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0.1. Let g be a semisimple Lie algebra with Cartan subalgebra h, Weyl
group W and enveloping algebra U(g). Several results illustrate the im-
portant role played by the center Z(g) of U(g). First there is the Harish-
Chandra homomorphism which shows that SpecZ(g) ∼= h∗/W , and describes
the action of Z(g) on highest weight modules. Next we recall the separation
of variables Theorem of Kostant ([Ko], [D. 8.2.4]) which states that there
is an adg-invariant subspace K of U(g) such that the multiplication map
K ⊗ Z(g) → U(g) is an isomorphism of adg-modules. Kostant’s theorem is
a key ingredient in the proof of a result of Duflo, [D,8.4.3] stating that the
annihilator of a Verma module is generated by its intersection with Z(g).

A version of the Harish-Chandra homomorphism have been given by Kac
for basic classical simple Lie superalgebras. We recall the details in 1.1.

The proof of Kostant’s theorem depends heavily on the fact that every fi-
nite dimensional g-module is completely reducible. By contrast if g is a simple
Lie superalgebra, such that every finite dimensional g-module is completely
reducible, then either g is a simple Lie algebra or g is an orthosymplectic Lie
superalgebra g = osp(1, 2r) for some r ≥ 1 [Sch, Theorem 1, page 239].
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In this paper we show that for g = osp(1, 2r) we again have U(g) ∼=
K ⊗ Z(g) for K ad-invariant. In addition if E is any finite dimensional
simple g-module, the multiplicity of E as a direct summand of K is equal
to the dimension of the zero weight space of E. For the case where g =
osp(1, 2) these results are obtained in [Pi ] where the subspace K is computed
explicitly. However even for g = osp(1, 2) the analog of Duflo’s theorem is
false. This follows from [Pi, Proposition 7.3] and can be seen as follows,
[M2, Section 3]. For any λ ∈ h∗, the Verma module M̃(λ) for g is a direct
sum M̃(λ) = M0 ⊕ M1 where M0,M1 are Verma modules for g0 = s`(2).
The Casimir elements Q,C of U(g0) and U(g) are related by the following
equation, see [Pi, Proposition 1.2] or [L, Proposition II.1]

(16C + 1) = (8Q− 8C + 1)2

If λ is not regular then C acts on M̃(λ) as the scalar −1/16 and Q acts on
M0,M1 by the same scalar −3/16. The image of Q+ 3

16
in U(g)/ kerχλU(g)

is nonzero and generates the ideal annM̃(λ)/ kerχλU(g).
Motivated by this example, we investigate algebraic relations between

elements of Z(g0) and Z(g) and their connection with representation theory.
We show that for any classical simple Lie superalgebra g, g 6= P (n) every
element of Z(g0) is a root of a polynomial with coefficients in Z(g) (Theorem
2.5). If g = osp(1, 2r) this polynomial can be chosen to be monic, that is
Z(g0) is integral over Z(g). Note however that neither of Z(g0) or Z(g) is
contained in the other. As another application of our methods we show that
when g = osp(1, 2r) or s`(r, 1), the algebra U(g)g0 of adg0-invariants in U(g)
is commutative.

Our work suggests the use of geometric methods to study the relationship
between Z(g0) and Z(g). Let A = (Z(g0), Z(g)) be the subalgebra of U(g)
generated by Z(g0) and Z(g). The inclusion B = Z(g) ⊆ A induces a map
of spectra ψ : SpecA −→ SpecB, and we study the fibres of this map. When
g = osp(1, 2), this amounts to specializing C in the equation displayed above
and looking at the resulting equation for Q.

We study a family of fibers when g = s`(2, 1) in section 4. In what we
shall call the typical case, the fiber is the union of a hyperbola in A3 and
two lines which meet the hyperbola at infinity. We show that the fiber in the
atypical case can be regarded as the shadow at infinity cast by the fibers in
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the typical case. This suggests a possible connection between our work and
the noncommutative geometry of homogenized enveloping algebras studied
for example in [Ba], [LS] and [LV].

In section 5 we study the case where g = osp(1, 2r). In this case we show
that U(g)g0 = (Z(g0), Z(g)) and that A = U(g)g0 is a free B = Z(g)-module
of rank 2r (Theorem 5.1 and Corollary 5.3). To state our main result in this
case we need some more notation. Let Γ denote the set of sums of distinct
odd positive roots. For λ ∈ h∗ and γ ∈ Γ, let mλ = annZ(g)M̃(λ) and let
χ0
λ−γ be the central character afforded by the U(g0)-module M(λ− γ).

Theorem. For λ ∈ h∗, the following are equivalent:

(a) λ is regular.

(b) The central characters χ0
λ−γ, γ ∈ Γ are distinct.

(c) The fiber of ψ : Spec A −→ Spec B over mλ is reduced.

The theorem follows by combining results in 3.9, 3.11, 5.2, and 5.6. As a
by-product of the proof, we show that if (λ+ρ, α) = 0, where α is an odd root,

then U(g)mλ is not semiprime. If in addition (λ + ρ, β) 6= 0 for all β ∈ ∆
+
0

(see 0.2 for notation), then U(g)mλ is strictly contained in annU(g)M̃(λ).
These results generalize [Pi, Proposition 7.3].

Some connections with representation theory are mentioned in Section
3. Here we are chiefly concerned with the structure of highest weight U(g)-
modules when regarded as U(g0)-modules by restriction.

In the last section we collect some open problems arising from our work.

0.2. We fix the notation that we use throughout this paper. For any Lie
superalgebra k we write k0 (resp. k1) for the even (resp. odd) part of k. Let
g = g0 ⊕ g1 be a basic classical simple Lie superalgebra, and h a Cartan
subalgebra of g0. The even (resp. odd) roots of g with respect to h are
denoted ∆0 (resp. ∆1). Set ∆ = ∆0∪∆1. By [Kac 1, 2.5.4] and [M1, 1.6, 1.8],
there is a basis α1, ..., αn of simple roots of g. This means that α1, ..., αn are
linearly independent and for every α ∈ ∆, we have either α ∈ Q+ or−α ∈ Q+

where Q+ =
∑n
i=1 INαi. For α, β ∈ h∗0, we write α ≤ β if β − α ∈ Q+, and

α < β if α ≤ β, and α 6= β.
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For i = 0, 1 we set ∆+
i = ∆i∩Q+, ∆−

i = −∆+
i ,∆

+

0 = {α ∈ ∆+
0 |α/2 6∈ ∆+

1 }
and ∆

+
1 = {α ∈ ∆+

1 |2α 6∈ ∆+
0 }. Let ρ0 = 1

2

∑
β∈∆+

0
β, ρ1 = 1

2

∑
β∈∆+

1
β and

ρ = ρ0 − ρ1. We fix a nondegenerate, g-invariant bilinear form ( , ) on g. If
M is a U(g)-module, and α ∈ h∗0 we set Mα = {m ∈ M |hm = α(h)m for

all h ∈ h0}. We say that α ∈ h∗0 is typical if (λ + ρ, α) 6= 0 for all α ∈ ∆
+
1 ,

and that α is regular if (λ + ρ, α) 6= 0 for all α ∈ ∆+
0 . If α ∈ ∆0, we set

α∨ = 2α/(α, α).
Let h be the centralizer of h0 in g, n+ = ⊕α∈Q+\{0}g

α and n− = ⊕−α∈Q+\{0}g
α.

Then g = n− ⊕ h ⊕ n+ is a triangular decomposition of g in the sense of
[M1,1.1]. For λ ∈ h∗ there a unique finite dimensional graded simple b-
module Vλ such that n+Vλ = 0 and hv = λ(h)v for all h ∈ h0 and v ∈ Vλ. Also
let ICvλ be the one dimensional b0 module with n+

0 vλ = 0 and hvλ = λ(h)vλ
for h ∈ h0. We define Verma modules for g0 and g by

M(λ) = U(g0)⊗U(b0) ICvλ

M̃(λ) = U(g)⊗U(b) Vλ

The moduleM(λ), (resp M̃(λ)) has a unique simple (resp. graded simple)
quotient which we denote by L(λ) (resp. L̃(λ)). We mention that if g 6= Q(n)
then h0 = h, and dimIC Vλ = 1.

0.3. When g = osp(1, 2r) it is convenient to use the following model for the
root system of g [Kac 1, 2.5.4]. We identify h∗ with ICr with standard basis
e1, . . . , er and ( , ) with the usual inner product. Then a basis for the root
system is given by αi = ei − ei+1 for 1 ≤ i ≤ r − 1 and αr = er, see [Kac 1,
Section 2.5.4]. Then the positive even roots are

∆+
0 = {2ei} ∪ {ei ± ej}i<j

and the positive odd roots are

∆+
1 = {ei}.

The Weyl group W acts as the group of all signed permutations of r =
{1, 2, . . . , r}. Let x1, . . . , xr be the basis of h dual to e1, . . . , er. Then S(h)W =
IC[h2, h4, . . . , h2r] where hd =

∑r
i=1 x

d
i .

For I ⊆ r, let eI =
∑
i∈I ei. If Ǐ = r\I and γ = eI , we write γ̌ for eǏ . Note

that (γ, γ̌) = 0.
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1. The structure of U(g) as an adg module
1.1. Our results depend on the extension of the Harish-Chandra homo-

morphism for Lie superalgebras given in [Kac 2], [Kac 4]. First we introduce
some notation. Assume that g is classical simple and that g 6= P (n).

Let S(g) be the symmetric algebra of g and π : S(g) → U(g) the sym-
metrization map. This is an isomorphism of g-modules with respect to the
adjoint action, [S, Lemma 1] so carries the subalgebra of g-invariants S(g)g

onto Z(g). Next, let ζ : Z(g) → U(h) = S(h) be the projection with respect
to the decomposition

U(g) = U(h)⊕ (n−U(g) + U(g)n+)

and define α : S(h) → S(h) by (αF )(λ) = F (λ−ρ) for F ∈ S(h) and λ ∈ h∗.
We write ψ = αζ and η = ψπ. The analogs of these maps for U(g0) are
denoted π0, ζ0, α0, ψ0 and η0.

For λ ∈ h∗ we denote by χλ (resp. χ0
λ) the central character afforded

by the U(g)-module M̃(λ) (resp. by the U(g0)-module M(λ)). Thus for
z ∈ Z(g) (resp. z ∈ Z(g0)), z acts on M̃(λ) (resp. M(λ)) as the scalar χλ(z)
(resp. χ0

λ(z)). Set mλ = kerχλ and m0
λ = kerχ0

λ.

Theorem. (a) (Harish-Chandra) ψ0 is an isomorphism from Z(g0) onto
S(h)W , such that for all z ∈ Z(g0), λ ∈ h∗

χ0
λ(z) = ψ0(z)(λ+ ρ0)

(b) ψ is a monomorphism from Z(g) to S(h)W such that for all z ∈ Z(g),
and λ ∈ h∗

χλ(z) = ψ(z)(λ+ ρ)

(c) Let S(h)0 be the subalgebra of S(h) consisting of all functions φ on h∗

such that (λ, α) = 0 for an isotropic root α implies that φ(λ) = φ(λ+ tα) for
all t ∈ IC. Then the image of the map ψ in (b) is the fixed algebra S(h)W0 .

1.2. For the remainder of Section 1, assume that g is basic. The bilinear
form ( , ) induces an isomorphism of g-modules g → g∗. This map extends
to an isomorphism of algebras and of g-modules S(g) → S(g∗) and hence of
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fixed algebras S(g)g → S(g∗)g. Since ( , ) restricts to a nondegenerate form
on g0 and h we obtain in a similar way isomorphisms S(g0)

g0 → S(g∗0)
g0 and

S(h) → S(h∗). All of these maps will be denoted by x→ x∗.
Let Λ = Λg1 be the exterior algebra on g1 with its natural grading Λ =

⊕m
i=0Λ

i, where Λ1 = g1 and m = 2dim g1 . Then S = S(g) = ⊕m
i=0(Λ

i ⊗ S(g0)),
and we set N = ⊕m

i=1(Λ
i ⊗ S(g0)) a nilpotent ideal of S. We write τ for the

natural map τ : S → S/N and identify S/N with S(g0).
There is a commutative diagram

S(g)
τ→ S(g0)

∗ ↓ ↓ ∗
S(g∗)

τ∗→ S(g∗0)

where τ ∗ is defined analogously to τ .
Now the inclusion h ⊆ g0 induces a map S(g∗0) → S(h∗), and this map in

turn induces an isomorphism θ0 : S(g∗0)
g0 → S(h∗)W by [H, Theorem 23.1].

Set θ = θ0τ
∗. Then as in [H, page 131] we have the following diagram

S(g)g π−→ Z(g)
ψ−→ S(h)W

∗ ↓ ↓ ∗
S(g∗)g θ−→ S(h∗)W

of filtered vector spaces such that for all u ∈ Sn(g)g

η(u)∗ − θ(u∗) ∈ Sn−1(h
∗)W .

Furthermore if g = osp(1, 2r) then by [Theorem 1.1] the maps θ and ψ
are algebra isomorphisms.

Of course, there is a similar diagram involving the maps π0, ψ0 and θ0.

Lemma. If u ∈ Sn(g)g and v = η−1
0 (η(u)) then u− v ∈ N + Sn−1(g0)

g0 .

Proof. Set w = τ(u) ∈ Sn(g0)
g0 . Then θ(u∗) = θ0τ

∗(u∗) = θ0(w
∗). However

by the foregoing remarks η(u)∗− θ(u∗) and η0(w)∗− θ0(w
∗) are contained in

Sn−1(h
∗)W . Therefore η0(v)− η0(w) = η(u)− η0(w) ∈ Sn−1(h)W , and hence

v − w ∈ Sn−1(g0)
g0 . Since u− w ∈ N this proves the result.

Corollary.
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1) S(g)g ∩N = 0

2) If g = osp(1, 2r) then S(g)g +N = S(g0)
g0 +N .

Proof.

1) If the intersection is nonzero, choose an element u ∈ Sn(g)g ∩N, u 6= 0
with n minimal. If v = η−1

0 η(u) we can write u− v = x+ y with x ∈ N
and y ∈ Sn−1(g0)

g0 . Then u− x = v+ y ∈ N ∩ S(g0) = 0. This implies
that v = −y ∈ Sn−1(g0)

g0 a contradiction.

2) Clearly S(g)g + N ⊆ S(g0)
g0 + N . Conversely assume by induction

that Sn−1(g0)
g0 ⊆ S(g)g + N . If v ∈ Sn(g0)

g0 , write v = η−1
0 (x) with

x ∈ Sn(h)W . Since η is surjective for g = osp(1, 2r), x = η(u) for
u ∈ Sn(g)g. By the lemma u − v ∈ Sn−1(g0)

g0 + N ⊆ S(g)g + N , so
v ∈ S(g)g +N .

1.3. Lemma. Suppose S = ⊕m
i=0S(i) is a graded ring, and R a graded

subring of S such that R ∩ N = 0, where N = ⊕m
i=1S(i). Assume that

for each i, N i/N i+1 is a free left R-module with basis the images of the
elements {ωi,λ ∈ N i|λ ∈ Ωi}. Then S is a free left R-module with basis
{ωi,λ|(i, λ) ∈ IN× Ωi}.

Proof. For r ∈ R, we write r = r0 + r+ with r0 ∈ R(0) and r+ ∈ N . Fix
i and set N ′

i =
∑
Rwj,λ (sum over j ≥ i and (j, λ) ∈ IN × Ωj). By reverse

induction on i we show that N ′
i = N i. Observe that N ′

i contains the elements
rwi,λ = (r0 + r+)ωi,λ, for r ∈ R, and by induction N ′

i also contains r+ωi,λ. It
follows that N ′

i +N i+1 = N i and so N ′
i = N i.

Now suppose we have a relation
∑
rj,λωj,λ = 0 where not all the co-

efficients rj,λ ∈ R are zero, and among such relations assume that i =
min{j|rj,λ 6= 0 for some λ ∈ Ωj} is chosen as small as possible. Then∑
ri,λωi,λ ∈ N i+1 gives r0

i,λ = 0 for all λ, but this is impossible sinceR∩N = 0.

1.4. Now let g = osp(1, 2r), S = S(g), R = S(g)g and R+ = ⊕n≥1Rn. Since
all finite dimensional g-modules are completely reducible we can choose an
adg stable complement H to R+S in S.
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Theorem. The multiplication map induces an isomorphism of adg-modules
R⊗H → S. In addition if P is any finite dimensional simple g-module, the
multiplicity of P as a direct summand of H under the adjoint action is equal
to the dimension of the weight space P 0 of P .

Proof. By [D, 8.2.2] There is a adg0-stable subspace L of S(g0) such that
S(g0)

g0 ⊗ L ∼= S(g0) via the multiplication map. Write S(i) = S(g0) ⊗ Λi,
S = ⊕m

i=0S(i) and N = ⊕m
i=1S(i) as in 1.2. Then as adg0-modules S(i) =

S(g0)
g0⊗L⊗Λi and since R ∼= S(g0)

g0 by Corollary 1.2, we see that N i/N i+1

is a free R-module. Therefore S is a free R-module by Lemma 1.3. More
precisely, if H ′ = L ⊗ Λg1, the multiplication map R ⊗ H ′ → S is an iso-
morphism of g0-modules and of graded vector spaces. Since R = IC⊕R+ this
implies that S = R+S ⊕H ′.

If V = ⊕n≥0Vn is a graded vector space, set PV (t) =
∑
n≥0(dimVn)t

n.
Since S = R ⊗ H ′ we have PS(t) = PR(t)PH′(t). On the other hand since
S = R+S ⊕ H = R+S ⊕ H ′ as graded vector spaces PH(t) = PH′(t) so
PS(t) = PR(t)PH(t). Since S = RH by [Ko, Proposition 1, page 336], it
follows that the multiplication map R ⊗ H → S is bijective, and so is an
isomorphism of adg-modules.

In addition H ∼= H ′ as g0-modules, and as a g0-module H ′ is isomorphic
to the induced module Indg

g0
(L) = U(g) ⊗U(g0) L. Since H and Indg

g0
(L)

are locally finite dimensional g-modules with the same formal character, and
all finite dimensional modules are completely reducible, H ∼= Indg

g0
(L) as

g-modules. Now we use Frobenius reciprocity to prove the statement about
multiplicities.

Write L = ⊕M(L : M)M where (L : M) is the multiplicity of the simple
g0-module M in L. Then H ∼= ⊕M(L : M)Indg

g0
(M), and by [P, Exer-

cise 2 (c), page 178], if P is any finite dimensional simple g-module then
(Indg

g0
(M) : P ) = (P |g0 : M). Thus

(H : P ) =
∑
M

(L : M)(P |g0 : M)

=
∑
M

dimM0(P |g0 : M) = dimP 0.

Here we have also used the fact that (L : M) = dimM0, [D, 8.3.6].

1.5. Theorem. Let π : S(g) → U(g) be the symmetrization map, and
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K = π(H). Then the multiplication mapK⊗Z(g) → U(g) is an isomorphism
of g-modules with respect to the adjoint action. Moreover if P is a finite
dimensional simple g-module, the multiplicity of P in K equals dimP 0.

Proof. This now follows as in the classical case [D,8.2.4].

2. Algebraic Relations between Z(g) and Z(g0)

2.1. Lemma. If g = Π
β∈∆

+
1
hβ, then gS(h)W ⊆ Imψ

Proof. This follows immediately from Theorem 1.1 (c).

2.2. Let β1, . . . , βr be the unique basis of simple roots of [g0, g0] contained
in ∆+

0 . Note that the module L(λ) will be finite dimensional if L̃(λ) is
finite dimensional, since in this case any element of Vλ will generate a finite
dimensional g0-module. It is well known that L(λ) is finite dimensional if
and only if (λ, β∨i ) ∈ IN for i = 1, . . . , r. We say that λ is dominant in this
case. Necessary and sufficient conditions for L̃(λ) to be finite dimensional are
given in [Kac 1, Theorem 8]. From this result it follows that if λ is dominant
and not too close to a reflecting hyperplane for the Weyl group, then L̃(λ) is
finite dimensional. Hence we conclude that

Λ′ = {λ ∈ h∗|L̃(λ) is finite dimensional and λ is typical}

is Zariski dense in h∗.
We consider the decomposition of L̃(λ) as a direct sum of simple g0-

modules
L̃(λ) = ⊕mλ(µ)L(µ)

Let Γ be the set of sums of distinct odd positive roots, and for γ ∈ Γ, let
K(γ) be the number of partitions of γ into distinct odd positive roots

Proposition. If λ is typical, then

mλ(µ) = (dimVλ)
∑
w∈W

K(w(λ+ ρ)− µ− ρ)
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Proof. If g is basic, this is deduced in [Kac 3, 2.11] from the character
formula for typical modules [Kac 2].

Intuitively, since Γ is finite, we should expect that for λ “not too close
to a wall”, the only term that could contribute to the above sum is the one
with w = 1. More precisely we have

Corollary. (Compare [Pe, Corollary 2.1]) Set

a = min{0, 3(γ + ρ, β∨i )|i = 1, . . . , r; γ ∈ Γ},

b = max{0, (γ + ρ, β∨i )|i = 1, . . . , r; γ ∈ Γ}
and

Λ = {λ ∈ Λ
′|(λ+ ρ, β∨i ) > b− a for i = 1, . . . r}.

Then Λ is Zariski dense in h∗ and for λ ∈ Λ we have as a g0-module

L̃(λ) = ⊕γ∈ΓK(γ)L(λ− γ)

Proof. For γ ∈ Γ, λ ∈ Λ we have (λ− γ, β∨i ) ≥ −a ≥ 0. Also if Λg1 denotes
the exterior algebra on g1, then γ is a weight of the finite dimensional g0-
module Λg1, so (γ, β∨i ) ∈ ZZ. Since λ ∈ Λ′ this implies that λ−γ is dominant.

Suppose that µ is dominant, λ ∈ Λ and w ∈ W are such that γ =
w(λ + ρ) − µ − ρ satisfies K(γ) 6= 0. By the proposition it suffices to show
that w = 1.

Since µ is dominant we have

(λ+ ρ, w−1β∨i ) = (γ + µ+ ρ, β∨i ) ≥ (γ + ρ, β∨i ) ≥ a/3.

On the other hand if w 6= 1, then by [H, Lemma 10.3A] we have w−1βi < 0
for some i. Write −w−1βi =

∑
njβj where nj ∈ IN and

∑
nj ≥ 1. Since

(βj, βj)/(βi, βi) ≥ 1/3 for all j, we have

(λ+ ρ, w−1β∨i ) ≤ −(1/3)(λ+ ρ,
∑

njβ
∨
j )

< (a/3)
∑

nj ≤ a/3.

This contradiction shows that w = 1.
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2.3. Lemma. The set ρ1 − Γ = {ρ1 − γ|γ ∈ Γ} is W-invariant.

Proof. This follows from the W-invariance of the function

Πα∈∆+
1
(eα/2 + e−α/2) =

∑
γ∈Γ

K(γ)eρ1−γ

The lemma allows us to define an action of W on Γ by

w ∗ γ = ρ1 − w(ρ1 − γ)

for w ∈ W and γ ∈ Γ.

2.4. We make frequent use of the following result.

Lemma. Suppose g is classical simple and not of type P (n). If Λ ⊆ h∗ is
Zariski dense, then ∩λ∈ΛannU(g)L̃(λ) = 0.

Proof. See [LM, Corollary D].

2.5. Theorem. If x ∈ Z(g0), there exist zi ∈ Z(g), i = 0, . . . , |Γ| with

ψ(z|Γ|) = g such that
∑|Γ|
i=0 x

izi = 0.

Proof. For γ ∈ Γ, we define qγ ∈ S(h) by

qγ(µ) = ψ0(x)(µ+ ρ1 − γ)

for µ ∈ h∗. Note that x acts on L(λ− γ) as the scalar qγ(λ + ρ). Thus if Λ
is the Zariski dense subset of h∗ given by Corollary 2.2 and λ ∈ Λ, we have
L̃(λ) = ⊕γ∈ΓL(λ − γ), and so Π(x − qγ(λ + ρ)) ∈ annU(g)L̃(λ). We observe
that

qω∗γ(w(λ+ ρ)) = ψ0(x)(w(λ+ ρ0 − γ))

= qγ(λ+ ρ)

since ψ0(x) is W -invariant. Now let t be an indeterminate and consider the
monic polynomial

Πγ∈Γ(t− qγ) =
|Γ|∑
i=0

tifi ∈ S(h)[t].
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It follows that the coefficients fi satisfy fi(w(λ + ρ)) = fi(λ + ρ) for
w ∈ W , that is fi ∈ S(h)W . Therefore by Lemma 2.1 there exist zi ∈ Z(g)
such that ψ(zi) = gfi. Since zi acts on L̃(λ) as the scalar (gfi)(λ + ρ) we

have that
∑|Γ|
i=0 x

izi acts like

g(λ+ ρ)
∑

xifi(λ+ ρ) = g(λ+ ρ)Πγ(x− qγ(λ+ ρ)) = 0.

Since Λ is dense we have, by Lemma 2.4∑
xizi ∈ ∩λ∈ΛannU(g)L̃(λ) = 0.

Corollary. If g = osp(1, 2r), then Z(g0) is integral over Z(g).

2.6. Let g = osp(1, 2r). We require a more precise equation relating the
degree two Casimir elements Q and C of U(g0) and U(g). We first normalize
these so that C acts on L̃(λ) as the scalar (λ+ 2ρ, λ) and Q acts on L(λ) as
the scalar (λ+ 2ρ0, λ). Then x = Q−C + 2(ρ, ρ1) acts on the g0-submodule
L(λ− γ) as the scalar

(λ+ 2ρ0 − γ, λ− γ)− (λ+ 2ρ, λ) + 2(ρ, ρ1)

= 2(λ+ ρ, ρ1 − γ)− (γ, γ̌)

= 2(λ+ ρ, ρ1 − γ).

Set
∏
γ∈Γ(t − 2(λ + ρ, ρ1 − γ)) =

∑|Γ|
i=0 t

ifi, with fi ∈ S(h). As in the proof
of Theorem 2.5, there exist zi ∈ Z(g) such that ψ(zi) = fi and we have∑
xizi = 0.

Lemma. Set F (t) =
∑
tizi. Then F is the minimum polynomial of x over

Z(g).

Proof. By the above remarks, the minimum polynomial G of x over Z(g)
divides F . Choose λ ∈ Λ such that (λ+ρ, γ−γ′) 6= 0 if γ, γ′ ∈ Γ and γ 6= γ′.
Since x acts on L̃(λ) with |Γ| distinct eigenvalues, it follows that F = G.

2.7. Another application of our method is used to obtain the following result.
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Theorem. Let g be classical simple and suppose that K(γ) = 1 for all γ ∈ Γ.
Then U = U(g)g0 is commutative.

Proof. Let Λ be the Zariski dense subset of h∗ defined in Corollary 2.2 and
set

Λ+ = {λ ∈ Λ|(λ+ ρ, γ − γ′) = 0, for all distinct γ, γ′ ∈ Λ.}

Note that Λ+ is Zariski dense in h∗, and if λ ∈ Λ+, then L̃(λ) is the direct sum
of |Γ| nonisomorphic irreducible g0-modules. Hence D(λ) = EndU(g0)L̃(λ) ∼=
⊕ IC|Γ| is commutative. There is a homomorphism U −→ D(λ) induced by
left multiplication and it follows that xy− yx ∈ annU(g)L̃(λ) for all x, y ∈ U .
Therefore the result follows from Lemma 2.4.

Remarks. 1) We observe that the hypothesis on K(γ) holds in the theorem
if g = s`(m, 1) or g = osp(1, 2r).
2) For any basic classical simple Lie superalgebra, a similar proof shows that
U(g)g0 is a P.I. ring.

2.8. We close this section with another application of Lemma 2.1. The result
is probably well-known to experts in the field, but we have been unable to
find it in the literature.

Proposition. Z(g) is Noetherian if and only if g = osp(1, 2r) for some r.

Proof. If g = osp(1, 2r), then Z(g) ∼= S(h)W by so Z(g) is Noetherian. For
the converse, suppose g 6= osp(1, 2r) and set Z = Imψ. There is an odd
root α of g such that (α, α) = 0. We can find an x ∈ S(h)W such that
x(tα) = f(t) is a nonconstant polynomial. If the ideal

∑
i≥0 gx

iZ of Z is
finitely generated, then gxn ∈ ∑n−1

i=0 gx
iZ for some n. Therefore since Z is

a domain we have an equation of the form
∑n
i=0 x

izi = 0 with zi ∈ Z and
zn = 1. However since zi(tα) = zi(0) for all t ∈ IC this gives

∑n
i=0 zi(0)f

i = 0,
a contradiction.
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3. Connections with Representation Theory
3.1. Let g be classical simple. We denote by O, the category of g0-modules
defined in [J, 4.3] and by Õ the category of graded g-modules which belong
to the category O when regarded as g0-modules by restriction, see [M1, 1.1].
For λ ∈ h∗ and M a g0-module, we set as in [J, 4.4 (3)],

prλM = {v ∈M | for all z ∈ Z(g0); (z − χ0
λ(z))

nv = 0, for n� 0}

Similarly if λ is typical and M a g-module we set

M(λ) = {v ∈M | for all z ∈ Z(g), (z − χλ(z))
nv = 0, for n� 0},

and let Õλ be the full subcategory of the category Õ consisting of modules
M such that M = M(λ). Note the category Õλ is not quite analogous to
the category Oλ defined in [J, 4.4]. For generic irreducible g-modules, results
similar to the next one are proved in [Pe 2, Section 2] using D-module tech-
niques.

Theorem. If λ is typical and M ∈ Õλ we have M = ⊕µ∈λ−ΓprµM .

Proof. By [M1, Cor. 1.1] any module in Õ has a finite filtration by graded
modules whose factors are homomorphic images of Verma modules. Thus we
may assume that M = M̃(λ). As in [J, 4.4(4)] we have M = ⊕µ∈h∗prµM .
If µ 6∈ λ − Γ we show that prµM = 0. By [Kap, Theorem 81], we can find
x ∈ m0

µ such that x 6∈ m0
λ−γ for all γ ∈ Γ. By Theorem 2.5, if x ∈ Z(g0),

there exist elements zi ∈ Z(g) with ψ(z|Γ|) = g such that
∑|Γ|
i=0 x

izi = 0. The

action of x on M̃(λ) satisfies

0 =
∑

xiψ(zi)(λ+ ρ) = g(λ+ ρ)
∏
γ∈Γ

(x− ψ0(x)(λ+ ρ0 − γ))

Since λ is typical, g(λ + ρ) 6= 0, so
∏

(x − χ0
λ−γ(x))prµM = 0 The result

follows from this.

3.2 We now turn our attention to the Verma modules M̃(λ). For the next
result λ need not be typical.

Theorem. As a g0-module M̃(λ) has a filtration 0 = M0 ⊂ M1 ⊂ . . . ⊆
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Mn = M̃(λ) such that each factor Mi+1/Mi is isomorphic to a Verma mod-
ule M(λ − γ) with γ ∈ Γ. The module M(λ − γ) occurs with multiplicity
(dimVλ)K(γ) in this filtration.

Proof. For ease of notation we shall assume that ∆+
1 ∩ ∆+

0 = φ and that
dim gα = 1 for α ∈ ∆. This holds for “most” classical simple Lie superal-
gebras, see [Sch, Proposition 1, page 137], and we leave it to the reader to
modify the argument which in the exceptional cases.

For each α ∈ ∆+ = ∆+
0 ∪∆+

1 , let e−α be a basis for g−α. Let P be the set
of maps π : ∆+ −→ IN such that π(α) = 0 or 1 for α ∈ ∆+

1 , and for π ∈ P,
set |π| =

∑
α∈∆+ π(α)α. Fix an ordering on ∆+, such that every element of

∆+
0 precedes every element of ∆+

1 . For π ∈ P, set e−π =
∏
e
π(α)
−α where the

product over α ∈ ∆+ is taken with respect to the fixed order. Any π ∈ P

has a unique decomposition π = π0 + π1, where π0, π1 ∈ P, π0(α) = 0 for
α ∈ ∆+

1 and π1(α) = 0 for α ∈ ∆+
0 .

For any γ ∈ Q+, set γM̃(λ) =
∑
U(n−0 )e−πvλ where the sum is over all

π ∈ P, such that π = π1, and |π| < γ. This sum is direct by the PBW
Theorem. Also 0M̃(λ) = 0, and γM̃(λ) = M̃(λ), if γ > 2ρ1. If δ < γ,
then since M̃(λ)λ−δ has a basis consisting of all e−πvλ with |π| = δ, and
e−π = e−π0e−π1 , we have M̃(λ)λ−δ ⊆γ M̃(λ).

Now suppose π = π1 ∈ P, with |π| = γ. If α ∈ ∆+
0 , we have eαe−πvλ ∈

γM̃(λ). It follows by induction on the partial order <, that γM̃(λ) is a U(g0)-
module, and that the image of e−πvλ in M̃(λ)/γM̃(λ) is a highest weight
vector for g0 of weight λ − γ. Again by the PBW theorem the submodule
generated by this vector is isomorphic to M(λ− γ). The result now follows
easily.

3.3 We can use the previous theorem to measure the size of prµM̃(λ) Let D
be the division ring of fractions of U(n0), and for a U(n0)-module N , set

rank (N) = dimD(D ⊗U(n0) N).

Corollary. If λ ∈ h∗, and µ ∈ h∗/W , then

rank prµ(M̃(λ)) = dimVλ
∑
w∈W

K(λ+ ρ0 − w(µ+ ρ0)).
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Proof. This follows from Theorem 3.2 using the additivity of rank ( ) on exact
sequences, and the fact that χ0

µ = χ0
λ−γ if and only if λ− γ = w(µ+ ρ0)− ρ0

for some w ∈ W .

3.4 Let g be classical simple. For λ, γ ∈ h∗ we set

Y (λ, γ) = {y ∈ M̃(λ)λ−γ|n+
0 y = 0}.

Lemma. For all m ∈ IN the set {λ ∈ h∗| dimY (λ, γ) ≥ m} is Zariski closed.

Proof. This is a routine adaptation of the proof of [D, 7.6.12].

Corollary. For all λ ∈ h∗, and γ ∈ Γ, dimY (λ, γ) ≥ K(γ).

Proof. Let Λ be the Zariski dense subset of h∗ defined in 2.2, and

Λγ =

{
λ ∈ Λ| dimU(n−)−µ = dim L̃(λ)λ−µ

for all µ ≤ γ

}

It is easy to see that Λγ is Zariski dense in h∗. By Corollary 2.2, if λ ∈ Λγ

then L̃(λ)λ−γ contains K(γ) linearly independent maximal vectors. Since the
map M̃(λ)λ−µ → L̃(λ)λ−µ is an isomorphism for µ ≤ γ, the result follows.

3.5. Proposition. For any λ ∈ h∗ and γ ∈ Γ, M̃(λ) contains a g0-submodule

isomorphic to M(λ− γ). Thus annU(g0)M̃(λ) ⊆ m0
λ−γ

Proof. By the PBW theorem M̃(λ) is free as a U(n−0 )-module. Hence for
any v ∈ Y (λ, γ), U(g0)v = U(n−0 )v ∼= M(λ − γ). Hence the result follows
from Duflo’s theorem.

3.6. In certain cases M̃(λ) is a direct sum of Verma modules for U(g0).

Theorem. Suppose λ ∈ h∗ is typical, K(γ) = 1 for all γ ∈ Γ, and the central
characters χ0

λ−γ, γ ∈ Γ are distinct. Then as a g0-module

M̃(λ) = ⊕γ∈ΓM(λ− γ).
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Proof. The sum
∑
γ∈ΓM(λ − γ) is contained in M̃(λ) by Proposition 3.5,

and thus sum is direct by the assumption on central characters. The result
follows since M̃(λ) and ⊕γ∈ΓM(λ− γ) have the same formal character.

Corollary. Let A = (Z(g), Z(g0)) and E(λ) = EndU(g0)M̃(λ). Under the
hypotheses of the theorem, the map A −→ E(λ) induced by left multiplica-
tion is surjective and E(λ) ∼= IC|Γ|.

Proof. This follows since for all γ ∈ Γ, we can choose zγ ∈ Z(g0) such that
χ0
λ−γ(zγ) 6= 0 and χ0

λ−β(zγ) = 0 for all β ∈ Γ, β 6= γ.

Remark. If g = s`(2, 1), it is shown in [M3, 1.1] that M̃(λ) is a direct sum
of Verma modules for g0 if and only if (λ+ ρ, α) 6= 0, where α is the unique
positive even root.

3.7. Let g = osp(1, 2r). We can sharpen Theorem 3.6 in this case. Let L
be any ZZ2-graded factor module of M̃(λ). The grading on L can be ex-
pressed in terms of the root lattices for g and g0. In the notation of 0.3, set
Q =

∑r
i=1 ZZαi and Q′ = 2ZZαr +

∑r−1
i=1 ZZαi. Then define L(0) = ⊕η∈Q′Lλ−η

and L(1) = ⊕η∈Q\Q′Lλ−η.
Then L = L(0) ⊕ L(1) is a decomposition into g0-submodules such that

g1L(0) ⊆ L(1) and g1L(1) ⊆ L(0).
When L = M̃(λ) (resp. L̃(λ)), we denote the modules M̃(λ)(ε) (resp.

L̃(λ)(ε)) by M(λ, ε) (resp. L̃(λ, ε)). Then an argument similar to that used
to prove Theorem 3.6 gives

Lemma. If all the central characters χ0
λ−γ, γ ∈ Γ(ε) are distinct, then as a

g0-module.
M̃(λ, ε) = ⊕γ∈Γ(ε)M(λ− γ)

3.8. To investigate the condition that the central characters χ0
λ−γ are distinct,

we require a preliminary result. Recall the action of W on Γ defined in 2.3.
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Lemma. If g is classical simple then W acts faithfully on Γ.

Proof. Suppose w ∈ W and w ∗ γ = γ for all γ ∈ Γ. We have to show that
w = 1. Since 0 ∈ Γ and w(ρ1− γ) = ρ1− γ for all γ ∈ Γ, we have wγ = γ for
all γ ∈ Γ. As W ⊆ GL(h∗) it is enough to show that Γ spans h∗. In fact ∆+

1

spans h∗, since otherwise we could find a nonzero element h ∈ h such that
[h, g1] = 0, and this would contradict [Sch, equation (2.12), page 93].

3.9 Proposition. If g is classical simple, and λ ∈ h∗ is such that the central
characters χ0

λ−γ, for γ ∈ Γ, are distinct, then λ is regular.

Proof. Suppose that λ is not regular, so that (λ+ ρ, α) = 0 for some root α.
By Lemma 3.8 sα ∗ γ = γ′ 6= γ for some γ ∈ Γ. We claim that χ0

λ−γ = χ0
λ−γ′ .

In fact for any z ∈ Z(g0) we have, since ψ0(z) is W -invariant,

χ0
λ−γ(z) = ψ0(z)(λ+ ρ0 − γ) = ψ0(z)(sα(λ+ ρ0 − γ)).

Since
sα(λ+ ρ0 − γ) = λ+ ρ+ sα(ρ1 − γ)

= λ+ ρ0 − sα ∗ γ = λ+ ρ0 − γ′

the claim follows.

3.10. In certain cases there is a converse to Proposition 3.9. We abstract
part of the argument needed to show this. Let Φ be a root system of type
Xr(X = CorD). We regard Φ as a subset of IRr and use the notation of [H,
Chapter 12], except that we denote the standard basis of IRr by e1, . . . , er.
The Weyl group W of Φ acts as a subgroup of the group Ŵ of all signed
permutations of r = {1, . . . , r} and hence there is a homomorphism W −→
Sr. The image of an element w of W in Sr is denoted w. Let ρ1 = 1

2

∑r
i=1 ei

and for a subset I of r set eI =
∑
i∈I ei

Let Γ = {eI |I ⊆ r}, and for ε = 0 or 1,

Γ(ε) = {eI |I ⊆ r and |I| ≡ εmod 2}.

Lemma. Suppose that X = C and Ω = Γ or X = D and Ω = Γ(ε). Then
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if µ ∈ IRr and w(µ − γ′) = µ − γ for some γ, γ′ ∈ Ω, γ 6= γ′ and w ∈ W , we
have (µ− ρ1, α) = 0 for some α ∈ Φ.

Proof. For i = 1, . . . , r we have

(µ− γ, wei) = (µ− γ′, ei).

Write γ =
∑
εiei where εi = 0 or 1 for all i. Assume for a contradiction that

no α as in the statement of the lemma exists.
Consider the cycle decomposition of w. Suppose if possible, that w con-

tains a cycle (l1, . . . , lt) of length t > 1. To avoid double subscripts later we
set l(i) = li. Then with l(t+ 1) = l(1) we have

(µ− γ, el(i+1)) = ±(µ− γ′, el(i))

for i = 1, . . . , t. We can take advantage of the fact that W acts transitively
on ρ1 − Γ to simplify our notation. If s ∈ W and λ = s(µ − ρ1) + ρ1,
then sws−1(λ − s∗γ

′) = (λ − s∗γ), and from (λ − ρ1, α) = 0, it follows that
(µ− ρ1, s

−1α) = 0.
Now suppose that X = C. By the above, we may assume γ′ = 0. Then

one of the following holds for i = 1, . . . , t

(µ− ρ1, el(i+1) − el(i)) = εl(i+1) (i.1)

(µ− ρ1, el(i+1) + el(i)) = εl(i+1) − 1 (i.2)

The combinations of (i.1) and (i+1.2) or (i.2) and (i+1.2) contradict the
assumption on µ − ρ1. Hence for each i,(i.1) holds and εl(i) = 1, but then
summing the resulting equations again gives a contradiction.

If w = 1, then wei = ±ei for all i. Since γ 6= 0, we may choose i so that
(γ, ei) = 1. In this case we have (µ−γ, ei) = −(µ, ei), and so (µ−ρ1, ei) = 0.

Next suppose that X = D, and ε = 0. By transitivity of W we may
assume γ′ = 0. If w = 1, then since γ 6= 0 we have εi = εj = 1 for some
i 6= j. This implies 2(µ, ek) = 1 for k = i, j and hence (µ− ρ1, ei − ej) = 0.

Finally if X = D and ε = 1, choose s ∈ Ŵ\W . Then s∗Γ(1) = Γ(0) and
sws−1(λ− s∗γ′) = λ− s∗γ where λ = s(µ−ρ1)+ρ1, so the result in this case
follows from the case ε = 0.

3.11 Corollary. Suppose g = osp(1, 2r) and λ ∈ h∗.
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(a) The central characters χ0
λ−γ, γ ∈ Γ are distinct if and only if λ is regular.

(b) For ε = 0 or 1, the central characters χ0
λ−γ, γ ∈ Γ(ε) are distinct if and

only if (λ+ ρ, α) 6= 0 for all α ∈ ∆
+

0 .

Proof. If λ is regular with respect to ∆0, then the central characters χ0
λ−γ, γ ∈

Γ are distinct by Proposition 3.9. Conversely if γ, γ′ are distinct elements of
Γ such that χ0

λ−γ = χ0
λ−γ′ , then Lemma 3.10, with µ = λ + ρ0, and X = C,

yields (λ+ ρ, α) = 0 for some α ∈ ∆+
0 . This proves (a), and since the set of

short roots in a root system of type Cr forms a root system of type Dr, (b)
follows in a similar way.

Remark. If g = sl(r, 1), statement (a) of the corollary is valid in this case
also. The proof is similar to the proof of Lemma 3.10, but requires some
minor changes since the invariant form ( , ) is not positive definite. We can
identify h∗ with ICr in such a way that the positive odd roots of g correspond
to the standard basis e1, . . . , er of ICr. Then ( , ) is given up to a scalar
multiple by

(
r∑
i=1

xiei,
r∑
i=1

yiei) =
∑
i6=j

xiyj.

Let ei = (−(r− 2)ei +
∑
j 6=i ej). Then (ei, ej) = δij. In addition ei − ej =

(ej − ei) and W permutes the ei in the same way that it permutes the ei.
With eI as before, set Γ = {eI |I ⊆ r}. If w(µ − γ) = µ − γ′ for some

γ, γ′ ∈ Γ, γ 6= γ′, then starting from

(µ− γ, wei) = (µ− γ′, ei)

for all i = 1, . . . , r, we obtain (µ− ρ1, ei − ej) for some i 6= j.

4. A Geometric Approach to Z(g).
4.1. In view of Proposition 2.8 it seems at first that geometric methods will be
of little use in the study of Z(g). However Theorem 2.5 and its proof suggest
the following approach. Let B = Z(g) and A = (Z(g0), Z(g)). The inclusion
B ⊆ A induces a map of spectra ψ : SpecA −→ SpecB and we consider
the fibers of ψ. The behaviour of these fibers, at least in the examples we
consider, is closely related to the representation theory of U(g).
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Let P be a prime ideal of B. The fibre over the point of SpecB cor-
responding to P is the closed subscheme Spec(A/AP ) of SpecA. Set Ã =
Z(g0) ⊗IC Z(g) and let φ : Ã −→ A be the multiplication map a ⊗ b −→ ab.
Then φ is surjective and if I = Z(g0) ⊗ P , then φ(I) = AP . Now Ã/I ∼=
Z(g0)⊗ (B/P ) and φ induces a surjective map from Ã/I onto A/AP . Thus
A/AP is a finitely generated algebra provided that B/P is finitely generated.

Now suppose P is a maximal ideal of B. Then since B has countable
dimension over IC, B/P ∼= IC. Let − : B −→ IC be the natural map.

Lemma. In this situation A/AP ∼= Z(g0)/J where

J = {
∑

aibi|
∑

ai ⊗ bi ∈ kerφ}

Proof. The commutative algebra A is generated by the subalgebras Z(g)
and Z(g0) subject to the relations given by kerφ. Since B/P ∼= IC via− , we
may eliminate the generators for Z(g) at the expense of introducing relations
on Z(g0) corresponding to the ideal J .

4.2. We illustrate the foregoing remarks by computing a family of fibers
when g = sl(2, 1). First we need some notation, see [M3]. The Cartan
subalgebra h of g has a basis consisting of the diagonal matrices h, z with
entries 1,−1, 0 and 1, 1, 2 respectively. For λ ∈ h∗ we write λ = (a, b) where
λ(h) = a, λ(z) = b. There are Casimir elements Q ∈ U(g0) and K ∈ U(g)
such that Q acts on L(λ) as the scalar a(a + 2) and K acts on L̃(λ) as the
scalar (a−b)(a+b+2) . Let L1 = Q−z(z+2) and L2 = Q−z(z−2). Then we
have Z(g0) = IC[z,Q] = IC[L1, L2]. By Theorem 1.1 there is a central element
C in the localization of U(g) with respect to the powers of K such that K and
C are algebraically independent and B = Z(g) is the subring IC +KIC[K,C]
of IC[K,C]. This is also shown by a direct calculation in [ABP, Proposition
IV.4.1.]. Also λ = (a, b) is typical if and only if (a− b)(a+ b+ 2) 6= 0, and in
this case L̃(λ) becomes a IC[K,C]-module with C acting as the scalar b. For
µ ∈ IC, set Pµ = (K − µ)IC[K,C] ∩ Z(g). Our aim is to compute the fibers of
the map ψ : SpecA −→ SpecB over the points Pµ.

First we need to describe the algebra A. Since K is central in U(g), and
U(g) is prime [Be], K is not a zero divisor. Hence A and Ã embed in their
respective localizations AK and ÃK and we can extend φ to a surjective map
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of algebras φK : ÃK −→ AK . Clearly kerφ = Ã∩ kerφK We omit the tensor
signs in writing elements of ÃK . Let I1, I2, I3 be the ideals of ÃK given by
I1 = (L1−K, z−C), I2 = (x, z−C − 1) and I3 = (L2−K, z−C − 2) where
x = (L1 −K)(L2 −K)− 4K.

Proposition. kerφK = I1 ∩ I2 ∩ I3.

Proof. We have Γ = {0, β, α+β, α+2β} where α = (2, 0) and β = (−1,−1).
Let Λ be the dense subset of h∗ given in Corollary 2.2. Then for λ ∈ Λ we
have as g0-modules

L̃(λ) = ⊕3
i=1L

(i)(λ)

where L(1)(λ) = L(λ), L(2)(λ) = L(λ − β) ⊕L(λ − α − β) and L(3)(λ) =
L(λ− α − 2β). Since all λ ∈ Λ are typical, the map φK allows us to regard
L̃(λ) as an ÃK-module. Now by Lemma 2.4 kerφK = ∩λ∈ΛannÃK

L̃(λ).

Therefore it suffices to show that Ii = ∩λ∈ΛannÃK
L(i)(λ) for i = 1, 2, 3. We

show this equality holds for i = 2. The other cases are easier and left to the
reader. Note first that L1 −K acts on L(λ − β) as the scalar 2(a − b) and
L2 − K as 2(a + b + 2), so xL(λ − β) = 0. Similar calculations show that
I2L

(2)(λ) = 0 for all λ ∈ Λ .
Note that ÃK/I2 ∼= IC[L1, L2, K

±1]/(x). Also x is a monic polynomial
of degree 2 in K with coefficients in IC[L1, L2]. Thus to obtain the desired
equality we must show that if

y =
∑

aijL
i
1L

j
2 +K

∑
bijL

i
1L

j
2

annihilates L(2)(λ) for all λ ∈ Λ, then y = 0. In the above expression for y
all but finitely many coefficients aij, bij are zero.

Now let F1 = (a−b), F2 = (a+b+4), G1 = (a+b+2), G2 = (a−b+2), F =
F1F2 and G = G1G2. Then if λ = (a, b) and yL(λ− β) = 0 we obtain

0 =
∑

aijF
iGj + F1G1

∑
bijF

iGj. (1)

This is a polynomial equation in λ = (a, b) which is valid for all λ ∈ h∗

since it is valid on the dense subset Λ. Now choose λ = (a, a) such that
G(λ) 6= 0. Then F1(λ) = F (λ) = 0 and we obtain

0 =
∑

a0jG
j(λ).
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Thus a0j = 0 for all j. Similarly choosing λ = (a,−a− 2) shows that ai0 = 0
for all i. Next we can divide each term in equation (1) by F1G1 to obtain

0 = F2G2

∑
aijF

i−1Gj−1 +
∑

bijF
iGj.

Arguing as before we obtain b0j = bi0 and each term in this equation is
divisible by F2G2. Continuing in this way shows y = 0 as required.

Remarks. 1) It follows from the proposition that (L1 −K)(L2 −K)x = 0.
An equivalent equation is obtained in [ABP, Proposition III.5.1.], and further
relations on central elements are given in [ABP, Proposition VI.6.1]. The
proofs in [ABP] use a version of Lemma 2.4 for g = s`(2, 1).
2) Rather surprisingly perhaps, the subalgebra A = (Z(g0), Z(g)) of U(g)
is finitely generated. To see this note that Z(g) is generated over IC by the
elementsDi = KCi for i ≥ 0. In AK we have (z−C)(z−C−1)(z−C−2) = 0,
which yields for all i ≥ 0 that Di+3 = 3Di+2(z − 1) −Di+1(3z

2 − 6z + 2) +
Di(z

3− 3z2 + 2z) in A. Thus A is generated over IC by z,Q,D0, D1 and D2.

4.3. We now consider the inclusion B = Z(g) ⊆ A = (Z(g0), Z(g)) and the
corresponding map on spectra ψ : SpecA −→ SpecB. For µ ∈ IC we compute
the fiber Spec(A/APµ) of over Pµ.

Let t = z − C, and define idempotents e1, e2, e3 ∈ AK by

e1 = (t− 1)(t− 2)/2, e2 = t(2− t)

and
e3 = t(t− 1)/2.

Then AK = A1 ⊕ A2 ⊕ A3 where Ai = AKei ∼= ÃK/Ii.
First consider the typical case where µ 6= 0. We have A/APµ ∼= AK/AKPµ

and Spec(A/APµ) is the disjoint union of 3 irreducible components Xi =
Spec(ÃK/(Ii, K − µ)). It is easy to see that X2 is a hyperbola in A3 and X1

and X3 are lines meeting X2 at infinity.
In the atypical case µ = 0, and P0 is the maximal ideal KIC[K,C] of Z(g)

we claim that A/AP0
∼= IC[L1, L2]/(L1L2). Note that Kei ∈ AP0 for each i.

Also (L1 −K)e1 ∈ ∩3
i=1φ(Ii) = 0. Thus L1L2e1 = L2Ke1 ∈ AP0. Similarly

L1L2e3 = L1Ke3 ∈ AP0 and L1L2e2 = (L1 + L2 + 4−K)Ke2 ∈ AP0. Thus
L1L2 ∈ AP0. Thus it suffices to show that if f ∈ AP0∩Z(g0) then f is divis-
ible by L1L2. Consider the finite dimensional atypical modules L̃(λ). These
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are annihilated by P0 and contain L(λ) as a g0-module direct summand. If
λ = (a, a) where a ∈ IN, then L2 acts on L(λ) as the scalar −4(a+2), while if
λ = (a,−a− 2), a ∈ IN, L1 acts on L(λ) as the scalar 4a. The result follows
from these remarks by varying a.

Remarks. 1) If µ 6= 0, the projective closure of the component X2 of
Spec(A/APµ) is defined by the equations (L1 − µT )(L2 − µT ) = 4µT 2,
and z − C = T , where z = (L2 − L1)/4. Thus the shadow at infinity
cast by X2 is defined by L1L2 = z − C = 0. Similarly the shadows of X1

(resp. X3) are by z − C = 0 and L1 = 0 (resp. L2 = 0). Then the fiber
spec(A/AP0) may be regarded as the shadow at infinity cast by the typical
fibers spec(A/APµ), µ 6= 0.
2) Our work has implications for the structure of U(g)-modules when re-
garded as U(g0)-modules by restriction. For example we have

Corollary. If M is a U(g)-module such that P0M = 0, then L1L2M = 0.

5. The case of g = osp(1, 2r).

5.1. Theorem. If g = osp(1, 2r), there is a subspace M of U(g)g0 such that
1 ∈M, dimM = 2r and

U(g)g0 = Z(g)⊗ IC M.

In particular U(g)g0 is a free Z(g)-module of rank 2r.

Proof. Let L be an adg0-stable subspace of U(g0) such that U(g0) = Z(g0)⊗
L as adg0-modules. Let Λ = Λg1 ⊆ U(g). By the proof of Theorem 1.5, there
is an isomorphism of adg0-modules

U(g) = Z(g)⊗ (L⊗ Λ).

Therefore
U(g)g0 = Z(g)⊗ (L⊗ Λ)g0

We now use some representation theory to compute dimIC(L⊗Λ)g0 . Write
Λ = ⊕2r

i=0Λ
i, where Λi = Λig1, and let λ1, . . . , λr be the fundamental weights

for g0. It is well known that as g0 modules Λi = L(λi)⊕ Λi−2, for 2 ≤ i ≤ r
[Sch, p.253, (A.16)] and that Λ2r−i ∼= (Λi)∗ ∼= Λi.
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¿From the description of the root system given in 0.3, it follows easily that

the zero weight space (Λ2i)0 of Λ2i has dimension

(
r
i

)
for 1 ≤ i ≤ [r/2],

and that (Λ2i−1)0 = 0 for all i. Hence dimL(λ2i)
0 =

(
r
i

)
−
(

r
i− 1

)
for

1 ≤ i ≤ [r/2].
Now if λ, µ are dominant weights, we have an isomorphism of g0-modules,

[Sch, page 43, (3.31)]

L(λ)⊗ L(µ) ∼= Hom(L(µ)∗, L(λ))

so taking invariants

(L(λ)⊗ L(µ) : IC) =

{
1 if L(λ)∗ ∼= L(µ)
0 otherwise

Thus (L⊗ L(λi) : IC) = 0 for i odd and

(L⊗ L(λ2i) : IC) =

(
r
i

)
−
(

r
i− 1

)

if 1 ≤ i ≤ [r/2]. Since L(λ2i) occurs in Λ with multiplicity (r − 2i+ 1), and
the multiplicity of IC is r + 1, it follows that

dim(L⊗ Λ)g0 = (L⊗ Λ : L(0))

= (r + 1) +
[r/2]∑
i=1

{(
r
i

)
−
(

r
i− 1

)}
(r − 2i+ 1) = 2r.

Corollary. The algebras U(g)g0 and (Z(g), Z(g0)) have the same fields of
fractions.

Proof. Let x = Q−C+2(ρ, ρ1) be as in Lemma 2.6. Then the result follows
since Z(g)[x] and U(g)g0 are both free Z(g)-modules of rank 2r.

5.2. Recall the Theorem about g = osp(1, 2r) stated in 0.1. The equivalence
of the hypotheses (a) and (b) follows from Corollary 3.11. We next show the
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implication (b) =⇒ (c) is an easy consequence of our work so far.

Lemma. Suppose λ ∈ h∗ and all central characters χ0
λ−γ, with γ ∈ Γ are

distinct. Then A/Amλ is reduced.

Proof. The map A = U(g)g0 −→ EndU(g0)M̃(λ) ∼= ⊕ IC2r

is surjective,
since by Corollary 3.6, it is already surjective when we restrict the domain
to (Z(g0), Z(g)) ⊆ A. Since Amλ is contained in the kernel, Theorem 5.1
implies that the induced map A/Amλ −→ IC2r

is an isomorphism.

5.3. Let A = (Z(g0), Z(g)). We show how to extend the Harish-Chandra
isomorphism ψ : Z(g) −→ S(h)W to A. Let V be the open subset of h∗ given
by

V = {λ+ ρ|λ is regular}.
For λ ∈ V , we have by Theorem 3.6 and Corollary 3.11

M̃(λ) = ⊕γ∈ΓM(λ− γ)

and elements of A act by scalar multiplication on each component of this
decomposition. Hence for all γ ∈ Γ, there is a homomorphism χλ,γ : A −→ IC
such that

am = χλ,γ(a)m

for all a ∈ A and all m in the g0-submodule M(λ − γ) of M̃(λ). Next we
define a homomorphism Ψγ : A −→ O(V ) by

Ψγ(a)(λ+ ρ) = χλ,γ(a)

for a ∈ A and λ ∈ V .
To compare the Ψγ we require some automorphisms σγ of S(h). If γ ∈ Γ,

we can write in the notation of 0.3, ρ1 − γ = (1/2)
∑r
i=1 εiei, where εi = ±1.

We define σγ ∈ AutS(h) by

(σγf)(µ1, ..., µr) = f(ε1µ1, ..., εrµr).

Theorem. The map σγΨγ : A −→ S(h)Sr is an isomorphism which is inde-
pendent of γ. Moreover if z ∈ Z(g) we have ψ(z) = (σγΨγ)(z).
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Proof. As in 0.3 we write S(h) = IC[x1, . . . , xr] and set hd =
∑r
i=1 x

d
i .

Since the maps ψ and ψ0 of 1.1 are isomorphisms, there exist zd ∈ Z(g) and
z′d ∈ Z(g0) such that ψ(zd) = ψ0(z

′
d) = h2d for all d.

Fix λ ∈ V, γ ∈ Γ, and write λ + ρ = µ = (1/2)
∑r
i=1 µiei and ρ1 − γ =

(1/2)
∑r
i=1 εiei. Then (σγΨγ)(zd) = h2d and

Ψγ(z
′
d)(µ) = ψ0(z

′
d)(µ+ ρ1 − γ)

=
(

1

2

)d ( 2d∑
i=0

(
2d
i

)
h2d−i(ε1µ1, . . . , εrµr),

)

whence (σσΨγ)(z
′
d) =

∑2d
i=0

(
2d
i

)
h2d−i.

Since A is generated by z1, ..., zr and z′1, ..., z
′
r it follows that the map

σγΨγ is independent of γ and has image IC[h1, ..., hr] = S(h)Sr . On the other
hand, since A is a domain whose Krull dimension is equal to that of S(h)Sr ,
it follows that σγΨγ is injective.

Corollary. If g = osp(1, 2r), then (Z(g0), Z(g)) = U(g)g0 .

Proof. By Corollary 5.1, A = (Z(g0), Z(g)) and B = U(g)g0 have the same
fields of fractions. The result follows since B is a finitely generated A-module
by Theorem 5.1, and A is integrally closed by Theorem 5.3.

5.4. Lemma. There exists an element T ∈ (Z(g), Z(g0)) such that for all
λ ∈ Λ, T acts on L̃(λ, ε) as the scalar (−1)ε

∏r
i=1(λ+ ρ, ei).

Proof. We have L̃(λ) = ⊕γ∈ΓL(λ − γ). Fix γ ∈ Γ and write ρ1 − γ =
(1

2
)
∑r
i=1 εiei where εi = ±1. Then L(λ − γ) ⊆ L̃(λ, ε) if and only if |{i|εi =

−1}| ≡ εmod2. Choose Tε(Z(g), Z(g0)) such that

(σγΨγ)(T ) = x1x2 . . . xrεS(h)Sr .

It follows that T acts on L(λ − γ) as the scalar (−1)εΠr
i=1(λ + ρ, ei), using

Theorem 5.3.

5.5. For d = 1, . . . , r let ad be the dth elementary symmetric function of
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x2
1, x

2
2, . . . , x

2
r. Then S(h)W = IC[a1, . . . , ar]. Therefore by Theorem 1.1, there

is a unique element z ∈ Z(g) such that ψ(z) = ar.

Lemma. With T as in Lemma 5.4,

(a) T 2 = z

(b) xT + Tx = 0 for all x ∈ g1,

(c) U(g)T = TU(g)

Proof. Suppose Λ is the dense subset of h∗ given in Corollary 2.2, and λ ∈ Λ.
By Theorem 1.1, z acts on L̃(λ) by the scalar Πr

i=1(λ+ ρ, ei)
2, so (a) follows

from Lemma 5.4 and Lemma 2.4. Also g1L̃(λ, ε) ⊆ L̃(λ, 1−ε) for ε = 0, 1 and
therefore xT + Tx ∈ annU(g)L̃(λ) for xεg1 by Lemma 5.4. Thus (b) follows
from Lemma 2.4 also, and (c) follows from (b) and the fact that T ∈ U(g)g0 .

5.6. Theorem. Suppose (λ+ ρ, α) = 0 for some α ∈ ∆+
1 . Then

(a) A/Amλ is not reduced

(b) U(g)mλ is not semiprime.

(c) If in addition (λ + ρ, β) 6= 0 for all β ∈ ∆
+
0 , then U(g)mλ is strictly

contained in annU(g)M̃(λ).

Proof. We have α = ei for some i. Thus under our assumption T 2 = z ∈ mλ.
If T ∈ Amλ, then since A is a free Z(g)-module with 1 as part of a free basis
by Theorem 5.1, we would have T 2 = z ∈ Am2

λ ∩ Z(g) = m2
λ. However since

ψ is an isomorphism, this would imply that ar belongs to the square of a
maximal ideal of IC[a1, . . . , ar]. This contradiction proves (a). Since U(g)T
is a two-sided ideal whose square is contained in U(g)mλ, (b) follows in a
similar way using Theorem 1.5 in place of Theorem 5.1.

Finally if the condition in (c) holds, then by Corollary 3.11 (b) and Lemma
3.7, M̃(λ) = ⊕γ∈ΓM(λ−γ). Hence the proof of Lemma 5.4 goes through with

M̃(λ, ε) in place of L̃(λ, ε), and we obtain TM̃(λ) = 0. Since T 6∈ U(g)mλ
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this proves (c).

5.7. It remains to show that A/Amλ is not reduced if (λ+ρ, α) = 0 for some

α ∈ ∆
+
0 . Here we exploit the fact that W acts transitively on ∆

+
0 ∪ −∆

+
0 .

In the notation of 0.3, set σ = er and τ = er−1 − er.

Lemma. If (µ + ρ, τ) = 0, then the image of A = (Z(g), Z(g0)) in E(µ) =
EndU(g0)M̃(µ) is not reduced.

Proof. It suffices to show that the image of A in EndU(g0)prµ−σM̃(µ) is
not reduced. For each η ∈ ∆+, fix bases eη, e−η for gη and g−η such that
(eη, e−η) = 1

Set v = e−σvµ and w = e−σ−τvµ. Let η be a positive even root. Note
that eηv = 0 and that eηw = 0 unless η = τ , in which case eηw is a nonzero
multiple of v. Set N = U(g0)v and M = U(g0)v + U(g0)w. It follows easily
that N ∼= M(µ−σ) and that M/N is a homomorphic image of M(µ−σ−τ).
A consideration of formal characters shows that M/N ∼= M(µ−σ−τ). Since
sτ ∗ σ = σ+ τ , it follows from the proof of Proposition 3.9, that the modules
M/N and N afford the same central character. Thus M ⊆ prµ−σM̃(λ).

Now let Q be the degree two Casimir element of U(g0) and c = χµ−σ(Q).
Up to a scalar multiple, Q takes the form

Q = x+
∑
η>0

e−ηeη

where x ∈ U(h). By the above remarks that (Q− c)N = (Q− c)(M/N) = 0.
Since ICw is invariant under U(h), it follows that (Q−c)w is a nonzero multiple
of e−τv, and that (Q− c)2w = 0. This proves the result.

Corollary. If λ ∈ h∗ and (λ + ρ, α) = 0 for some α ∈ ∆
+
0 , then A/Amλ is

not reduced.

Proof. There exists w ∈ W such that wα = τ is as in the lemma. If
µ = w(λ + ρ) − ρ then (µ + ρ, τ) = 0, so since mλ = mµ, A/Amλ is not
reduced.

6. Some Open Problems.

29



We state the problems in maximum generality although solutions in spe-
cial cases would often be interesting. Thus let g be a classical simple Lie
superalgebra, and λ ∈ h∗0.

1) When do we have equality U(g)g0 = (Z(g), Z(g0))?

2) Are the algebras in 1) finitely generated? Is U(g)g0 always commuta-
tive?

3) Is every minimal primitive ideal of U(g)g0 generated as a two sided
ideal by its intersection with U(g)g0? If g = s`(2, 1) this is shown in
[Ben], while if g = osp(1, 2), it follows easily from [Pi].

4) Find necessary and sufficient conditions for annU(g)M̃(λ) to be gener-
ated by its intersection with Z(g).

5) Let g = osp(1, 2r). Does the converse to Lemma 3.7 hold? If the image
of U(g)g0 (or of (Z(g), Z(g0)) in EndU(g0)M̃(λ) is reduced do we have

(λ+ ρ, α) 6= 0 for all α ∈ ∆
+
0 ?
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