° KA+ po — w(p + po)).

weWw
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Proof. This follows from Theorem 3.2 using the additivity of rank () on exact
sequences, and the fact that x% = x3_, if and only if A —~ = w(x+ po) — po
for some w € W.

3.4 Let g be classical simple. For A,y € h* we set
Y(A7) = {y € MM 7nfy = 0}.

Lemma. For all m € IN the set {\ € h*|dim Y (), ) > m} is Zariski closed.

Proof. This is a routine adaptation of the proof of [D, 7.6.12].
Corollary. For all A € h*, and v € ', dim Y (\,y) > K(7).

Proof. Let A be the Zariski dense subset of h* defined in 2.2, and

A~ { AeAdmU(n) = dim LA #
T for all pu <~
It is easy to see that A, is Zariski dense in h*. By Corollary 2.2, if A € A,

then lj)v()\)’\_7 contains K (7) linearly independent maximal vectors. Since the
map M (A\)** — L(A\)*~* is an isomorphism for u < =, the result follows.

3.5. Proposition. For any A € h* and v € T, ]\7(/\) contains a g,-submodule
isomorphic to M (X — ). Thus anngg) M (\) C my_,

Proof. By the PBW theorem M()) is free as a U(ng )-module. Hence for
any v € Y(\,7v), U(gy)v = U(ng)v = M (X — ). Hence the result follows
from Duflo’s theorem.

3.6. In certain cases M()) is a direct sum of Verma modules for U(g,).

Theorem. Suppose A € h* is typical, K(v) = 1 for all v € ', and the central
characters xg,,y, v € I' are distinct. Then as a g,-module

M) = @yerM(A = ).
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Proof. The sum > . M (XA — 7) is contained in M()\) by Proposition 3.5,
and thus sum is direct by the assumption on central characters. The result
follows since M () and @,erM (A — «y) have the same formal character.

Corollary. Let A = (Z(g), Z(g,)) and E(\) = Endy(gM()\). Under the
hypotheses of the theorem, the map A — FE/(\) induced by left multiplica-
tion is surjective and E(X\) =@,

Proof. This follows since for all v € I', we can choose z, € Z(g,) such that
W (2,) # 0 and x3_s(z,) =0 for all B € T, 3 # 7.

Remark. If g = s/(2,1), it is shown in [M3, 1.1] that M()) is a direct sum
of Verma modules for g, if and only if (A + p, @) # 0, where « is the unique
positive even root.

3.7. Let g = osp(1,2r). We can sharpen Theorem 3.6 in this case. Let L
be any Zo-graded factor module of M(A). The grading on L can be ex-
pressed in terms of the root lattices for g and g,. In the notation of 0.3, set
Q=Y"_,Zo; and Q' = 2%a, + Y1=1 Zay;. Then define L(0) = @,eq L
and L(1) = @ngQ\Q/L)‘fn.

Then L = L(0) & L(1) is a decomposition into g,-submodules such that
8, L(0) C L(1) and g,L(1) C L(0). N

When L = M()) (resp. L()\)), we denote the modules M(\)(e) (resp.
L(N)(€)) by M (), €) (resp. L(\,€)). Then an argument similar to that used
to prove Theorem 3.6 gives

Lemma. If all the central characters x}_,v € I'(¢) are distinct, then as a
go-module.

M(/\7 6) = @’YGF(€)M(>\ - /7)

3.8. To investigate the condition that the central characters x§_, are distinct,
we require a preliminary result. Recall the action of W on I' defined in 2.3.
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Lemma. If g is classical simple then W acts faithfully on T'.

Proof. Suppose w € W and w * vy =~ for all v € I'. We have to show that
w = 1. Since 0 € " and w(p; —7) = p1 — for all ¥ € I', we have wy = v for
all v € . As W C GL(H*) it is enough to show that I" spans b*. In fact AT
spans h*, since otherwise we could find a nonzero element h € b such that
[h, 1] = 0, and this would contradict [Sch, equation (2.12), page 93].

3.9 Proposition. If g is classical simple, and A € h* is such that the central
characters X(/)\—w for v € T', are distinct, then A is regular.

Proof. Suppose that A is not regular, so that (A + p, ) = 0 for some root .
By Lemma 3.8 s, % 7 = 7' # 7 for some v € I'. We claim that x}_, = x3_.
In fact for any z € Z(g,) we have, since 9y(z) is W-invariant,

X3y (2) = Yo(2) (A + po — 1) = tho(2) (sa(A + po — 7))
Since
SaA+po—7) =A+p+salpr —7)
=A+po—Sa*y7=A+po—7

the claim follows.

3.10. In certain cases there is a converse to Proposition 3.9. We abstract
part of the argument needed to show this. Let ® be a root system of type
X, (X = CorD). We regard ® as a subset of R" and use the notation of [H,
Chapter 12], except that we denote the standard basis of R" by ey,...,e,.
The Weyl group W of & acts as a subgroup of the group W of all signed
permutations of r = {1,...,r} and hence there is a homomorphism W —
S,. The image of an element w of W in S, is denoted w. Let p; = %Z;Zl e;
and for a subset [ of r set e; = ;cre;
Let I' = {e;|I Cr}, and for e =0 or 1,

I'(e) = {es|I Crand |I| = emod2}.

Lemma. Suppose that X = C and Q@ =T or X = D and Q = I'(¢). Then
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if £ € R" and w(p —+') = p — y for some v,7 € Q,v #+ and w € W, we
have (1 — p1, ) = 0 for some a € ®.

Proof. For : = 1,...,r we have
(:U’ -7 wei) = (/1’ - 7/7 ei)'

Write v = 3 €;e; where ¢, = 0 or 1 for all . Assume for a contradiction that
no « as in the statement of the lemma exists.

Consider the cycle decomposition of w. Suppose if possible, that w con-
tains a cycle (Iy,...,1;) of length ¢ > 1. To avoid double subscripts later we
set (1) = I;. Then with (¢t + 1) = I(1) we have

(# =7 61(¢+1)) = i(# - 7,7 61(1))

for i = 1,...,t. We can take advantage of the fact that W acts transitively
on p; — I' to simplify our notation. If s € W and A = s(u — p1) + p1,
then sws (XA — s.7") = (A — 54+7), and from (A — p;, ) = 0, it follows that
(n—p1,sta) = 0.

Now suppose that X = C. By the above, we may assume ' = 0. Then
one of the following holds for ¢ =1,...,¢

(1 = p1s @iir1) — €i)) = €1+ (¢.1)

(1= p1eiry team) =aery — 1 (i.2)

The combinations of (i.1) and (i+1.2) or (i.2) and (i+1.2) contradict the
assumption on p — p;. Hence for each ¢,(i.1) holds and ¢ = 1, but then
summing the resulting equations again gives a contradiction.

If w = 1, then we; = +e; for all i. Since v # 0, we may choose 7 so that
(v,e;) = 1. In this case we have (u—,¢;) = —(u, €;), and so (u— p1,€;) = 0.

Next suppose that X = D, and ¢ = 0. By transitivity of W we may
assume 7 = 0. If w = 1, then since 7 # 0 we have ¢; = ¢; = 1 for some
i # j. This implies 2(p, e;) = 1 for k =4, j and hence (u — p1,e; —e;) = 0.

Finally if X = D and ¢ = 1, choose s € W\W. Then s,I'(1) = I'(0) and
sws 1 (A —s,7) = A — s,y where A = s( — p1) + p1, so the result in this case
follows from the case € = 0.

3.11 Corollary. Suppose g = osp(1,2r) and A € h*.
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(a) The central characters XQ,W, ~ € I' are distinct if and only if A is regular.

(b) For e =0 or 1, the central characters x}_.,,7 € I'(¢) are distinct if and
only if (A + p, ) # 0 for all « Ezg.

Proof. If ) is regular with respect to Ay, then the central characters X(/)\—w v e
I' are distinct by Proposition 3.9. Conversely if v, are distinct elements of
I such that x3_ = x3%_,/, then Lemma 3.10, with 4 = X + pp, and X = C,
yields (A + p, ) = 0 for some o € AJ. This proves (a), and since the set of
short roots in a root system of type C, forms a root system of type D,, ()
follows in a similar way.

Remark. If g = si(r, 1), statement (a) of the corollary is valid in this case
also. The proof is similar to the proof of Lemma 3.10, but requires some
minor changes since the invariant form ( , ) is not positive definite. We can
identify h* with € in such a way that the positive odd roots of g correspond
to the standard basis ej,...,e,. of €". Then ( , ) is given up to a scalar
multiple by
(Z L€, Z yi€i) = Z LilYj-
i=1 i=1 i#j
Let & = (—(r —2)e; + 2,z €;). Then (e;,€;) = d;;. In addition &; —¢; =
(e; —e;) and W permutes the €; in the same way that it permutes the e;.
With e; as before, set I' = {e;|I C r}. If w(p—~) = p— ' for some
v,7 €T,y # +/, then starting from

(,LL - /vagi) = (M - rylvéi)
for all i = 1,...,r, we obtain (u — p1,e; — e;) for some i # j.

4. A Geometric Approach to Z(g).

4.1. In view of Proposition 2.8 it seems at first that geometric methods will be
of little use in the study of Z(g). However Theorem 2.5 and its proof suggest
the following approach. Let B = Z(g) and A = (Z(g,), Z(g)). The inclusion
B C A induces a map of spectra 1 : SpecA — SpecB and we consider
the fibers of ). The behaviour of these fibers, at least in the examples we
consider, is closely related to the representation theory of U(g).
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Let P be a prime ideal of B. The fibre over the point of SpecB cor-
responding to P is the closed subscheme Spec(A/AP) of SpecA. Set A =
Z(g,) ®c Z(g) and let ¢ : A — A be the multiplication map a ® b — ab.
Then ¢ is surjective and if I = Z(g,) ® P, then ¢(I) = AP. Now A/ =
Z(go) ® (B/P) and ¢ induces a surjective map from A/I onto A/AP. Thus
A/AP is a finitely generated algebra provided that B/ P is finitely generated.

Now suppose P is a maximal ideal of B. Then since B has countable
dimension over €, B/P =2 (C. Let ~ : B — € be the natural map.

Lemma. In this situation A/AP = Z(g,)/J where
J = {ZCL,EA Zai X bl € keraS}

Proof. The commutative algebra A is generated by the subalgebras Z(g)
and Z(g,) subject to the relations given by ker ¢. Since B/P =€ via~ , we
may eliminate the generators for Z(g) at the expense of introducing relations
on Z(g,) corresponding to the ideal J.

4.2. We illustrate the foregoing remarks by computing a family of fibers
when g = si(2,1). First we need some notation, see [M3]. The Cartan
subalgebra h of g has a basis consisting of the diagonal matrices h, z with
entries 1, —1,0 and 1, 1, 2 respectively. For A € h* we write A = (a, b) where
A(h) = a,\(z) = b. There are Casimir elements Q € U(g,) and K € U(g)
such that @Q acts on L(\) as the scalar a(a 4+ 2) and K acts on L(\) as the
scalar (a—b)(a+b+2) . Let L1 = Q—2(2+2) and Ly = Q—2(2—2). Then we
have Z(g,) =C[z, Q] =C|[L1, Ly]. By Theorem 1.1 there is a central element
C in the localization of U(g) with respect to the powers of K such that K and
C' are algebraically independent and B = Z(g) is the subring € + KC[K, C]
of C[K,C]. This is also shown by a direct calculation in [ABP, Proposition
IV.4.1.]. Also A = (a,b) is typical if and only if (a —b)(a+b+2) # 0, and in
this case L(\) becomes a C[K, C]-module with C' acting as the scalar b. For
pel, set P, = (K — p)CIK,C]N Z(g). Our aim is to compute the fibers of
the map v : SpecA — SpecB over the points P,.

First we need to describe the algebra A. Since K is central in U(g), and
U(g) is prime [Be], K is not a zero divisor. Hence A and A embed in their
respective localizations Ax and Ax and we can extend ¢ to a surjective map
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of algebras ¢x : Ax — Ag. Clearly ker ¢ = A Nker ¢ We omit the tensor
signs in writing elements of Ag. Let Iy, I, I5 be the ideals of Ax given by
L =(Li—K,z2-C), I, =(z,2—C—1) and I3 = (Ly — K,z — C — 2) where
x= (L1 —K)(Ly— K) — 4K.

Proposition. ker o = I N Iy N 3.

Proof. We have I' = {0, 8, a+ 3, «+ 23} where a = (2,0) and § = (—1,—1).
Let A be the dense subset of h* given in Corollary 2.2. Then for A € A we
have as g,-modules

L)) = &L, LY

where LH(\) = L), LP(\) = L\ — B) ®L(\ — a — ) and LO()\) =
L(A — a—20). Since all A € A are typical, the map ¢k allows us to regard

L(\) as an Ag-module. Now by Lemma 2.4 ker ¢x = ﬂAeAanngKE(/\).

Therefore it suffices to show that I; = ﬂ,\eAanngKL(i)(/\) for i =1,2,3. We
show this equality holds for i = 2. The other cases are easier and left to the
reader. Note first that L; — K acts on L(\ — 3) as the scalar 2(a — b) and
Ly — K as 2(a+ b+ 2), so xL(A — f) = 0. Similar calculations show that
LLA(\)=0forall A€ A .

Note that A/l = ©[Ly, Ly, K*']/(x). Also z is a monic polynomial
of degree 2 in K with coefficients in €[L;, Lo]. Thus to obtain the desired
equality we must show that if

y = ayLiLy+ K> b;LiL}

annihilates L) ()) for all A € A, then y¥ = 0. In the above expression for y
all but finitely many coefficients a;, b;; are zero.

Now let F} = (a—b), F» = (a+b+4),G; = (a+b+2),Gy = (a—b+2), F =
F\Fy and G = G1Ga. Then if A = (a,b) and yL(\ — 3) = 0 we obtain

0=> a;F'G’ + G > by F'G7. (1)

This is a polynomial equation in A = (a,b) which is valid for all A € h*
since it is valid on the dense subset A. Now choose A = (a,a) such that
G(A) #0. Then Fi(A) = F(A) = 0 and we obtain

0= Z&QjGj()\).

22



Thus ag; = 0 for all j. Similarly choosing A = (a, —a —2) shows that a;y = 0
for all . Next we can divide each term in equation (1) by F1G; to obtain

0= FQGQ Z aijFi_lGj_l + Z bUFZG]

Arguing as before we obtain by; = by and each term in this equation is
divisible by F5G5. Continuing in this way shows y = 0 as required.

Remarks. 1) It follows from the proposition that (L; — K)(Ly — K)z = 0.
An equivalent equation is obtained in [ABP, Proposition I11.5.1.], and further
relations on central elements are given in [ABP, Proposition VI.6.1]. The
proofs in [ABP] use a version of Lemma 2.4 for g = s((2,1).

2) Rather surprisingly perhaps, the subalgebra A = (Z(g,), Z(g)) of U(g)
is finitely generated. To see this note that Z(g) is generated over € by the
elements D; = KC" for i > 0. In Ag we have (z—C)(z—C—1)(z—C-2) =0,
which yields for all ¢ > 0 that D;,3 = 3D;9(2 — 1) — Di11(32% — 62 + 2) +
D;(2® — 32?4+ 2z) in A. Thus A is generated over € by z,Q, Dy, D; and Ds.

4.3. We now consider the inclusion B = Z(g) C A = (Z(g,), Z(g)) and the
corresponding map on spectra v : SpecA — SpecB. For u € € we compute
the fiber Spec(A/AP,) of over P,.

Let t = z — C, and define idempotents ey, e5,e3 € Ax by

e =(t—1)(t—2)/2, ex=t2-1)

and
es =1t(t—1)/2.

Then Ag = Ay @ Ay & As where 4; = Age; = Ag /1.

First consider the typical case where  # 0. We have A/AP, = Ax /AP,
and Spec(A/AP,) is the disjoint union of 3 irreducible components X; =
Spec(Ax /(I;, K — p)). Tt is easy to see that X, is a hyperbola in A% and X,
and X3 are lines meeting X, at infinity.

In the atypical case = 0, and P, is the maximal ideal KC[K, C] of Z(g)
we claim that A/APy, = C[Ly, Lo|/(L1L2). Note that Ke; € AP, for each 1.
Also (Ly — K)ey € M3_¢(I;) = 0. Thus LiLye; = LyKey € AP,. Similarly
L1L2€3 = L1K63 € APO and L1L2€2 = (L1 + LQ + 4 — K)K€2 € AP() Thus
LiLy € AP,. Thus it suffices to show that if f € APyNZ(g,) then f is divis-
ible by LyL,. Consider the finite dimensional atypical modules L()). These
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are annihilated by Py and contain L()) as a gy-module direct summand. If
A = (a,a) where a € IN, then Ly acts on L(\) as the scalar —4(a+2), while if
A= (a,—a—2),a €N, L acts on L(\) as the scalar 4a. The result follows
from these remarks by varying a.

Remarks. 1) If © # 0, the projective closure of the component X, of
Spec(A/AP,) is defined by the equations (L; — uT)(Ly — pT) = 4uT?,
and z — C = T, where z = (Ly — L1)/4. Thus the shadow at infinity
cast by X is defined by LiLs = z — C' = 0. Similarly the shadows of X;
(resp. X3) are by z — C = 0 and L; = 0 (resp. Ly = 0). Then the fiber
spec(A/APy) may be regarded as the shadow at infinity cast by the typical
fibers spec(A/AP,), i # 0.

2) Our work has implications for the structure of U(g)-modules when re-
garded as U(g,)-modules by restriction. For example we have

Corollary. If M is a U(g)-module such that PyM = 0, then L, Ly M = 0.

5. The case of g = osp(1,2r).
5.1. Theorem. If g = osp(1,2r), there is a subspace M of U(g)% such that
le M,dimM = 2" and

U(g)®* = Z(g) @c M.

In particular U(g)® is a free Z(g)-module of rank 2.

Proof. Let L be an adg,-stable subspace of U(g,) such that U(g,) = Z(g,) ®
L as adgy-modules. Let A = Ag, C U(g). By the proof of Theorem 1.5, there
is an isomorphism of adg,-modules

Ulg) = Z(g) ® (L® A).
Therefore
U(g)®™ = Z(g) ® (L®A)™

We now use some representation theory to compute dimg (L ® A)%. Write
A = ®F A% where A" = Afg, and let Aj, ..., \, be the fundamental weights
for go. It is well known that as g, modules A" = L()\;) @ A"2, for 2 < i <r
[Sch, p.253, (A.16)] and that A*" % = (A")* = A"
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. From the description of the root system given in 0.3, it follows easily that

the zero weight space (A*)% of A% has dimension : for 1 <i < [r/2],

and that (A*71)% = 0 for all i. Hence dim L(\y)" = ( : ) — ( zi ] ) for
1<i<|[r/2.
Now if A, p are dominant weights, we have an isomorphism of g,-modules,
[Sch, page 43, (3.31)]
L(A) @ L(p) = Hom(L(p)", L(A))

so taking invariants

LW e o= { ;T

Thus (L ® L(\;) : €) =0 for ¢ odd and

(L®L()\2z')3®>_<;>_<ii1>

if 1 <4 <[r/2]. Since L(Ay;) occurs in A with multiplicity (r — 2i + 1), and
the multiplicity of € is r + 1, it follows that

dim(L®A)® = (L®A: L(0))
_ (T+1)+[§§]{<Z>—<iil)}(r—?z’—l—l):?.

Corollary. The algebras U(g)® and (Z(g), Z(g,)) have the same fields of
fractions.

Proof. Let 2 = Q —C+2(p, p1) be as in Lemma 2.6. Then the result follows
since Z(g)[x] and U(g)® are both free Z(g)-modules of rank 2".
5.2. Recall the Theorem about g = osp(1, 2r) stated in 0.1. The equivalence

of the hypotheses (a) and (b) follows from Corollary 3.11. We next show the
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implication (b) = (¢) is an easy consequence of our work so far.

Lemma. Suppose A € h* and all central characters X(,J\_w with v € T' are
distinct. Then A/Am, is reduced.

Proof. The map A = U(g)®*® — EndU(go)M(A) ~ ¢ €% is surjective,
since by Corollary 3.6, it is already surjective when we restrict the domain
to (Z(gy), Z(g)) € A. Since Am, is contained in the kernel, Theorem 5.1
implies that the induced map A/Am, — €% is an isomorphism.

5.3. Let A = (Z(g,),Z(g)). We show how to extend the Harish-Chandra
isomorphism 1 : Z(g) — S(h)" to A. Let V be the open subset of h* given
by

V = {X+ p|\ is regular}.

For A € V', we have by Theorem 3.6 and Corollary 3.11
M(A) = @rerM(A =)

and elements of A act by scalar multiplication on each component of this
decomposition. Hence for all v € I', there is a homomorphism x», : A —C
such that

am = xx,(a)m
for all @ € A and all m in the gy-submodule M (X — ~) of M()). Next we
define a homomorphism ¥, : A — O(V') by
Uy (@)X +p) = xr4(a)

fora e Aand A € V.

To compare the V., we require some automorphisms o, of S(h). If v € T',
we can write in the notation of 0.3, p; — v = (1/2) >I_, €;¢e;, where ¢; = £1.
We define o, € AutS(h) by

(O-’Yf)</'t17 ceey ,ur) - f(elluh cey ET/“’LT)'

Theorem. The map o,V : A — S(h)*" is an isomorphism which is inde-
pendent of v. Moreover if z € Z(g) we have ¢(z) = (0,¥,)(2).
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Proof. As in 0.3 we write S(h) =C[zy,...,x,] and set hg = 37, 22 .

i=1T;
Since the maps 1 and ¢y of 1.1 are isomorphisms, there exist z; € Z(g) and
2l € Z(g,) such that ¥(z4) = 1o(2)}) = haog for all d.

Fix A € V,y € I, and write A+ p = p = (1/2) X1, pie; and py — v =
(1/2) >°7_; €ei. Then (0,V,)(2q) = hog and

U (z) () = olzy) (4 p1—7)

= <;>d <§% ( 2l.d ) haa—i(erpir, - .. ,Erﬂr)7>

whence (0,V,)(z}) = 324, Qid hoa—i.

Since A is generated by zi,...,z. and 21,...,z. it follows that the map
0., ¥, is independent of v and has image C[hy, ..., h,] = S(h)* . On the other
hand, since A is a domain whose Krull dimension is equal to that of S(h)*,
it follows that o, ¥, is injective.

Corollary. If g = osp(1,2r), then (Z(g,), Z(g)) = U(g)®.

Proof. By Corollary 5.1, A = (Z(g,), Z(g)) and B = U(g)® have the same
fields of fractions. The result follows since B is a finitely generated A-module
by Theorem 5.1, and A is integrally closed by Theorem 5.3.

5.4. Lemma. There exists an element 7" € (Z(g), Z(g,)) such that for all
A€ AT acts on L(\,¢€) as the scalar (—1)°[T/_, (A + p, &).

Proof. We have L(\) = @,erL(A — 7). Fix v € ' and write p, — v =

(3) i, €e; where ¢, = 1. Then L(A —v) C L(\, €) if and only if |{i]e; =

—1}| = emod2. Choose T€(Z(g), Z(go)) such that
(0, U )T) = 2125 ... 2,€S(h)"".

It follows that T" acts on L(A — 7) as the scalar (—1)II7_; (A + p, ¢;), using
Theorem 5.3.

5.5. For d = 1,...,r let ag be the d"* elementary symmetric function of
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22,22 ..., 22 Then S(h)" =Clay,...,a,]. Therefore by Theorem 1.1, there
is a unique element z € Z(g) such that ¥ (z) = a,.

Lemma. With T" as in Lemma 5.4,
(a) T? = 2
(b) 2T+ Tz =0 for all z € g,
(c) U(g)T =TU(g)

Proof. Suppose A is the dense subset of h* given in Corollary 2.2, and A € A.
By Theorem 1.1, z acts on L(\) by the scalar IT/_, (A + p, €;)2, so (a) follows
from Lemma 5.4 and Lemma 2.4. Also g,L(\, €) C L(\,1—¢) for e = 0,1 and
therefore 2T + Tx € annU(g)z(A) for xeg, by Lemma 5.4. Thus (b) follows
from Lemma 2.4 also, and (c) follows from (b) and the fact that 7" € U(g)®.

5.6. Theorem. Suppose (A + p,a) = 0 for some oo € AT. Then

(a) A/Am, is not reduced
(b) U(g)m, is not semiprime.

(c) If in addition (A + p,3) # 0 for all 3 € Ay, then U(g)my is strictly

contained in anngyq) M ().

Proof. We have o = ¢; for some i. Thus under our assumption 7? = z € m,.
If T € Am,, then since A is a free Z(g)-module with 1 as part of a free basis
by Theorem 5.1, we would have T? = z € Am3 N Z(g) = m3. However since
1 is an isomorphism, this would imply that a, belongs to the square of a
maximal ideal of Cay, ...,a,|. This contradiction proves (a). Since U(g)T
is a two-sided ideal whose square is contained in U(g)m,, (b) follows in a
similar way using Theorem 1.5 in place of Theorem 5.1.

Finally if the condition in (c) holds, then by Corollary 3.11 (b) and Lemma
3.7, M(X) = ®yer M (A—7). Hence the proof of Lemma 5.4 goes through with
M(),€) in place of L(\, ), and we obtain TM(A) = 0. Since T & U(g)m,
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this proves (c).

5.7. It remains to show that A/Am, is not reduced if (A4 p, a) = 0 for some

a € Zar . Here we exploit the fact that W acts transitively on ZBL U —ASF.
In the notation of 0.3, set 0 = e, and T =¢e,_1 — e,.

Lemma. If (1 + p,7) = 0, then the image of A = (Z(g), Z(g,)) in E(u) =
Endyge) M (1) is not reduced.
Proof. It suffices to show that the image of A in EndU(go)prM_UM(u) is
not reduced. For each n € A*, fix bases e,,e_, for g” and g=" such that
(en,ep) =1

Set v = e_,v, and w = e_,_,v,. Let n be a positive even root. Note
that e,v = 0 and that e,w = 0 unless » = 7, in which case e,w is a nonzero
multiple of v. Set N = U(g,y)v and M = U(g,)v + U(gy)w. It follows easily
that N = M (u—o) and that M /N is a homomorphic image of M (u—o — 7).
A consideration of formal characters shows that M /N = M (pu—o—7). Since
s;*0 =0+, it follows from the proof of Proposition 3.9, that the modules
M/N and N afford the same central character. Thus M C pr,_,M(\).

Now let @) be the degree two Casimir element of U(g,) and ¢ = x,—(Q).
Up to a scalar multiple, ) takes the form

Q=a+) eyey

n>0

where z € U(h). By the above remarks that (Q —c¢)N = (Q —¢)(M/N) = 0.
SinceCw is invariant under U (h), it follows that (@) —c)w is a nonzero multiple
of e_,v, and that (Q — ¢)?w = 0. This proves the result.

Corollary. If A € h* and (A + p,a) = 0 for some a € Ay, then A/Am, is
not reduced.

Proof. There exists w € W such that wa = 7 is as in the lemma. If
= w(A+p) —p then (u+ p,7) = 0, so since my = my,, A/Am, is not

reduced.

6. Some Open Problems.
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We state the problems in maximum generality although solutions in spe-
cial cases would often be interesting. Thus let g be a classical simple Lie
superalgebra, and A € bj.

1) When do we have equality U(g)® = (Z(g), Z(g,))?

2) Are the algebras in 1) finitely generated? Is U(g)% always commuta-
tive?

3) Is every minimal primitive ideal of U(g)% generated as a two sided
ideal by its intersection with U(g)%? If g = s¢(2,1) this is shown in
[Ben|, while if g = osp(1,2), it follows easily from [Pi].

4) Find necessary and sufficient conditions for annygyM(A) to be gener-
ated by its intersection with Z(g).

5) Let g = osp(1,2r). Does the converse to Lemma 3.7 hold? If the image

of U(g)® (or of (Z(g),Z(gy)) in Endyg,yM()) is reduced do we have
(A +p,a) %0 for all v € Ay ?

Acknowledgment. [ would like to thank Kenny Brown and Michel Van
den Bergh for some useful conversations related to this work.
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